Properties

Label 784.3.r.p.79.1
Level $784$
Weight $3$
Character 784.79
Analytic conductor $21.362$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [784,3,Mod(79,784)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(784, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("784.79");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 784.r (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.3624527258\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{6})\)
Coefficient field: 6.0.259470000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 14x^{4} - x^{3} + 176x^{2} - 91x + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 79.1
Root \(0.264167 + 0.457551i\) of defining polynomial
Character \(\chi\) \(=\) 784.79
Dual form 784.3.r.p.655.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.86043 + 2.80617i) q^{3} +(-0.0283339 + 0.0490758i) q^{5} +(11.2492 - 19.4842i) q^{9} +(-9.27543 + 5.35517i) q^{11} +12.3851 q^{13} -0.318039i q^{15} +(9.74920 + 16.8861i) q^{17} +(-5.55457 - 3.20693i) q^{19} +(25.0230 + 14.4470i) q^{23} +(12.4984 + 21.6479i) q^{25} +75.7576i q^{27} -34.4984 q^{29} +(25.1663 - 14.5298i) q^{31} +(30.0551 - 52.0569i) q^{33} +(10.0509 - 17.4086i) q^{37} +(-60.1967 + 34.7546i) q^{39} -1.27493 q^{41} +35.9132i q^{43} +(0.637467 + 1.10413i) q^{45} +(-17.1737 - 9.91525i) q^{47} +(-94.7706 - 54.7158i) q^{51} +(-26.4475 - 45.8085i) q^{53} -0.606932i q^{55} +35.9968 q^{57} +(-63.5256 + 36.6765i) q^{59} +(-11.7193 + 20.2983i) q^{61} +(-0.350917 + 0.607806i) q^{65} +(-13.4261 + 7.75157i) q^{67} -162.164 q^{69} -37.6397i q^{71} +(-36.7717 - 63.6905i) q^{73} +(-121.495 - 70.1453i) q^{75} +(-18.0787 - 10.4377i) q^{79} +(-111.346 - 192.857i) q^{81} +50.4931i q^{83} -1.10493 q^{85} +(167.677 - 96.8084i) q^{87} +(-69.0519 + 119.601i) q^{89} +(-81.5460 + 141.242i) q^{93} +(0.314765 - 0.181730i) q^{95} -143.149 q^{97} +240.966i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{3} + q^{5} + 14 q^{9} - 33 q^{11} - 28 q^{13} + 5 q^{17} - 63 q^{19} - 33 q^{23} - 32 q^{25} - 100 q^{29} + 69 q^{31} + 71 q^{33} + 15 q^{37} - 246 q^{39} - 124 q^{41} + 62 q^{45} - 171 q^{47}+ \cdots - 124 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.86043 + 2.80617i −1.62014 + 0.935391i −0.633264 + 0.773936i \(0.718285\pi\)
−0.986880 + 0.161454i \(0.948382\pi\)
\(4\) 0 0
\(5\) −0.0283339 + 0.0490758i −0.00566678 + 0.00981515i −0.868845 0.495084i \(-0.835137\pi\)
0.863178 + 0.504900i \(0.168470\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 11.2492 19.4842i 1.24991 2.16491i
\(10\) 0 0
\(11\) −9.27543 + 5.35517i −0.843221 + 0.486834i −0.858358 0.513052i \(-0.828515\pi\)
0.0151369 + 0.999885i \(0.495182\pi\)
\(12\) 0 0
\(13\) 12.3851 0.952697 0.476348 0.879257i \(-0.341960\pi\)
0.476348 + 0.879257i \(0.341960\pi\)
\(14\) 0 0
\(15\) 0.318039i 0.0212026i
\(16\) 0 0
\(17\) 9.74920 + 16.8861i 0.573482 + 0.993300i 0.996205 + 0.0870411i \(0.0277412\pi\)
−0.422723 + 0.906259i \(0.638926\pi\)
\(18\) 0 0
\(19\) −5.55457 3.20693i −0.292346 0.168786i 0.346654 0.937993i \(-0.387318\pi\)
−0.638999 + 0.769207i \(0.720651\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 25.0230 + 14.4470i 1.08796 + 0.628133i 0.933032 0.359794i \(-0.117153\pi\)
0.154926 + 0.987926i \(0.450486\pi\)
\(24\) 0 0
\(25\) 12.4984 + 21.6479i 0.499936 + 0.865914i
\(26\) 0 0
\(27\) 75.7576i 2.80584i
\(28\) 0 0
\(29\) −34.4984 −1.18960 −0.594800 0.803874i \(-0.702769\pi\)
−0.594800 + 0.803874i \(0.702769\pi\)
\(30\) 0 0
\(31\) 25.1663 14.5298i 0.811816 0.468702i −0.0357701 0.999360i \(-0.511388\pi\)
0.847586 + 0.530658i \(0.178055\pi\)
\(32\) 0 0
\(33\) 30.0551 52.0569i 0.910759 1.57748i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 10.0509 17.4086i 0.271645 0.470503i −0.697638 0.716450i \(-0.745766\pi\)
0.969283 + 0.245947i \(0.0790991\pi\)
\(38\) 0 0
\(39\) −60.1967 + 34.7546i −1.54351 + 0.891144i
\(40\) 0 0
\(41\) −1.27493 −0.0310960 −0.0155480 0.999879i \(-0.504949\pi\)
−0.0155480 + 0.999879i \(0.504949\pi\)
\(42\) 0 0
\(43\) 35.9132i 0.835190i 0.908633 + 0.417595i \(0.137127\pi\)
−0.908633 + 0.417595i \(0.862873\pi\)
\(44\) 0 0
\(45\) 0.637467 + 1.10413i 0.0141659 + 0.0245361i
\(46\) 0 0
\(47\) −17.1737 9.91525i −0.365398 0.210963i 0.306048 0.952016i \(-0.400993\pi\)
−0.671446 + 0.741053i \(0.734327\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −94.7706 54.7158i −1.85825 1.07286i
\(52\) 0 0
\(53\) −26.4475 45.8085i −0.499010 0.864311i 0.500989 0.865453i \(-0.332970\pi\)
−0.999999 + 0.00114268i \(0.999636\pi\)
\(54\) 0 0
\(55\) 0.606932i 0.0110351i
\(56\) 0 0
\(57\) 35.9968 0.631523
\(58\) 0 0
\(59\) −63.5256 + 36.6765i −1.07671 + 0.621636i −0.930006 0.367545i \(-0.880198\pi\)
−0.146700 + 0.989181i \(0.546865\pi\)
\(60\) 0 0
\(61\) −11.7193 + 20.2983i −0.192119 + 0.332760i −0.945952 0.324306i \(-0.894869\pi\)
