Properties

Label 7800.2.a.bq.1.2
Level $7800$
Weight $2$
Character 7800.1
Self dual yes
Analytic conductor $62.283$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7800,2,Mod(1,7800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7800.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7800 = 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7800.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.2833135766\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.2700.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 15x - 20 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.61323\) of defining polynomial
Character \(\chi\) \(=\) 7800.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +1.61323 q^{7} +1.00000 q^{9} +1.61323 q^{11} +1.00000 q^{13} +6.17103 q^{17} +5.17103 q^{19} +1.61323 q^{21} +8.34206 q^{23} +1.00000 q^{27} +1.00000 q^{29} +1.61323 q^{31} +1.61323 q^{33} -1.17103 q^{37} +1.00000 q^{39} -3.17103 q^{41} -2.00000 q^{43} -1.55780 q^{47} -4.39749 q^{49} +6.17103 q^{51} -7.34206 q^{53} +5.17103 q^{57} -4.72883 q^{59} +10.5131 q^{61} +1.61323 q^{63} +4.78426 q^{67} +8.34206 q^{69} -1.17103 q^{71} -0.773540 q^{73} +2.60251 q^{77} -2.39749 q^{79} +1.00000 q^{81} -8.72883 q^{83} +1.00000 q^{87} -6.34206 q^{89} +1.61323 q^{91} +1.61323 q^{93} -4.34206 q^{97} +1.61323 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{3} + 3 q^{9} + 3 q^{13} + 6 q^{17} + 3 q^{19} + 3 q^{27} + 3 q^{29} + 9 q^{37} + 3 q^{39} + 3 q^{41} - 6 q^{43} + 3 q^{47} + 9 q^{49} + 6 q^{51} + 3 q^{53} + 3 q^{57} + 6 q^{59} - 6 q^{61} - 3 q^{67}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.61323 0.609744 0.304872 0.952393i \(-0.401386\pi\)
0.304872 + 0.952393i \(0.401386\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 1.61323 0.486407 0.243204 0.969975i \(-0.421802\pi\)
0.243204 + 0.969975i \(0.421802\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.17103 1.49669 0.748347 0.663307i \(-0.230848\pi\)
0.748347 + 0.663307i \(0.230848\pi\)
\(18\) 0 0
\(19\) 5.17103 1.18632 0.593158 0.805086i \(-0.297881\pi\)
0.593158 + 0.805086i \(0.297881\pi\)
\(20\) 0 0
\(21\) 1.61323 0.352036
\(22\) 0 0
\(23\) 8.34206 1.73944 0.869720 0.493546i \(-0.164299\pi\)
0.869720 + 0.493546i \(0.164299\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 1.00000 0.185695 0.0928477 0.995680i \(-0.470403\pi\)
0.0928477 + 0.995680i \(0.470403\pi\)
\(30\) 0 0
\(31\) 1.61323 0.289745 0.144872 0.989450i \(-0.453723\pi\)
0.144872 + 0.989450i \(0.453723\pi\)
\(32\) 0 0
\(33\) 1.61323 0.280827
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.17103 −0.192516 −0.0962581 0.995356i \(-0.530687\pi\)
−0.0962581 + 0.995356i \(0.530687\pi\)
\(38\) 0 0
\(39\) 1.00000 0.160128
\(40\) 0 0
\(41\) −3.17103 −0.495232 −0.247616 0.968858i \(-0.579647\pi\)
−0.247616 + 0.968858i \(0.579647\pi\)
\(42\) 0 0
\(43\) −2.00000 −0.304997 −0.152499 0.988304i \(-0.548732\pi\)
−0.152499 + 0.988304i \(0.548732\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.55780 −0.227228 −0.113614 0.993525i \(-0.536243\pi\)
−0.113614 + 0.993525i \(0.536243\pi\)
\(48\) 0 0
\(49\) −4.39749 −0.628213
\(50\) 0 0
\(51\) 6.17103 0.864117
\(52\) 0 0
\(53\) −7.34206 −1.00851 −0.504255 0.863555i \(-0.668233\pi\)
−0.504255 + 0.863555i \(0.668233\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 5.17103 0.684920
\(58\) 0 0
\(59\) −4.72883 −0.615641 −0.307821 0.951444i \(-0.599600\pi\)
−0.307821 + 0.951444i \(0.599600\pi\)
\(60\) 0 0
\(61\) 10.5131 1.34606 0.673032 0.739614i \(-0.264992\pi\)
0.673032 + 0.739614i \(0.264992\pi\)
\(62\) 0 0
\(63\) 1.61323 0.203248
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 4.78426 0.584490 0.292245 0.956343i \(-0.405598\pi\)
0.292245 + 0.956343i \(0.405598\pi\)
\(68\) 0 0
\(69\) 8.34206 1.00427
\(70\) 0 0
\(71\) −1.17103 −0.138976 −0.0694878 0.997583i \(-0.522137\pi\)
−0.0694878 + 0.997583i \(0.522137\pi\)
\(72\) 0 0
\(73\) −0.773540 −0.0905360 −0.0452680 0.998975i \(-0.514414\pi\)
−0.0452680 + 0.998975i \(0.514414\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.60251 0.296584
\(78\) 0 0
\(79\) −2.39749 −0.269739 −0.134869 0.990863i \(-0.543061\pi\)
−0.134869 + 0.990863i \(0.543061\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −8.72883 −0.958114 −0.479057 0.877784i \(-0.659021\pi\)
−0.479057 + 0.877784i \(0.659021\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 1.00000 0.107211
\(88\) 0 0
\(89\) −6.34206 −0.672257 −0.336128 0.941816i \(-0.609118\pi\)
−0.336128 + 0.941816i \(0.609118\pi\)
\(90\) 0 0
\(91\) 1.61323 0.169112
\(92\) 0 0
\(93\) 1.61323 0.167284
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −4.34206 −0.440869 −0.220435 0.975402i \(-0.570748\pi\)
−0.220435 + 0.975402i \(0.570748\pi\)
\(98\) 0 0
\(99\) 1.61323 0.162136
\(100\) 0 0
\(101\) −11.7395 −1.16813 −0.584064 0.811707i \(-0.698538\pi\)
−0.584064 + 0.811707i \(0.698538\pi\)
\(102\) 0 0
\(103\) −15.5685 −1.53401 −0.767006 0.641640i \(-0.778254\pi\)
−0.767006 + 0.641640i \(0.778254\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.17103 −0.499902 −0.249951 0.968258i \(-0.580415\pi\)
−0.249951 + 0.968258i \(0.580415\pi\)
\(108\) 0 0
\(109\) 0.718110 0.0687825 0.0343913 0.999408i \(-0.489051\pi\)
0.0343913 + 0.999408i \(0.489051\pi\)
\(110\) 0 0
\(111\) −1.17103 −0.111149
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1.00000 0.0924500
\(118\) 0 0
\(119\) 9.95529 0.912600
\(120\) 0 0
\(121\) −8.39749 −0.763408
\(122\) 0 0
\(123\) −3.17103 −0.285922
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0.0554299 0.00491861 0.00245930 0.999997i \(-0.499217\pi\)
0.00245930 + 0.999997i \(0.499217\pi\)
\(128\) 0 0
\(129\) −2.00000 −0.176090
\(130\) 0 0
\(131\) 11.1710 0.976017 0.488009 0.872839i \(-0.337723\pi\)
0.488009 + 0.872839i \(0.337723\pi\)
\(132\) 0 0
\(133\) 8.34206 0.723348
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 20.2866 1.73320 0.866602 0.499000i \(-0.166299\pi\)
0.866602 + 0.499000i \(0.166299\pi\)
\(138\) 0 0
\(139\) 7.22646 0.612940 0.306470 0.951880i \(-0.400852\pi\)
0.306470 + 0.951880i \(0.400852\pi\)
\(140\) 0 0
\(141\) −1.55780 −0.131190
\(142\) 0 0
\(143\) 1.61323 0.134905
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −4.39749 −0.362699
\(148\) 0 0
\(149\) 14.7950 1.21205 0.606026 0.795445i \(-0.292763\pi\)
0.606026 + 0.795445i \(0.292763\pi\)
\(150\) 0 0
\(151\) −10.2973 −0.837986 −0.418993 0.907989i \(-0.637617\pi\)
−0.418993 + 0.907989i \(0.637617\pi\)
\(152\) 0 0
\(153\) 6.17103 0.498898
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 16.5131 1.31789 0.658944 0.752192i \(-0.271003\pi\)
0.658944 + 0.752192i \(0.271003\pi\)
\(158\) 0 0
\(159\) −7.34206 −0.582263
\(160\) 0 0
\(161\) 13.4577 1.06061
\(162\) 0 0
\(163\) −11.2265 −0.879324 −0.439662 0.898163i \(-0.644902\pi\)
−0.439662 + 0.898163i \(0.644902\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 15.5131 1.20044 0.600219 0.799835i \(-0.295080\pi\)
0.600219 + 0.799835i \(0.295080\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 5.17103 0.395439
\(172\) 0 0
\(173\) 11.2312 0.853892 0.426946 0.904277i \(-0.359589\pi\)
0.426946 + 0.904277i \(0.359589\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −4.72883 −0.355441
\(178\) 0 0
\(179\) 11.5685 0.864672 0.432336 0.901713i \(-0.357689\pi\)
0.432336 + 0.901713i \(0.357689\pi\)
\(180\) 0 0
\(181\) −0.281890 −0.0209527 −0.0104763 0.999945i \(-0.503335\pi\)
−0.0104763 + 0.999945i \(0.503335\pi\)
\(182\) 0 0
\(183\) 10.5131 0.777150
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 9.95529 0.728003
\(188\) 0 0
\(189\) 1.61323 0.117345
\(190\) 0 0
\(191\) 17.5685 1.27121 0.635607 0.772013i \(-0.280750\pi\)
0.635607 + 0.772013i \(0.280750\pi\)
\(192\) 0 0
\(193\) −13.1156 −0.944082 −0.472041 0.881577i \(-0.656482\pi\)
−0.472041 + 0.881577i \(0.656482\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0.431481 0.0307417 0.0153709 0.999882i \(-0.495107\pi\)
0.0153709 + 0.999882i \(0.495107\pi\)
\(198\) 0 0
\(199\) 17.0602 1.20936 0.604682 0.796467i \(-0.293300\pi\)
0.604682 + 0.796467i \(0.293300\pi\)