0.753833 + 0.657066i \(0.228203\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.350917 + 0.607806i −0.00539872 + 0.00935086i
\(66\) 0 0
\(67\) −13.4261 + 7.75157i −0.200390 + 0.115695i −0.596837 0.802362i \(-0.703576\pi\)
0.396447 + 0.918057i \(0.370243\pi\)
\(68\) 0 0
\(69\) −162.164 −2.35020
\(70\) 0 0
\(71\) 37.6397i 0.530136i −0.964230 0.265068i \(-0.914606\pi\)
0.964230 0.265068i \(-0.0853944\pi\)
\(72\) 0 0
\(73\) −36.7717 63.6905i −0.503722 0.872473i −0.999991 0.00430341i \(-0.998630\pi\)
0.496269 0.868169i \(-0.334703\pi\)
\(74\) 0 0
\(75\) −121.495 70.1453i −1.61994 0.935270i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −18.0787 10.4377i −0.228844 0.132123i 0.381195 0.924495i \(-0.375513\pi\)
−0.610039 + 0.792372i \(0.708846\pi\)
\(80\) 0 0
\(81\) −111.346 192.857i −1.37464 2.38095i
\(82\) 0 0
\(83\) 50.4931i 0.608350i 0.952616 + 0.304175i \(0.0983808\pi\)
−0.952616 + 0.304175i \(0.901619\pi\)
\(84\) 0 0
\(85\) −1.10493 −0.0129992
\(86\) 0 0
\(87\) 167.677 96.8084i 1.92732 1.11274i
\(88\) 0 0
\(89\) −69.0519 + 119.601i −0.775863 + 1.34383i 0.158444 + 0.987368i \(0.449352\pi\)
−0.934308 + 0.356467i \(0.883981\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −81.5460 + 141.242i −0.876839 + 1.51873i
\(94\) 0 0
\(95\) 0.314765 0.181730i 0.00331332 0.00191294i
\(96\) 0 0
\(97\) −143.149 −1.47576 −0.737880 0.674932i \(-0.764173\pi\)
−0.737880 + 0.674932i \(0.764173\pi\)
\(98\) 0 0
\(99\) 240.966i 2.43400i
\(100\) 0 0
\(101\) 61.6401 + 106.764i 0.610298 + 1.05707i 0.991190 + 0.132447i \(0.0422835\pi\)
−0.380892 + 0.924619i \(0.624383\pi\)
\(102\) 0 0
\(103\) −36.2896 20.9518i −0.352326 0.203415i 0.313383 0.949627i \(-0.398538\pi\)
−0.665709 + 0.746211i \(0.731871\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −58.7706 33.9312i −0.549258 0.317114i 0.199565 0.979885i \(-0.436047\pi\)
−0.748823 + 0.662770i \(0.769381\pi\)
\(108\) 0 0
\(109\) 46.1951 + 80.0123i 0.423808 + 0.734058i 0.996308 0.0858470i \(-0.0273596\pi\)
−0.572500 + 0.819905i \(0.694026\pi\)
\(110\) 0 0
\(111\) 112.818i 1.01638i
\(112\) 0 0
\(113\) −95.2853 −0.843233 −0.421616 0.906774i \(-0.638537\pi\)
−0.421616 + 0.906774i \(0.638537\pi\)
\(114\) 0 0
\(115\) −1.41800 + 0.818682i −0.0123304 + 0.00711898i
\(116\) 0 0
\(117\) 139.322 241.313i 1.19079 2.06250i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −3.14427 + 5.44603i −0.0259857 + 0.0450085i
\(122\) 0 0
\(123\) 6.19673 3.57768i 0.0503799 0.0290869i
\(124\) 0 0
\(125\) −2.83321 −0.0226657
\(126\) 0 0
\(127\) 218.682i 1.72190i −0.508688 0.860951i \(-0.669869\pi\)
0.508688 0.860951i \(-0.330131\pi\)
\(128\) 0 0
\(129\) −100.779 174.554i −0.781229 1.35313i
\(130\) 0 0
\(131\) 38.8678 + 22.4404i 0.296701 + 0.171300i 0.640960 0.767574i \(-0.278536\pi\)
−0.344259 + 0.938875i \(0.611870\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −3.71786 2.14651i −0.0275397 0.0159001i
\(136\) 0 0
\(137\) 51.3461 + 88.9341i 0.374789 + 0.649154i 0.990295 0.138978i \(-0.0443818\pi\)
−0.615506 + 0.788132i \(0.711048\pi\)
\(138\) 0 0
\(139\) 47.2870i 0.340194i −0.985427 0.170097i \(-0.945592\pi\)
0.985427 0.170097i \(-0.0544081\pi\)
\(140\) 0 0
\(141\) 111.296 0.789330
\(142\) 0 0
\(143\) −114.877 + 66.3241i −0.803334 + 0.463805i
\(144\) 0 0
\(145\) 0.977474 1.69303i 0.00674120 0.0116761i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 62.7920 108.759i 0.421423 0.729926i −0.574656 0.818395i \(-0.694864\pi\)
0.996079 + 0.0884691i \(0.0281974\pi\)
\(150\) 0 0
\(151\) −161.705 + 93.3606i −1.07090 + 0.618282i −0.928426 0.371517i \(-0.878838\pi\)
−0.142470 + 0.989799i \(0.545504\pi\)
\(152\) 0 0
\(153\) 438.683 2.86721
\(154\) 0 0
\(155\) 1.64674i 0.0106241i
\(156\) 0 0
\(157\) 88.6059 + 153.470i 0.564369 + 0.977516i 0.997108 + 0.0759965i \(0.0242138\pi\)
−0.432739 + 0.901519i \(0.642453\pi\)
\(158\) 0 0
\(159\) 257.093 + 148.433i 1.61694 + 0.933539i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 45.8656 + 26.4805i 0.281384 + 0.162457i 0.634050 0.773292i \(-0.281391\pi\)
−0.352666 + 0.935749i \(0.614725\pi\)
\(164\) 0 0
\(165\) 1.70315 + 2.94995i 0.0103221 + 0.0178785i
\(166\) 0 0
\(167\) 97.7964i 0.585607i −0.956173 0.292803i \(-0.905412\pi\)
0.956173 0.292803i \(-0.0945882\pi\)
\(168\) 0 0
\(169\) −15.6103 −0.0923688
\(170\) 0 0
\(171\) −124.969 + 72.1508i −0.730812 + 0.421934i
\(172\) 0 0
\(173\) −102.323 + 177.228i −0.591460 + 1.02444i 0.402576 + 0.915387i \(0.368115\pi\)
−0.994036 + 0.109052i \(0.965218\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 205.841 356.528i 1.16295 2.01428i
\(178\) 0 0
\(179\) −50.9606 + 29.4221i −0.284696 + 0.164369i −0.635548 0.772062i \(-0.719226\pi\)
0.350851 + 0.936431i \(0.385892\pi\)
\(180\) 0 0
\(181\) 47.5570 0.262746 0.131373 0.991333i \(-0.458061\pi\)
0.131373 + 0.991333i \(0.458061\pi\)
\(182\) 0 0
\(183\) 131.545i 0.718825i
\(184\) 0 0