\(200\) 0 0
\(201\) 4.78426 0.337456
\(202\) 0 0
\(203\) 1.61323 0.113227
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 8.34206 0.579813
\(208\) 0 0
\(209\) 8.34206 0.577032
\(210\) 0 0
\(211\) 12.3421 0.849662 0.424831 0.905273i \(-0.360333\pi\)
0.424831 + 0.905273i \(0.360333\pi\)
\(212\) 0 0
\(213\) −1.17103 −0.0802376
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 2.60251 0.176670
\(218\) 0 0
\(219\) −0.773540 −0.0522710
\(220\) 0 0
\(221\) 6.17103 0.415108
\(222\) 0 0
\(223\) −8.88440 −0.594943 −0.297472 0.954731i \(-0.596143\pi\)
−0.297472 + 0.954731i \(0.596143\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −6.49763 −0.431263 −0.215631 0.976475i \(-0.569181\pi\)
−0.215631 + 0.976475i \(0.569181\pi\)
\(228\) 0 0
\(229\) −15.0816 −0.996621 −0.498310 0.866999i \(-0.666046\pi\)
−0.498310 + 0.866999i \(0.666046\pi\)
\(230\) 0 0
\(231\) 2.60251 0.171233
\(232\) 0 0
\(233\) −18.7950 −1.23130 −0.615650 0.788020i \(-0.711106\pi\)
−0.615650 + 0.788020i \(0.711106\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −2.39749 −0.155734
\(238\) 0 0
\(239\) −16.4082 −1.06136 −0.530679 0.847573i \(-0.678063\pi\)
−0.530679 + 0.847573i \(0.678063\pi\)
\(240\) 0 0
\(241\) −25.7997 −1.66191 −0.830953 0.556343i \(-0.812204\pi\)
−0.830953 + 0.556343i \(0.812204\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 5.17103 0.329025
\(248\) 0 0
\(249\) −8.72883 −0.553167
\(250\) 0 0
\(251\) 19.0602 1.20307 0.601534 0.798847i \(-0.294557\pi\)
0.601534 + 0.798847i \(0.294557\pi\)
\(252\) 0 0
\(253\) 13.4577 0.846076
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.48691 0.0927509 0.0463755 0.998924i \(-0.485233\pi\)
0.0463755 + 0.998924i \(0.485233\pi\)
\(258\) 0 0
\(259\) −1.88914 −0.117385
\(260\) 0 0
\(261\) 1.00000 0.0618984
\(262\) 0 0
\(263\) −13.9106 −0.857763 −0.428882 0.903361i \(-0.641092\pi\)
−0.428882 + 0.903361i \(0.641092\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −6.34206 −0.388128
\(268\) 0 0
\(269\) 15.4529 0.942181 0.471091 0.882085i \(-0.343860\pi\)
0.471091 + 0.882085i \(0.343860\pi\)
\(270\) 0 0
\(271\) 10.3868 0.630951 0.315476 0.948934i \(-0.397836\pi\)
0.315476 + 0.948934i \(0.397836\pi\)
\(272\) 0 0
\(273\) 1.61323 0.0976371
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 16.4529 0.988560 0.494280 0.869303i \(-0.335432\pi\)
0.494280 + 0.869303i \(0.335432\pi\)
\(278\) 0 0
\(279\) 1.61323 0.0965815
\(280\) 0 0
\(281\) 18.3975 1.09750 0.548751 0.835986i \(-0.315103\pi\)
0.548751 + 0.835986i \(0.315103\pi\)
\(282\) 0 0
\(283\) −17.6794 −1.05093 −0.525465 0.850815i \(-0.676109\pi\)
−0.525465 + 0.850815i \(0.676109\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −5.11560 −0.301964
\(288\) 0 0
\(289\) 21.0816 1.24009
\(290\) 0 0
\(291\) −4.34206 −0.254536
\(292\) 0 0
\(293\) 14.7950 0.864332 0.432166 0.901794i \(-0.357749\pi\)
0.432166 + 0.901794i \(0.357749\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1.61323 0.0936091
\(298\) 0 0
\(299\) 8.34206 0.482434
\(300\) 0 0
\(301\) −3.22646 −0.185970
\(302\) 0 0
\(303\) −11.7395 −0.674419
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −32.3081 −1.84392 −0.921959 0.387286i \(-0.873412\pi\)
−0.921959 + 0.387286i \(0.873412\pi\)
\(308\) 0 0
\(309\) −15.5685 −0.885662
\(310\) 0 0
\(311\) 25.5685 1.44986 0.724929 0.688824i \(-0.241873\pi\)
0.724929 + 0.688824i \(0.241873\pi\)
\(312\) 0 0
\(313\) −15.0000 −0.847850 −0.423925 0.905697i \(-0.639348\pi\)
−0.423925 + 0.905697i \(0.639348\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 13.6794 0.768310 0.384155 0.923269i \(-0.374493\pi\)
0.384155 + 0.923269i \(0.374493\pi\)
\(318\) 0 0
\(319\) 1.61323 0.0903235
\(320\) 0 0
\(321\) −5.17103 −0.288619
\(322\) 0 0
\(323\) 31.9106 1.77555
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0.718110 0.0397116
\(328\) 0 0
\(329\) −2.51309 −0.138551
\(330\) 0 0
\(331\) 0.773540 0.0425176 0.0212588 0.999774i \(-0.493233\pi\)
0.0212588 + 0.999774i \(0.493233\pi\)
\(332\) 0 0
\(333\) −1.17103 −0.0641720