\(185\) 0.569560 + 0.986507i 0.00307870 + 0.00533247i
\(186\) 0 0
\(187\) −180.856 104.417i −0.967144 0.558381i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 260.164 + 150.206i 1.36212 + 0.786418i 0.989905 0.141731i \(-0.0452667\pi\)
0.372210 + 0.928148i \(0.378600\pi\)
\(192\) 0 0
\(193\) 129.051 + 223.523i 0.668659 + 1.15815i 0.978279 + 0.207291i \(0.0664646\pi\)
−0.309621 + 0.950860i \(0.600202\pi\)
\(194\) 0 0
\(195\) 3.93893i 0.0201997i
\(196\) 0 0
\(197\) −290.892 −1.47661 −0.738306 0.674466i \(-0.764374\pi\)
−0.738306 + 0.674466i \(0.764374\pi\)
\(198\) 0 0
\(199\) −50.5323 + 29.1749i −0.253931 + 0.146607i −0.621563 0.783364i \(-0.713502\pi\)
0.367632 + 0.929971i \(0.380169\pi\)
\(200\) 0 0
\(201\) 43.5045 75.3520i 0.216440 0.374885i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0.0361239 0.0625684i 0.000176214 0.000305212i
\(206\) 0 0
\(207\) 562.978 325.035i 2.71970 1.57022i
\(208\) 0 0
\(209\) 68.6947 0.328683
\(210\) 0 0
\(211\) 18.1272i 0.0859109i 0.999077 + 0.0429555i \(0.0136774\pi\)
−0.999077 + 0.0429555i \(0.986323\pi\)
\(212\) 0 0
\(213\) 105.623 + 182.945i 0.495884 + 0.858897i
\(214\) 0 0
\(215\) −1.76247 1.01756i −0.00819752 0.00473284i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 357.453 + 206.376i 1.63220 + 0.942354i
\(220\) 0 0
\(221\) 120.744 + 209.135i 0.546355 + 0.946314i
\(222\) 0 0
\(223\) 6.84423i 0.0306916i 0.999882 + 0.0153458i \(0.00488491\pi\)
−0.999882 + 0.0153458i \(0.995115\pi\)
\(224\) 0 0
\(225\) 562.388 2.49950
\(226\) 0 0
\(227\) 202.411 116.862i 0.891680 0.514812i 0.0171883 0.999852i \(-0.494529\pi\)
0.874492 + 0.485041i \(0.161195\pi\)
\(228\) 0 0
\(229\) −82.3020 + 142.551i −0.359398 + 0.622495i −0.987860 0.155345i \(-0.950351\pi\)
0.628463 + 0.777840i \(0.283684\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.95906 5.12524i 0.0126998 0.0219967i −0.859606 0.510958i \(-0.829291\pi\)
0.872305 + 0.488961i \(0.162624\pi\)
\(234\) 0 0
\(235\) 0.973196 0.561875i 0.00414126 0.00239096i
\(236\) 0 0
\(237\) 117.160 0.494348
\(238\) 0 0
\(239\) 401.405i 1.67952i 0.542960 + 0.839759i \(0.317304\pi\)
−0.542960 + 0.839759i \(0.682696\pi\)
\(240\) 0 0
\(241\) 77.8104 + 134.771i 0.322865 + 0.559218i 0.981078 0.193614i \(-0.0620208\pi\)
−0.658213 + 0.752831i \(0.728688\pi\)
\(242\) 0 0
\(243\) 491.908 + 284.003i 2.02431 + 1.16874i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −68.7936 39.7180i −0.278517 0.160802i
\(248\) 0 0
\(249\) −141.692 245.418i −0.569045 0.985615i
\(250\) 0 0
\(251\) 348.371i 1.38793i −0.720008 0.693966i \(-0.755862\pi\)
0.720008 0.693966i \(-0.244138\pi\)
\(252\) 0 0
\(253\) −309.466 −1.22318
\(254\) 0 0
\(255\) 5.37044 3.10063i 0.0210606 0.0121593i
\(256\) 0 0
\(257\) 6.97266 12.0770i 0.0271310 0.0469922i −0.852141 0.523312i \(-0.824696\pi\)
0.879272 + 0.476320i \(0.158030\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −388.079 + 672.173i −1.48689 + 2.57538i
\(262\) 0 0
\(263\) −315.758 + 182.303i −1.20060 + 0.693167i −0.960689 0.277627i \(-0.910452\pi\)
−0.239912 + 0.970795i \(0.577119\pi\)
\(264\) 0 0
\(265\) 2.99745 0.0113111
\(266\) 0 0
\(267\) 775.085i 2.90294i
\(268\) 0 0
\(269\) −215.715 373.629i −0.801914 1.38896i −0.918355 0.395758i \(-0.870482\pi\)
0.116441 0.993198i \(-0.462851\pi\)
\(270\) 0 0
\(271\) −90.8182 52.4339i −0.335122 0.193483i 0.322991 0.946402i \(-0.395312\pi\)
−0.658113 + 0.752919i \(0.728645\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −231.856 133.862i −0.843113 0.486771i
\(276\) 0 0
\(277\) 80.3458 + 139.163i 0.290057 + 0.502394i 0.973823 0.227308i \(-0.0729924\pi\)
−0.683766 + 0.729701i \(0.739659\pi\)
\(278\) 0 0
\(279\) 653.793i 2.34334i
\(280\) 0 0
\(281\) 138.683 0.493532 0.246766 0.969075i \(-0.420632\pi\)
0.246766 + 0.969075i \(0.420632\pi\)
\(282\) 0 0
\(283\) −72.5211 + 41.8701i −0.256258 + 0.147951i −0.622627 0.782519i \(-0.713934\pi\)
0.366368 + 0.930470i \(0.380601\pi\)
\(284\) 0 0
\(285\) −1.01993 + 1.76657i −0.00357870 + 0.00619849i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −45.5937 + 78.9706i −0.157764 + 0.273255i
\(290\) 0 0
\(291\) 695.765 401.700i 2.39094 1.38041i
\(292\) 0 0
\(293\) −261.928 −0.893952 −0.446976 0.894546i \(-0.647499\pi\)
−0.446976 + 0.894546i \(0.647499\pi\)
\(294\) 0 0
\(295\) 4.15676i 0.0140907i
\(296\) 0 0
\(297\) −405.695 702.684i −1.36598 2.36594i
\(298\) 0 0
\(299\) 309.912 + 178.928i 1.03649 + 0.598420i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −599.195 345.945i −1.97754 1.14173i
\(304\) 0 0
\(305\) −0.664105 1.15026i −0.00217739 0.00377135i
\(306\) 0 0
\(307\) 248.186i 0.808424i −0.914665 0.404212i \(-0.867546\pi\)
0.914665 0.404212i \(-0.132454\pi\)
\(308\) 0 0
\(309\) 235.177 0.761091
\(310\) 0 0
\(311\) −484.498 + 279.725i −1.55787 + 0.899437i −0.560409 + 0.828216i \(0.689356\pi\)
−0.997461 + 0.0712208i \(0.977311\pi\)
\(312\) 0 0
\(313\) −145.542 + 252.086i −0.464990 + 0.805386i −0.999201 0.0399649i \(-0.987275\pi\)
0.534211 + 0.845351i \(0.320609\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −239.444 + 414.730i −0.755345 + 1.30830i 0.189858 + 0.981812i \(0.439197\pi\)
−0.945203 + 0.326484i \(0.894136\pi\)
\(318\) 0 0
\(319\) 319.987 184.745i 1.00310 0.579137i
\(320\) 0 0
\(321\) 380.867 1.18650
\(322\) 0 0
\(323\) 125.060i 0.387183i
\(324\) 0 0
\(325\) 154.793 + 268.110i 0.476287 + 0.824954i
\(326\) 0 0
\(327\) −449.057 259.263i −1.37326 0.792853i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −18.6199 10.7502i −0.0562535 0.0324780i 0.471609 0.881808i \(-0.343673\pi\)
−0.527863 + 0.849330i \(0.677007\pi\)
\(332\) 0 0
\(333\) −226.128 391.666i −0.679064 1.17617i
\(334\) 0 0
\(335\) 0.878529i 0.00262248i
\(336\) 0 0
\(337\) −108.466 −0.321858 −0.160929 0.986966i \(-0.551449\pi\)
−0.160929 + 0.986966i \(0.551449\pi\)
\(338\) 0 0
\(339\) 463.128 267.387i 1.36616 0.788752i
\(340\) 0 0
\(341\) −155.619 + 269.540i −0.456360 + 0.790439i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 4.59473 7.95830i 0.0133180 0.0230675i
\(346\) 0 0
\(347\) −419.892 + 242.425i −1.21006 + 0.698631i −0.962773 0.270310i \(-0.912874\pi\)
−0.247291 + 0.968941i \(0.579540\pi\)
\(348\) 0 0
\(349\) −539.969 −1.54719 −0.773595 0.633680i \(-0.781543\pi\)
−0.773595 + 0.633680i \(0.781543\pi\)
\(350\) 0 0
\(351\) 938.263i 2.67311i
\(352\) 0 0
\(353\) −137.761 238.609i −0.390257 0.675945i 0.602226 0.798326i \(-0.294281\pi\)
−0.992483 + 0.122380i \(0.960947\pi\)
\(354\) 0 0
\(355\) 1.84719 + 1.06648i 0.00520337 + 0.00300416i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 395.233 + 228.188i 1.10093 + 0.635621i 0.936465 0.350762i \(-0.114077\pi\)
0.164463 + 0.986383i \(0.447411\pi\)
\(360\) 0 0
\(361\) −159.931 277.009i −0.443023 0.767338i
\(362\) 0 0
\(363\) 35.2934i 0.0972270i
\(364\) 0 0
\(365\) 4.16755 0.0114179
\(366\) 0 0
\(367\) 348.742 201.347i 0.950252 0.548628i 0.0570928 0.998369i \(-0.481817\pi\)
0.893159 + 0.449741i \(0.148484\pi\)
\(368\) 0 0
\(369\) −14.3420 + 24.8411i −0.0388672 + 0.0673199i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 174.648 302.499i 0.468225 0.810989i −0.531116 0.847299i \(-0.678227\pi\)
0.999341 + 0.0363104i \(0.0115605\pi\)
\(374\) 0 0
\(375\) 13.7706 7.95047i 0.0367216 0.0212012i
\(376\) 0 0
\(377\) −427.265 −1.13333
\(378\) 0 0
\(379\) 559.255i 1.47561i −0.675016 0.737803i \(-0.735863\pi\)
0.675016 0.737803i \(-0.264137\pi\)
\(380\) 0 0
\(381\) 613.658 + 1062.89i 1.61065 + 2.78973i
\(382\) 0 0
\(383\) 334.500 + 193.123i 0.873367 + 0.504239i 0.868466 0.495749i \(-0.165106\pi\)
0.00490157 + 0.999988i \(0.498440\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 699.739 + 403.994i 1.80811 + 1.04391i
\(388\) 0 0
\(389\) 276.097 + 478.214i 0.709761 + 1.22934i 0.964946 + 0.262450i \(0.0845306\pi\)
−0.255184 + 0.966892i \(0.582136\pi\)
\(390\) 0 0
\(391\) 563.388i 1.44089i
\(392\) 0 0
\(393\) −251.886 −0.640931
\(394\) 0 0
\(395\) 1.02448 0.591484i 0.00259362 0.00149743i
\(396\) 0 0
\(397\) 259.204 448.955i 0.652907 1.13087i −0.329507 0.944153i \(-0.606883\pi\)
0.982414 0.186715i \(-0.0597841\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −23.9526 + 41.4872i −0.0597323 + 0.103459i −0.894345 0.447378i \(-0.852358\pi\)
0.834613 + 0.550837i \(0.185691\pi\)
\(402\) 0 0
\(403\) 311.686 179.952i 0.773415 0.446531i
\(404\) 0 0
\(405\) 12.6195 0.0311592
\(406\) 0 0
\(407\) 215.296i 0.528984i
\(408\) 0 0
\(409\) −4.92883 8.53699i −0.0120509 0.0208728i 0.859937 0.510400i \(-0.170503\pi\)
−0.871988 + 0.489527i \(0.837169\pi\)
\(410\) 0 0
\(411\) −499.128 288.172i −1.21442 0.701148i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −2.47799 1.43067i −0.00597105 0.00344739i
\(416\) 0 0
\(417\) 132.695 + 229.835i 0.318214 + 0.551164i
\(418\) 0 0
\(419\) 256.169i 0.611381i 0.952131 + 0.305691i \(0.0988873\pi\)
−0.952131 + 0.305691i \(0.901113\pi\)
\(420\) 0 0
\(421\) 765.070 1.81727 0.908634 0.417593i \(-0.137126\pi\)
0.908634 + 0.417593i \(0.137126\pi\)
\(422\) 0 0
\(423\) −386.381 + 223.077i −0.913430 + 0.527369i
\(424\) 0 0
\(425\) −243.699 + 422.098i −0.573409 + 0.993173i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 372.234 644.728i 0.867678 1.50286i
\(430\) 0 0
\(431\) −123.619 + 71.3715i −0.286819 + 0.165595i −0.636507 0.771271i \(-0.719621\pi\)
0.349687 + 0.936866i \(0.386288\pi\)
\(432\) 0 0
\(433\) 849.228 1.96126 0.980632 0.195858i \(-0.0627492\pi\)
0.980632 + 0.195858i \(0.0627492\pi\)
\(434\) 0 0
\(435\) 10.9718i 0.0252226i
\(436\) 0 0
\(437\) −92.6614 160.494i −0.212040 0.367264i
\(438\) 0 0
\(439\) −390.669 225.553i −0.889906 0.513788i −0.0159945 0.999872i \(-0.505091\pi\)
−0.873912 + 0.486084i \(0.838425\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −143.183 82.6669i −0.323213 0.186607i 0.329611 0.944117i \(-0.393082\pi\)