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 36.0816 1.96549 0.982745 0.184964i \(-0.0592170\pi\)
0.982745 + 0.184964i \(0.0592170\pi\)
\(338\) 0 0
\(339\) −6.00000 −0.325875
\(340\) 0 0
\(341\) 2.60251 0.140934
\(342\) 0 0
\(343\) −18.3868 −0.992792
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −25.9660 −1.39393 −0.696964 0.717106i \(-0.745466\pi\)
−0.696964 + 0.717106i \(0.745466\pi\)
\(348\) 0 0
\(349\) 13.5685 0.726306 0.363153 0.931729i \(-0.381700\pi\)
0.363153 + 0.931729i \(0.381700\pi\)
\(350\) 0 0
\(351\) 1.00000 0.0533761
\(352\) 0 0
\(353\) −25.6239 −1.36383 −0.681913 0.731434i \(-0.738852\pi\)
−0.681913 + 0.731434i \(0.738852\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 9.95529 0.526890
\(358\) 0 0
\(359\) −0.895119 −0.0472426 −0.0236213 0.999721i \(-0.507520\pi\)
−0.0236213 + 0.999721i \(0.507520\pi\)
\(360\) 0 0
\(361\) 7.73955 0.407345
\(362\) 0 0
\(363\) −8.39749 −0.440754
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −16.2866 −0.850155 −0.425078 0.905157i \(-0.639753\pi\)
−0.425078 + 0.905157i \(0.639753\pi\)
\(368\) 0 0
\(369\) −3.17103 −0.165077
\(370\) 0 0
\(371\) −11.8444 −0.614932
\(372\) 0 0
\(373\) −36.8551 −1.90829 −0.954144 0.299349i \(-0.903230\pi\)
−0.954144 + 0.299349i \(0.903230\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.00000 0.0515026
\(378\) 0 0
\(379\) 11.7241 0.602226 0.301113 0.953588i \(-0.402642\pi\)
0.301113 + 0.953588i \(0.402642\pi\)
\(380\) 0 0
\(381\) 0.0554299 0.00283976
\(382\) 0 0
\(383\) 17.9660 0.918020 0.459010 0.888431i \(-0.348204\pi\)
0.459010 + 0.888431i \(0.348204\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −2.00000 −0.101666
\(388\) 0 0
\(389\) −11.8337 −0.599993 −0.299996 0.953940i \(-0.596986\pi\)
−0.299996 + 0.953940i \(0.596986\pi\)
\(390\) 0 0
\(391\) 51.4791 2.60341
\(392\) 0 0
\(393\) 11.1710 0.563504
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 7.94457 0.398727 0.199363 0.979926i \(-0.436113\pi\)
0.199363 + 0.979926i \(0.436113\pi\)
\(398\) 0 0
\(399\) 8.34206 0.417625
\(400\) 0 0
\(401\) 17.5685 0.877330 0.438665 0.898651i \(-0.355451\pi\)
0.438665 + 0.898651i \(0.355451\pi\)
\(402\) 0 0
\(403\) 1.61323 0.0803607
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.88914 −0.0936412
\(408\) 0 0
\(409\) 14.8844 0.735986 0.367993 0.929829i \(-0.380045\pi\)
0.367993 + 0.929829i \(0.380045\pi\)
\(410\) 0 0
\(411\) 20.2866 1.00067
\(412\) 0 0
\(413\) −7.62869 −0.375383
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 7.22646 0.353881
\(418\) 0 0
\(419\) −17.6239 −0.860986 −0.430493 0.902594i \(-0.641660\pi\)
−0.430493 + 0.902594i \(0.641660\pi\)
\(420\) 0 0
\(421\) −22.3421 −1.08889 −0.544443 0.838798i \(-0.683259\pi\)
−0.544443 + 0.838798i \(0.683259\pi\)
\(422\) 0 0
\(423\) −1.55780 −0.0757428
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 16.9600 0.820753
\(428\) 0 0
\(429\) 1.61323 0.0778875
\(430\) 0 0
\(431\) −20.1972 −0.972865 −0.486433 0.873718i \(-0.661702\pi\)
−0.486433 + 0.873718i \(0.661702\pi\)
\(432\) 0 0
\(433\) −35.1925 −1.69124 −0.845621 0.533784i \(-0.820770\pi\)
−0.845621 + 0.533784i \(0.820770\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 43.1370 2.06352
\(438\) 0 0
\(439\) −12.7395 −0.608026 −0.304013 0.952668i \(-0.598327\pi\)
−0.304013 + 0.952668i \(0.598327\pi\)
\(440\) 0 0
\(441\) −4.39749 −0.209404
\(442\) 0 0
\(443\) −11.8337 −0.562237 −0.281118 0.959673i \(-0.590705\pi\)
−0.281118 + 0.959673i \(0.590705\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 14.7950 0.699778
\(448\) 0 0
\(449\) 20.2866 0.957385 0.478693 0.877983i \(-0.341111\pi\)
0.478693 + 0.877983i \(0.341111\pi\)
\(450\) 0 0
\(451\) −5.11560 −0.240884
\(452\) 0 0
\(453\) −10.2973 −0.483812
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −4.43148 −0.207296 −0.103648 0.994614i \(-0.533052\pi\)
−0.103648 + 0.994614i \(0.533052\pi\)
\(458\) 0 0
\(459\) 6.17103 0.288039
\(460\) 0 0
\(461\) 33.2479 1.54851 0.774255 0.632874i \(-0.218125\pi\)
0.774255 + 0.632874i \(0.218125\pi\)
\(462\) 0 0