−0.652824 + 0.757510i \(0.726416\pi\)
\(444\) 0 0
\(445\) −3.91302 6.77754i −0.00879329 0.0152304i
\(446\) 0 0
\(447\) 704.821i 1.57678i
\(448\) 0 0
\(449\) −386.892 −0.861676 −0.430838 0.902429i \(-0.641782\pi\)
−0.430838 + 0.902429i \(0.641782\pi\)
\(450\) 0 0
\(451\) 11.8256 6.82749i 0.0262208 0.0151386i
\(452\) 0 0
\(453\) 523.972 907.546i 1.15667 2.00341i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 399.176 691.393i 0.873471 1.51290i 0.0150879 0.999886i \(-0.495197\pi\)
0.858383 0.513010i \(-0.171469\pi\)
\(458\) 0 0
\(459\) −1279.25 + 738.576i −2.78704 + 1.60910i
\(460\) 0 0
\(461\) 541.733 1.17513 0.587563 0.809178i \(-0.300087\pi\)
0.587563 + 0.809178i \(0.300087\pi\)
\(462\) 0 0
\(463\) 432.093i 0.933246i −0.884456 0.466623i \(-0.845470\pi\)
0.884456 0.466623i \(-0.154530\pi\)
\(464\) 0 0
\(465\) −4.62103 8.00387i −0.00993771 0.0172126i
\(466\) 0 0
\(467\) 776.486 + 448.305i 1.66271 + 0.959967i 0.971412 + 0.237398i \(0.0762946\pi\)
0.691299 + 0.722569i \(0.257039\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −861.326 497.287i −1.82872 1.05581i
\(472\) 0 0
\(473\) −192.321 333.110i −0.406599 0.704250i
\(474\) 0 0
\(475\) 160.326i 0.337528i
\(476\) 0 0
\(477\) −1190.05 −2.49487
\(478\) 0 0
\(479\) −357.755 + 206.550i −0.746879 + 0.431211i −0.824565 0.565767i \(-0.808580\pi\)
0.0776861 + 0.996978i \(0.475247\pi\)
\(480\) 0 0
\(481\) 124.480 215.607i 0.258795 0.448246i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4.05596 7.02513i 0.00836281 0.0144848i
\(486\) 0 0
\(487\) −543.562 + 313.826i −1.11614 + 0.644406i −0.940414 0.340032i \(-0.889562\pi\)
−0.175730 + 0.984438i \(0.556229\pi\)
\(488\) 0 0
\(489\) −297.236 −0.607844
\(490\) 0 0
\(491\) 857.281i 1.74599i 0.487730 + 0.872995i \(0.337825\pi\)
−0.487730 + 0.872995i \(0.662175\pi\)
\(492\) 0 0
\(493\) −336.332 582.544i −0.682214 1.18163i
\(494\) 0 0
\(495\) −11.8256 6.82749i −0.0238900 0.0137929i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −267.708 154.561i −0.536489 0.309742i 0.207166 0.978306i \(-0.433576\pi\)
−0.743655 + 0.668564i \(0.766909\pi\)
\(500\) 0 0
\(501\) 274.433 + 475.333i 0.547771 + 0.948768i
\(502\) 0 0
\(503\) 78.0463i 0.155162i 0.996986 + 0.0775808i \(0.0247196\pi\)
−0.996986 + 0.0775808i \(0.975280\pi\)
\(504\) 0 0
\(505\) −6.98601 −0.0138337
\(506\) 0 0
\(507\) 75.8729 43.8052i 0.149651 0.0864009i
\(508\) 0 0
\(509\) 42.9408 74.3756i 0.0843630 0.146121i −0.820757 0.571278i \(-0.806448\pi\)
0.905120 + 0.425157i \(0.139781\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 242.949 420.801i 0.473586 0.820274i
\(514\) 0 0
\(515\) 2.05645 1.18729i 0.00399310 0.00230542i
\(516\) 0 0
\(517\) 212.391 0.410815
\(518\) 0 0
\(519\) 1148.54i 2.21298i
\(520\) 0 0
\(521\) 201.036 + 348.204i 0.385865 + 0.668338i 0.991889 0.127108i \(-0.0405696\pi\)
−0.606024 + 0.795447i \(0.707236\pi\)
\(522\) 0 0
\(523\) −705.791 407.488i −1.34950 0.779137i −0.361325 0.932440i \(-0.617676\pi\)
−0.988179 + 0.153303i \(0.951009\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 490.702 + 283.307i 0.931124 + 0.537585i
\(528\) 0 0
\(529\) 152.934 + 264.890i 0.289101 + 0.500738i
\(530\) 0 0
\(531\) 1650.33i 3.10796i
\(532\) 0 0
\(533\) −15.7901 −0.0296250
\(534\) 0 0
\(535\) 3.33040 1.92281i 0.00622505 0.00359403i
\(536\) 0 0
\(537\) 165.127 286.009i 0.307499 0.532604i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −365.478 + 633.026i −0.675560 + 1.17010i 0.300745 + 0.953705i \(0.402765\pi\)
−0.976305 + 0.216399i \(0.930569\pi\)
\(542\) 0 0
\(543\) −231.148 + 133.453i −0.425686 + 0.245770i
\(544\) 0 0
\(545\) −5.23555 −0.00960652
\(546\) 0 0
\(547\) 712.083i 1.30180i 0.759165 + 0.650899i \(0.225608\pi\)
−0.759165 + 0.650899i \(0.774392\pi\)
\(548\) 0 0
\(549\) 263.664 + 456.680i 0.480263 + 0.831840i
\(550\) 0 0
\(551\) 191.624 + 110.634i 0.347774 + 0.200788i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −5.53662 3.19657i −0.00997588 0.00575958i
\(556\) 0 0
\(557\) −444.573 770.022i −0.798155 1.38245i −0.920816 0.389997i \(-0.872476\pi\)
0.122661 0.992449i \(-0.460857\pi\)
\(558\) 0 0
\(559\) 444.787i 0.795683i
\(560\) 0 0
\(561\) 1172.05 2.08922
\(562\) 0 0
\(563\) −143.972 + 83.1225i −0.255724 + 0.147642i −0.622382 0.782713i \(-0.713835\pi\)
0.366659 + 0.930356i \(0.380502\pi\)
\(564\) 0 0
\(565\) 2.69980 4.67620i 0.00477842 0.00827646i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3.79174 6.56749i 0.00666387 0.0115422i −0.862674 0.505760i \(-0.831212\pi\)
0.869338 + 0.494218i \(0.164545\pi\)
\(570\) 0 0
\(571\) 157.899 91.1631i 0.276531 0.159655i −0.355321 0.934744i \(-0.615628\pi\)
0.631852 + 0.775089i \(0.282295\pi\)
\(572\) 0 0
\(573\) −1686.01 −2.94243
\(574\) 0 0
\(575\) 722.260i 1.25610i
\(576\) 0 0
\(577\) 191.393 + 331.503i 0.331704 + 0.574528i 0.982846 0.184428i \(-0.0590432\pi\)
−0.651142 + 0.758956i \(0.725710\pi\)
\(578\) 0 0
\(579\) −1254.49 724.279i −2.16665 1.25091i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 490.625 + 283.262i 0.841551 + 0.485870i
\(584\) 0 0
\(585\) 7.89507 + 13.6747i 0.0134958 + 0.0233755i
\(586\) 0 0
\(587\) 496.707i 0.846178i −0.906088 0.423089i \(-0.860946\pi\)
0.906088 0.423089i \(-0.139054\pi\)
\(588\) 0 0
\(589\) −186.384 −0.316441
\(590\) 0 0
\(591\) 1413.86 816.294i 2.39232 1.38121i
\(592\) 0 0
\(593\) 302.253 523.518i 0.509702 0.882829i −0.490235 0.871590i \(-0.663089\pi\)
0.999937 0.0112392i \(-0.00357761\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 163.739 283.605i 0.274270 0.475050i
\(598\) 0 0
\(599\) 470.558 271.677i 0.785573 0.453551i −0.0528286 0.998604i \(-0.516824\pi\)
0.838402 + 0.545053i \(0.183490\pi\)
\(600\) 0 0
\(601\) −590.129 −0.981912 −0.490956 0.871184i \(-0.663352\pi\)
−0.490956 + 0.871184i \(0.663352\pi\)
\(602\) 0 0
\(603\) 348.796i 0.578434i
\(604\) 0 0
\(605\) −0.178179 0.308614i −0.000294510 0.000510107i
\(606\) 0 0
\(607\) 602.616 + 347.920i 0.992777 + 0.573180i 0.906103 0.423057i \(-0.139043\pi\)
0.0866738 + 0.996237i \(0.472376\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −212.697 122.801i −0.348114 0.200983i
\(612\) 0 0
\(613\) −360.291 624.042i −0.587750 1.01801i −0.994526 0.104486i \(-0.966680\pi\)
0.406776 0.913528i \(-0.366653\pi\)
\(614\) 0 0
\(615\) 0.405479i 0.000659315i
\(616\) 0 0
\(617\) −950.880 −1.54113 −0.770567 0.637359i \(-0.780027\pi\)
−0.770567 + 0.637359i \(0.780027\pi\)
\(618\) 0 0
\(619\) 686.615 396.418i 1.10923 0.640416i 0.170603 0.985340i \(-0.445429\pi\)
0.938631 + 0.344924i \(0.112095\pi\)
\(620\) 0 0
\(621\) −1094.47 + 1895.68i −1.76244 + 3.05263i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −312.380 + 541.057i −0.499807 + 0.865692i
\(626\) 0 0
\(627\) −333.886 + 192.769i −0.532513 + 0.307447i
\(628\) 0 0
\(629\) 391.951 0.623134
\(630\) 0 0
\(631\) 50.5874i 0.0801702i 0.999196 + 0.0400851i \(0.0127629\pi\)
−0.999196 + 0.0400851i \(0.987237\pi\)
\(632\) 0 0
\(633\) −50.8681 88.1061i −0.0803603 0.139188i
\(634\) 0 0
\(635\) 10.7320 + 6.19610i 0.0169007 + 0.00975764i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −733.378 423.416i −1.14770 0.662623i
\(640\) 0 0
\(641\) −564.039 976.943i −0.879935 1.52409i −0.851411 0.524500i \(-0.824252\pi\)
−0.0285246 0.999593i \(-0.509081\pi\)
\(642\) 0 0
\(643\) 500.619i 0.778567i −0.921118 0.389284i \(-0.872723\pi\)
0.921118 0.389284i \(-0.127277\pi\)
\(644\) 0 0
\(645\) 11.4218 0.0177082
\(646\) 0 0
\(647\) −230.843 + 133.277i −0.356790 + 0.205993i −0.667672 0.744456i \(-0.732709\pi\)
0.310882 + 0.950449i \(0.399376\pi\)
\(648\) 0 0
\(649\) 392.818 680.381i 0.605267 1.04835i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −51.0514 + 88.4237i −0.0781798 + 0.135411i −0.902465 0.430764i \(-0.858244\pi\)
0.824285 + 0.566175i \(0.191578\pi\)
\(654\) 0 0
\(655\) −2.20256 + 1.27165i −0.00336268 + 0.00194144i
\(656\) 0 0
\(657\) −1654.61 −2.51843
\(658\) 0 0
\(659\) 303.615i 0.460721i 0.973105 + 0.230361i \(0.0739906\pi\)
−0.973105 + 0.230361i \(0.926009\pi\)
\(660\) 0 0
\(661\) −81.8366 141.745i −0.123807 0.214440i 0.797459 0.603373i \(-0.206177\pi\)
−0.921266 + 0.388933i \(0.872844\pi\)
\(662\) 0 0
\(663\) −1173.74 677.659i −1.77035 1.02211i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −863.254 498.400i −1.29423 0.747226i
\(668\) 0 0
\(669\) −19.2061 33.2659i −0.0287086 0.0497248i
\(670\) 0 0
\(671\) 251.035i 0.374120i
\(672\) 0 0
\(673\) 1181.37 1.75538 0.877690 0.479229i \(-0.159084\pi\)
0.877690 + 0.479229i \(0.159084\pi\)
\(674\) 0 0
\(675\) −1639.99 + 946.849i −2.42961 + 1.40274i
\(676\) 0 0
\(677\) −342.239 + 592.775i −0.505523 + 0.875591i 0.494457 + 0.869202i \(0.335367\pi\)
−0.999980 + 0.00638867i \(0.997966\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −655.871 + 1136.00i −0.963100 + 1.66814i
\(682\) 0 0
\(683\) 355.939 205.502i 0.521141 0.300881i −0.216260 0.976336i \(-0.569386\pi\)
0.737401 + 0.675455i \(0.236053\pi\)
\(684\) 0 0
\(685\) −5.81934 −0.00849539
\(686\) 0 0
\(687\) 923.815i 1.34471i
\(688\) 0 0
\(689\) −327.554 567.341i −0.475405 0.823426i
\(690\) 0 0
\(691\) −140.238 80.9666i −0.202950 0.117173i 0.395081 0.918646i \(-0.370717\pi\)
−0.598031 + 0.801473i \(0.704050\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.32064 + 1.33982i 0.00333906 + 0.00192781i
\(696\) 0 0
\(697\) −12.4296 21.5287i −0.0178330 0.0308876i
\(698\) 0 0
\(699\) 33.2145i 0.0475172i
\(700\) 0 0
\(701\) 448.323 0.639548 0.319774 0.947494i \(-0.396393\pi\)
0.319774 + 0.947494i \(0.396393\pi\)
\(702\) 0 0
\(703\) −111.656 + 64.4648i −0.158828 + 0.0916996i
\(704\) 0 0
\(705\) −3.15344 + 5.46191i −0.00447296 + 0.00774739i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −100.350 + 173.811i −0.141537 + 0.245149i −0.928076 0.372392i \(-0.878538\pi\)