\(463\) −16.0447 −0.745661 −0.372830 0.927899i \(-0.621613\pi\)
−0.372830 + 0.927899i \(0.621613\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −14.0554 −0.650408 −0.325204 0.945644i \(-0.605433\pi\)
−0.325204 + 0.945644i \(0.605433\pi\)
\(468\) 0 0
\(469\) 7.71811 0.356389
\(470\) 0 0
\(471\) 16.5131 0.760883
\(472\) 0 0
\(473\) −3.22646 −0.148353
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −7.34206 −0.336170
\(478\) 0 0
\(479\) −24.7843 −1.13242 −0.566211 0.824260i \(-0.691591\pi\)
−0.566211 + 0.824260i \(0.691591\pi\)
\(480\) 0 0
\(481\) −1.17103 −0.0533944
\(482\) 0 0
\(483\) 13.4577 0.612345
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −34.4082 −1.55918 −0.779592 0.626287i \(-0.784574\pi\)
−0.779592 + 0.626287i \(0.784574\pi\)
\(488\) 0 0
\(489\) −11.2265 −0.507678
\(490\) 0 0
\(491\) −5.45766 −0.246301 −0.123150 0.992388i \(-0.539300\pi\)
−0.123150 + 0.992388i \(0.539300\pi\)
\(492\) 0 0
\(493\) 6.17103 0.277929
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.88914 −0.0847395
\(498\) 0 0
\(499\) −11.3480 −0.508008 −0.254004 0.967203i \(-0.581748\pi\)
−0.254004 + 0.967203i \(0.581748\pi\)
\(500\) 0 0
\(501\) 15.5131 0.693074
\(502\) 0 0
\(503\) 10.0214 0.446834 0.223417 0.974723i \(-0.428279\pi\)
0.223417 + 0.974723i \(0.428279\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 1.00000 0.0444116
\(508\) 0 0
\(509\) 6.66268 0.295318 0.147659 0.989038i \(-0.452826\pi\)
0.147659 + 0.989038i \(0.452826\pi\)
\(510\) 0 0
\(511\) −1.24790 −0.0552038
\(512\) 0 0
\(513\) 5.17103 0.228307
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −2.51309 −0.110526
\(518\) 0 0
\(519\) 11.2312 0.492995
\(520\) 0 0
\(521\) −15.4791 −0.678152 −0.339076 0.940759i \(-0.610114\pi\)
−0.339076 + 0.940759i \(0.610114\pi\)
\(522\) 0 0
\(523\) 9.56852 0.418402 0.209201 0.977873i \(-0.432914\pi\)
0.209201 + 0.977873i \(0.432914\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 9.95529 0.433659
\(528\) 0 0
\(529\) 46.5900 2.02565
\(530\) 0 0
\(531\) −4.72883 −0.205214
\(532\) 0 0
\(533\) −3.17103 −0.137353
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 11.5685 0.499218
\(538\) 0 0
\(539\) −7.09416 −0.305567
\(540\) 0 0
\(541\) 30.4744 1.31019 0.655097 0.755544i \(-0.272628\pi\)
0.655097 + 0.755544i \(0.272628\pi\)
\(542\) 0 0
\(543\) −0.281890 −0.0120970
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −6.77354 −0.289616 −0.144808 0.989460i \(-0.546256\pi\)
−0.144808 + 0.989460i \(0.546256\pi\)
\(548\) 0 0
\(549\) 10.5131 0.448688
\(550\) 0 0
\(551\) 5.17103 0.220293
\(552\) 0 0
\(553\) −3.86770 −0.164471
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −9.91058 −0.419925 −0.209962 0.977709i \(-0.567334\pi\)
−0.209962 + 0.977709i \(0.567334\pi\)
\(558\) 0 0
\(559\) −2.00000 −0.0845910
\(560\) 0 0
\(561\) 9.95529 0.420313
\(562\) 0 0
\(563\) 26.9707 1.13668 0.568341 0.822793i \(-0.307586\pi\)
0.568341 + 0.822793i \(0.307586\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1.61323 0.0677493
\(568\) 0 0
\(569\) 9.60725 0.402757 0.201378 0.979514i \(-0.435458\pi\)
0.201378 + 0.979514i \(0.435458\pi\)
\(570\) 0 0
\(571\) −17.0262 −0.712523 −0.356262 0.934386i \(-0.615949\pi\)
−0.356262 + 0.934386i \(0.615949\pi\)
\(572\) 0 0
\(573\) 17.5685 0.733935
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −37.0262 −1.54142 −0.770710 0.637186i \(-0.780098\pi\)
−0.770710 + 0.637186i \(0.780098\pi\)
\(578\) 0 0
\(579\) −13.1156 −0.545066
\(580\) 0 0
\(581\) −14.0816 −0.584204
\(582\) 0 0
\(583\) −11.8444 −0.490546
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −14.3868 −0.593806 −0.296903 0.954908i \(-0.595954\pi\)
−0.296903 + 0.954908i \(0.595954\pi\)
\(588\) 0 0
\(589\) 8.34206 0.343729
\(590\) 0 0
\(591\) 0.431481 0.0177487
\(592\) 0 0
\(593\) 31.7657 1.30446 0.652231 0.758020i \(-0.273833\pi\)
0.652231 + 0.758020i \(0.273833\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 17.0602 0.698226
\(598\) 0 0
\(599\) −34.0214 −1.39008 −0.695039 0.718972i \(-0.744613\pi\)
−0.695039 + 0.718972i \(0.744613\pi\)