0.786539 + 0.617541i \(0.211871\pi\)
\(710\) 0 0
\(711\) −406.742 + 234.832i −0.572070 + 0.330285i
\(712\) 0 0
\(713\) 839.649 1.17763
\(714\) 0 0
\(715\) 7.51688i 0.0105131i
\(716\) 0 0
\(717\) −1126.41 1951.00i −1.57100 2.72106i
\(718\) 0 0
\(719\) 567.356 + 327.563i 0.789090 + 0.455581i 0.839642 0.543140i \(-0.182765\pi\)
−0.0505522 + 0.998721i \(0.516098\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −756.384 436.698i −1.04617 0.604009i
\(724\) 0 0
\(725\) −431.175 746.816i −0.594724 1.03009i
\(726\) 0 0
\(727\) 341.027i 0.469088i −0.972106 0.234544i \(-0.924640\pi\)
0.972106 0.234544i \(-0.0753596\pi\)
\(728\) 0 0
\(729\) −1183.62 −1.62362
\(730\) 0 0
\(731\) −606.434 + 350.125i −0.829595 + 0.478967i
\(732\) 0 0
\(733\) 297.395 515.104i 0.405724 0.702734i −0.588682 0.808365i \(-0.700353\pi\)
0.994405 + 0.105631i \(0.0336862\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 83.0220 143.798i 0.112649 0.195113i
\(738\) 0 0
\(739\) 1107.39 639.354i 1.49850 0.865162i 0.498505 0.866887i \(-0.333882\pi\)
0.999999 + 0.00172511i \(0.000549120\pi\)
\(740\) 0 0
\(741\) 445.822 0.601650
\(742\) 0 0
\(743\) 544.059i 0.732246i −0.930566 0.366123i \(-0.880685\pi\)
0.930566 0.366123i \(-0.119315\pi\)
\(744\) 0 0
\(745\) 3.55829 + 6.16313i 0.00477622 + 0.00827266i
\(746\) 0 0
\(747\) 983.816 + 568.006i 1.31702 + 0.760383i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 34.3675 + 19.8421i 0.0457623 + 0.0264209i 0.522707 0.852513i \(-0.324922\pi\)
−0.476944 + 0.878934i \(0.658256\pi\)
\(752\) 0 0
\(753\) 977.588 + 1693.23i 1.29826 + 2.24865i
\(754\) 0 0
\(755\) 10.5811i 0.0140147i
\(756\) 0 0
\(757\) −47.2200 −0.0623777 −0.0311889 0.999514i \(-0.509929\pi\)
−0.0311889 + 0.999514i \(0.509929\pi\)
\(758\) 0 0
\(759\) 1504.14 868.414i 1.98174 1.14416i
\(760\) 0 0
\(761\) −421.703 + 730.411i −0.554143 + 0.959804i 0.443827 + 0.896113i \(0.353621\pi\)
−0.997970 + 0.0636913i \(0.979713\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −12.4296 + 21.5287i −0.0162478 + 0.0281421i
\(766\) 0 0
\(767\) −786.769 + 454.241i −1.02577 + 0.592231i
\(768\) 0 0
\(769\) −343.976 −0.447304 −0.223652 0.974669i \(-0.571798\pi\)
−0.223652 + 0.974669i \(0.571798\pi\)
\(770\) 0 0
\(771\) 78.2659i 0.101512i
\(772\) 0 0
\(773\) 188.558 + 326.593i 0.243931 + 0.422500i 0.961830 0.273646i \(-0.0882298\pi\)
−0.717900 + 0.696146i \(0.754896\pi\)
\(774\) 0 0
\(775\) 629.077 + 363.198i 0.811712 + 0.468642i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 7.08171 + 4.08863i 0.00909077 + 0.00524856i
\(780\) 0 0
\(781\) 201.567 + 349.124i 0.258088 + 0.447022i
\(782\) 0 0
\(783\) 2613.52i 3.33782i
\(784\) 0 0
\(785\) −10.0422 −0.0127926
\(786\) 0 0
\(787\) 662.278 382.367i 0.841523 0.485853i −0.0162588 0.999868i \(-0.505176\pi\)
0.857782 + 0.514014i \(0.171842\pi\)
\(788\) 0 0
\(789\) 1023.15 1772.14i 1.29676 2.24606i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −145.144 + 251.396i −0.183031 + 0.317019i
\(794\) 0 0
\(795\) −14.5689 + 8.41135i −0.0183256 + 0.0105803i
\(796\) 0 0
\(797\) 1306.69 1.63951 0.819753 0.572717i \(-0.194111\pi\)
0.819753 + 0.572717i \(0.194111\pi\)
\(798\) 0 0
\(799\) 386.663i 0.483933i
\(800\) 0 0
\(801\) 1553.56 + 2690.84i 1.93952 + 3.35935i
\(802\) 0 0
\(803\) 682.147 + 393.838i 0.849498 + 0.490458i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 2096.93 + 1210.67i 2.59843 + 1.50021i
\(808\) 0 0
\(809\) −235.592 408.056i −0.291213 0.504396i 0.682884 0.730527i \(-0.260726\pi\)
−0.974097 + 0.226131i \(0.927392\pi\)
\(810\) 0 0
\(811\) 1563.73i 1.92815i 0.265632 + 0.964074i \(0.414419\pi\)
−0.265632 + 0.964074i \(0.585581\pi\)
\(812\) 0 0
\(813\) 588.554 0.723929
\(814\) 0 0
\(815\) −2.59910 + 1.50059i −0.00318908 + 0.00184122i
\(816\) 0 0
\(817\) 115.171 199.482i 0.140968 0.244164i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 126.365 218.871i 0.153916 0.266591i −0.778748 0.627337i \(-0.784145\pi\)
0.932664 + 0.360746i \(0.117478\pi\)
\(822\) 0 0
\(823\) 218.597 126.207i 0.265610 0.153350i −0.361281 0.932457i \(-0.617661\pi\)
0.626891 + 0.779107i \(0.284327\pi\)
\(824\) 0 0
\(825\) 1502.56 1.82128
\(826\) 0 0
\(827\) 1045.75i 1.26451i 0.774760 + 0.632256i \(0.217871\pi\)
−0.774760 + 0.632256i \(0.782129\pi\)
\(828\) 0 0
\(829\) 221.059 + 382.886i 0.266658 + 0.461865i 0.967997 0.250963i \(-0.0807472\pi\)
−0.701339 + 0.712828i \(0.747414\pi\)
\(830\) 0 0
\(831\) −781.031 450.928i −0.939868 0.542633i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 4.79943 + 2.77095i 0.00574782 + 0.00331851i
\(836\) 0 0
\(837\) 1100.74 + 1906.54i 1.31510 + 2.27782i
\(838\) 0 0
\(839\) 1532.20i 1.82622i 0.407714 + 0.913110i \(0.366326\pi\)
−0.407714 + 0.913110i \(0.633674\pi\)
\(840\) 0 0
\(841\) 349.139 0.415148
\(842\) 0 0
\(843\) −674.057 + 389.167i −0.799593 + 0.461645i
\(844\) 0 0