\(600\) 0 0
\(601\) −6.65794 −0.271583 −0.135792 0.990737i \(-0.543358\pi\)
−0.135792 + 0.990737i \(0.543358\pi\)
\(602\) 0 0
\(603\) 4.78426 0.194830
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −0.486911 −0.0197631 −0.00988155 0.999951i \(-0.503145\pi\)
−0.00988155 + 0.999951i \(0.503145\pi\)
\(608\) 0 0
\(609\) 1.61323 0.0653714
\(610\) 0 0
\(611\) −1.55780 −0.0630218
\(612\) 0 0
\(613\) −7.54708 −0.304824 −0.152412 0.988317i \(-0.548704\pi\)
−0.152412 + 0.988317i \(0.548704\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 23.8337 0.959509 0.479755 0.877403i \(-0.340726\pi\)
0.479755 + 0.877403i \(0.340726\pi\)
\(618\) 0 0
\(619\) 26.3635 1.05964 0.529819 0.848111i \(-0.322260\pi\)
0.529819 + 0.848111i \(0.322260\pi\)
\(620\) 0 0
\(621\) 8.34206 0.334755
\(622\) 0 0
\(623\) −10.2312 −0.409904
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 8.34206 0.333150
\(628\) 0 0
\(629\) −7.22646 −0.288138
\(630\) 0 0
\(631\) 45.2788 1.80252 0.901261 0.433277i \(-0.142643\pi\)
0.901261 + 0.433277i \(0.142643\pi\)
\(632\) 0 0
\(633\) 12.3421 0.490553
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −4.39749 −0.174235
\(638\) 0 0
\(639\) −1.17103 −0.0463252
\(640\) 0 0
\(641\) 37.7610 1.49147 0.745735 0.666243i \(-0.232099\pi\)
0.745735 + 0.666243i \(0.232099\pi\)
\(642\) 0 0
\(643\) −27.2914 −1.07627 −0.538133 0.842860i \(-0.680870\pi\)
−0.538133 + 0.842860i \(0.680870\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 29.3682 1.15458 0.577292 0.816538i \(-0.304109\pi\)
0.577292 + 0.816538i \(0.304109\pi\)
\(648\) 0 0
\(649\) −7.62869 −0.299452
\(650\) 0 0
\(651\) 2.60251 0.102000
\(652\) 0 0
\(653\) 28.9446 1.13269 0.566344 0.824169i \(-0.308357\pi\)
0.566344 + 0.824169i \(0.308357\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −0.773540 −0.0301787
\(658\) 0 0
\(659\) −10.2866 −0.400710 −0.200355 0.979723i \(-0.564210\pi\)
−0.200355 + 0.979723i \(0.564210\pi\)
\(660\) 0 0
\(661\) 9.62395 0.374328 0.187164 0.982329i \(-0.440070\pi\)
0.187164 + 0.982329i \(0.440070\pi\)
\(662\) 0 0
\(663\) 6.17103 0.239663
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 8.34206 0.323006
\(668\) 0 0
\(669\) −8.88440 −0.343491
\(670\) 0 0
\(671\) 16.9600 0.654735
\(672\) 0 0
\(673\) 1.45292 0.0560059 0.0280030 0.999608i \(-0.491085\pi\)
0.0280030 + 0.999608i \(0.491085\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −0.231200 −0.00888573 −0.00444286 0.999990i \(-0.501414\pi\)
−0.00444286 + 0.999990i \(0.501414\pi\)
\(678\) 0 0
\(679\) −7.00474 −0.268817
\(680\) 0 0
\(681\) −6.49763 −0.248990
\(682\) 0 0
\(683\) −7.84443 −0.300159 −0.150079 0.988674i \(-0.547953\pi\)
−0.150079 + 0.988674i \(0.547953\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −15.0816 −0.575399
\(688\) 0 0
\(689\) −7.34206 −0.279710
\(690\) 0 0
\(691\) 1.44694 0.0550442 0.0275221 0.999621i \(-0.491238\pi\)
0.0275221 + 0.999621i \(0.491238\pi\)
\(692\) 0 0
\(693\) 2.60251 0.0988612
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −19.5685 −0.741211
\(698\) 0 0
\(699\) −18.7950 −0.710891
\(700\) 0 0
\(701\) 18.4917 0.698420 0.349210 0.937044i \(-0.386450\pi\)
0.349210 + 0.937044i \(0.386450\pi\)
\(702\) 0 0
\(703\) −6.05543 −0.228385
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −18.9386 −0.712259
\(708\) 0 0
\(709\) −16.3635 −0.614544 −0.307272 0.951622i \(-0.599416\pi\)
−0.307272 + 0.951622i \(0.599416\pi\)
\(710\) 0 0
\(711\) −2.39749 −0.0899129
\(712\) 0 0
\(713\) 13.4577 0.503993
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −16.4082 −0.612776
\(718\) 0 0
\(719\) −32.4744 −1.21109 −0.605545 0.795811i \(-0.707045\pi\)
−0.605545 + 0.795811i \(0.707045\pi\)
\(720\) 0 0
\(721\) −25.1156 −0.935354
\(722\) 0 0
\(723\) −25.7997 −0.959502
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −32.0309 −1.18796 −0.593981 0.804479i \(-0.702444\pi\)
−0.593981 + 0.804479i \(0.702444\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −12.3421 −0.456488
\(732\) 0 0
\(733\) 20.0649 0.741114 0.370557 0.928810i \(-0.379167\pi\)
0.370557 + 0.928810i \(0.379167\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 7.71811 0.284300
\(738\) 0 0
\(739\) −7.10488 −0.261357 −0.130679 0.991425i \(-0.541716\pi\)
−0.130679 + 0.991425i \(0.541716\pi\)
\(740\) 0 0
\(741\) 5.17103 0.189963
\(742\) 0 0
\(743\) −51.0583 −1.87315 −0.936574 0.350469i \(-0.886022\pi\)
−0.936574 + 0.350469i \(0.886022\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −8.72883 −0.319371
\(748\) 0 0
\(749\) −8.34206 −0.304812
\(750\) 0 0
\(751\) 38.1758 1.39305 0.696527 0.717531i \(-0.254728\pi\)
0.696527 + 0.717531i \(0.254728\pi\)
\(752\) 0 0
\(753\) 19.0602 0.694591
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 29.0863 1.05716 0.528581 0.848883i \(-0.322724\pi\)
0.528581 + 0.848883i \(0.322724\pi\)
\(758\) 0 0
\(759\) 13.4577 0.488482
\(760\) 0 0
\(761\) 9.17103 0.332450 0.166225 0.986088i \(-0.446842\pi\)
0.166225 + 0.986088i \(0.446842\pi\)
\(762\) 0 0
\(763\) 1.15848 0.0419397
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −4.72883 −0.170748
\(768\) 0 0
\(769\) 35.3588 1.27507 0.637535 0.770422i \(-0.279954\pi\)
0.637535 + 0.770422i \(0.279954\pi\)
\(770\) 0 0
\(771\) 1.48691 0.0535498
\(772\) 0 0
\(773\) 23.0167 0.827853 0.413927 0.910310i \(-0.364157\pi\)
0.413927 + 0.910310i \(0.364157\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −1.88914 −0.0677725
\(778\) 0 0
\(779\) −16.3975 −0.587501
\(780\) 0 0
\(781\) −1.88914 −0.0675988
\(782\) 0 0
\(783\) 1.00000 0.0357371
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −50.7717 −1.80982 −0.904908 0.425607i \(-0.860060\pi\)
−0.904908 + 0.425607i \(0.860060\pi\)
\(788\) 0 0
\(789\) −13.9106 −0.495230
\(790\) 0 0
\(791\) −9.67938 −0.344159
\(792\) 0 0
\(793\) 10.5131 0.373331
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 29.2866 1.03739 0.518693 0.854961i \(-0.326419\pi\)
0.518693 + 0.854961i \(0.326419\pi\)
\(798\) 0 0
\(799\) −9.61323 −0.340092
\(800\) 0 0
\(801\) −6.34206 −0.224086
\(802\) 0 0
\(803\) −1.24790 −0.0440374
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 15.4529 0.543969
\(808\) 0 0
\(809\) −25.3588 −0.891566 −0.445783 0.895141i \(-0.647075\pi\)
−0.445783 + 0.895141i \(0.647075\pi\)
\(810\) 0 0
\(811\) −36.9600 −1.29784 −0.648921 0.760856i \(-0.724779\pi\)
−0.648921 + 0.760856i \(0.724779\pi\)
\(812\) 0 0
\(813\) 10.3868 0.364280
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −10.3421 −0.361823
\(818\) 0 0
\(819\) 1.61323 0.0563708
\(820\) 0 0
\(821\) −3.33732 −0.116473 −0.0582366 0.998303i \(-0.518548\pi\)
−0.0582366 + 0.998303i \(0.518548\pi\)
\(822\) 0 0
\(823\) −29.9446 −1.04380 −0.521901 0.853006i \(-0.674777\pi\)
−0.521901 + 0.853006i \(0.674777\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 39.7550 1.38242 0.691209 0.722655i \(-0.257079\pi\)
0.691209 + 0.722655i \(0.257079\pi\)
\(828\) 0 0
\(829\) 6.06017 0.210478 0.105239 0.994447i \(-0.466439\pi\)
0.105239 + 0.994447i \(0.466439\pi\)
\(830\) 0 0
\(831\) 16.4529 0.570745
\(832\) 0 0
\(833\) −27.1370 −0.940243
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 1.61323 0.0557614
\(838\) 0 0
\(839\) 8.13230 0.280758 0.140379 0.990098i \(-0.455168\pi\)
0.140379 + 0.990098i \(0.455168\pi\)
\(840\) 0 0
\(841\) −28.0000 −0.965517
\(842\) 0 0
\(843\) 18.3975 0.633643
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −13.5471 −0.465483
\(848\) 0 0
\(849\) −17.6794 −0.606755
\(850\) 0 0
\(851\) −9.76880 −0.334870
\(852\) 0 0
\(853\) −24.9707 −0.854982 −0.427491 0.904020i \(-0.640602\pi\)
−0.427491 + 0.904020i \(0.640602\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −23.5900 −0.805818 −0.402909 0.915240i \(-0.632001\pi\)
−0.402909 + 0.915240i \(0.632001\pi\)
\(858\) 0 0
\(859\) 32.9153 1.12306 0.561528 0.827458i \(-0.310214\pi\)
0.561528 + 0.827458i \(0.310214\pi\)
\(860\) 0 0
\(861\) −5.11560 −0.174339
\(862\) 0 0
\(863\) −8.10014 −0.275732 −0.137866 0.990451i \(-0.544024\pi\)
−0.137866 + 0.990451i \(0.544024\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 21.0816 0.715969
\(868\) 0 0
\(869\) −3.86770 −0.131203
\(870\) 0 0
\(871\) 4.78426 0.162108
\(872\) 0 0
\(873\) −4.34206 −0.146956
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −16.2866 −0.549960 −0.274980 0.961450i \(-0.588671\pi\)
−0.274980 + 0.961450i \(0.588671\pi\)
\(878\) 0 0
\(879\) 14.7950 0.499022
\(880\) 0 0
\(881\) 6.51309 0.219432 0.109716 0.993963i \(-0.465006\pi\)
0.109716 + 0.993963i \(0.465006\pi\)
\(882\) 0 0
\(883\) 48.5053 1.63233 0.816166 0.577817i \(-0.196095\pi\)
0.816166 + 0.577817i \(0.196095\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 17.8891 0.600659 0.300329 0.953836i \(-0.402903\pi\)
0.300329 + 0.953836i \(0.402903\pi\)
\(888\) 0 0
\(889\) 0.0894212 0.00299909
\(890\) 0 0
\(891\) 1.61323 0.0540452
\(892\) 0 0
\(893\) −8.05543 −0.269565
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 8.34206 0.278533
\(898\) 0 0
\(899\) 1.61323 0.0538042
\(900\) 0 0
\(901\) −45.3081 −1.50943
\(902\) 0 0
\(903\) −3.22646 −0.107370
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 29.4791 0.978837 0.489419 0.872049i \(-0.337209\pi\)
0.489419 + 0.872049i \(0.337209\pi\)
\(908\) 0 0
\(909\) −11.7395 −0.389376
\(910\) 0 0
\(911\) 10.2217 0.338661 0.169330 0.985559i \(-0.445840\pi\)
0.169330 + 0.985559i \(0.445840\pi\)
\(912\) 0 0
\(913\) −14.0816 −0.466033
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 18.0214 0.595120
\(918\) 0 0
\(919\) −9.85515 −0.325091 −0.162546 0.986701i \(-0.551970\pi\)
−0.162546 + 0.986701i \(0.551970\pi\)
\(920\) 0 0
\(921\) −32.3081 −1.06459
\(922\) 0 0
\(923\) −1.17103 −0.0385449
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −15.5685 −0.511337
\(928\) 0 0
\(929\) 14.5083 0.476003 0.238002 0.971265i \(-0.423508\pi\)
0.238002 + 0.971265i \(0.423508\pi\)
\(930\) 0 0
\(931\) −22.7395 −0.745259
\(932\) 0 0
\(933\) 25.5685 0.837076
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −7.61921 −0.248909 −0.124454 0.992225i \(-0.539718\pi\)
−0.124454 + 0.992225i \(0.539718\pi\)
\(938\) 0 0
\(939\) −15.0000 −0.489506
\(940\) 0 0
\(941\) −31.9106 −1.04026 −0.520128 0.854089i \(-0.674116\pi\)
−0.520128 + 0.854089i \(0.674116\pi\)
\(942\) 0 0
\(943\) −26.4529 −0.861426
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −31.8444 −1.03480 −0.517402 0.855742i \(-0.673101\pi\)
−0.517402 + 0.855742i \(0.673101\pi\)
\(948\) 0 0
\(949\) −0.773540 −0.0251102
\(950\) 0 0
\(951\) 13.6794 0.443584
\(952\) 0 0
\(953\) −33.6501 −1.09003 −0.545017 0.838425i \(-0.683477\pi\)
−0.545017 + 0.838425i \(0.683477\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 1.61323 0.0521483
\(958\) 0 0
\(959\) 32.7270 1.05681
\(960\) 0 0
\(961\) −28.3975 −0.916048
\(962\) 0 0
\(963\) −5.17103 −0.166634
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 25.3021 0.813660 0.406830 0.913504i \(-0.366634\pi\)
0.406830 + 0.913504i \(0.366634\pi\)
\(968\) 0 0
\(969\) 31.9106 1.02512
\(970\) 0 0
\(971\) 12.9922 0.416939 0.208470 0.978029i \(-0.433152\pi\)
0.208470 + 0.978029i \(0.433152\pi\)
\(972\) 0 0
\(973\) 11.6579 0.373736
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 24.5733 0.786168 0.393084 0.919503i \(-0.371408\pi\)
0.393084 + 0.919503i \(0.371408\pi\)
\(978\) 0 0
\(979\) −10.2312 −0.326991
\(980\) 0 0
\(981\) 0.718110 0.0229275
\(982\) 0 0
\(983\) −29.3140 −0.934973 −0.467486 0.884000i \(-0.654840\pi\)
−0.467486 + 0.884000i \(0.654840\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −2.51309 −0.0799925
\(988\) 0 0
\(989\) −16.6841 −0.530524
\(990\) 0 0
\(991\) −51.6549 −1.64087 −0.820435 0.571739i \(-0.806269\pi\)
−0.820435 + 0.571739i \(0.806269\pi\)
\(992\) 0 0
\(993\) 0.773540 0.0245476
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 14.0602 0.445290 0.222645 0.974900i \(-0.428531\pi\)
0.222645 + 0.974900i \(0.428531\pi\)
\(998\) 0 0
\(999\) −1.17103 −0.0370497
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7800.2.a.bq.1.2 yes 3
5.4 even 2 7800.2.a.bk.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7800.2.a.bk.1.2 3 5.4 even 2
7800.2.a.bq.1.2 yes 3 1.1 even 1 trivial