\(845\) 0.442301 0.766088i 0.000523433 0.000906613i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 234.989 407.013i 0.276784 0.479403i
\(850\) 0 0
\(851\) 503.006 290.411i 0.591076 0.341258i
\(852\) 0 0
\(853\) −725.264 −0.850251 −0.425125 0.905134i \(-0.639770\pi\)
−0.425125 + 0.905134i \(0.639770\pi\)
\(854\) 0 0
\(855\) 8.17725i 0.00956404i
\(856\) 0 0
\(857\) −472.823 818.954i −0.551719 0.955606i −0.998151 0.0607878i \(-0.980639\pi\)
0.446432 0.894818i \(-0.352695\pi\)
\(858\) 0 0
\(859\) −427.861 247.025i −0.498092 0.287573i 0.229834 0.973230i \(-0.426182\pi\)
−0.727925 + 0.685657i \(0.759515\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1198.21 + 691.788i 1.38843 + 0.801609i 0.993138 0.116948i \(-0.0373111\pi\)
0.395289 + 0.918557i \(0.370644\pi\)
\(864\) 0 0
\(865\) −5.79840 10.0431i −0.00670335 0.0116105i
\(866\) 0 0
\(867\) 511.775i 0.590282i
\(868\) 0 0
\(869\) 223.584 0.257288
\(870\) 0 0
\(871\) −166.283 + 96.0037i −0.190911 + 0.110222i
\(872\) 0 0
\(873\) −1610.31 + 2789.14i −1.84457 + 3.19489i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 686.052 1188.28i 0.782272 1.35493i −0.148344 0.988936i \(-0.547394\pi\)
0.930615 0.365998i \(-0.119272\pi\)
\(878\) 0 0
\(879\) 1273.08 735.014i 1.44833 0.836194i
\(880\) 0 0
\(881\) −927.004 −1.05222 −0.526109 0.850417i \(-0.676350\pi\)
−0.526109 + 0.850417i \(0.676350\pi\)
\(882\) 0 0
\(883\) 1144.18i 1.29578i −0.761733 0.647891i \(-0.775651\pi\)
0.761733 0.647891i \(-0.224349\pi\)
\(884\) 0 0
\(885\) 11.6646 + 20.2036i 0.0131803 + 0.0228290i
\(886\) 0 0
\(887\) 1402.29 + 809.611i 1.58093 + 0.912752i 0.994723 + 0.102592i \(0.0327138\pi\)
0.586209 + 0.810160i \(0.300620\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 2065.57 + 1192.56i 2.31826 + 1.33845i
\(892\) 0 0
\(893\) 63.5950 + 110.150i 0.0712150 + 0.123348i
\(894\) 0 0
\(895\) 3.33458i 0.00372578i
\(896\) 0 0
\(897\) −2008.41 −2.23903
\(898\) 0 0
\(899\) −868.197 + 501.254i −0.965736 + 0.557568i
\(900\) 0 0
\(901\) 515.684 893.192i 0.572347 0.991334i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1.34748 + 2.33390i −0.00148892 + 0.00257889i
\(906\) 0 0
\(907\) 425.263 245.526i 0.468868 0.270701i −0.246898 0.969041i \(-0.579411\pi\)
0.715766 + 0.698341i \(0.246078\pi\)
\(908\) 0 0
\(909\) 2773.60 3.05127
\(910\) 0 0
\(911\) 551.167i 0.605013i 0.953147 + 0.302506i \(0.0978234\pi\)
−0.953147 + 0.302506i \(0.902177\pi\)
\(912\) 0 0
\(913\) −270.399 468.345i −0.296165 0.512974i
\(914\) 0 0
\(915\) 6.45567 + 3.72718i 0.00705538 + 0.00407342i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −254.106 146.708i −0.276503 0.159639i 0.355336 0.934739i \(-0.384366\pi\)
−0.631839 + 0.775099i \(0.717700\pi\)
\(920\) 0 0
\(921\) 696.453 + 1206.29i 0.756192 + 1.30976i
\(922\) 0 0
\(923\) 466.169i 0.505059i
\(924\) 0 0
\(925\) 502.478 0.543220
\(926\) 0 0
\(927\) −816.457 + 471.381i −0.880751 + 0.508502i
\(928\) 0 0
\(929\) 526.411 911.771i 0.566643 0.981454i −0.430252 0.902709i \(-0.641575\pi\)
0.996895 0.0787454i \(-0.0250914\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 1569.91 2719.17i 1.68265 2.91443i
\(934\) 0 0
\(935\) 10.2487 5.91710i 0.0109612 0.00632844i
\(936\) 0 0
\(937\) 1323.90 1.41292 0.706459 0.707754i \(-0.250292\pi\)
0.706459 + 0.707754i \(0.250292\pi\)
\(938\) 0 0
\(939\) 1633.66i 1.73979i
\(940\) 0 0
\(941\) 82.1275 + 142.249i 0.0872768 + 0.151168i 0.906359 0.422508i \(-0.138850\pi\)
−0.819082 + 0.573676i \(0.805517\pi\)
\(942\) 0 0
\(943\) −31.9027 18.4190i −0.0338311 0.0195324i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −198.482 114.593i −0.209590 0.121007i 0.391531 0.920165i \(-0.371946\pi\)
−0.601121 + 0.799158i \(0.705279\pi\)
\(948\) 0 0
\(949\) −455.420 788.810i −0.479895 0.831202i
\(950\) 0 0
\(951\) 2687.69i 2.82617i
\(952\) 0 0
\(953\) 203.077 0.213092 0.106546 0.994308i \(-0.466021\pi\)
0.106546 + 0.994308i \(0.466021\pi\)
\(954\) 0 0
\(955\) −14.7429 + 8.51183i −0.0154376 + 0.00891291i
\(956\) 0 0
\(957\) −1036.85 + 1795.88i −1.08344 + 1.87657i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −58.2717 + 100.930i −0.0606365 + 0.105025i
\(962\) 0 0
\(963\) −1322.24 + 763.398i −1.37305 + 0.792729i
\(964\) 0 0
\(965\) −14.6261 −0.0151566
\(966\) 0 0
\(967\) 483.181i 0.499670i 0.968288 + 0.249835i \(0.0803764\pi\)
−0.968288 + 0.249835i \(0.919624\pi\)
\(968\) 0 0
\(969\) 350.940 + 607.846i 0.362167 + 0.627292i
\(970\) 0 0
\(971\) 108.752 + 62.7881i 0.112000 + 0.0646633i 0.554954 0.831881i \(-0.312736\pi\)
−0.442953 + 0.896545i \(0.646069\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −1504.72 868.753i −1.54331 0.891029i
\(976\) 0 0
\(977\) −176.354 305.454i −0.180505 0.312644i 0.761547 0.648109i \(-0.224440\pi\)
−0.942053 + 0.335465i \(0.891107\pi\)
\(978\) 0 0
\(979\) 1479.14i 1.51087i
\(980\) 0 0
\(981\) 2078.63 2.11889
\(982\) 0 0
\(983\) −458.984 + 264.994i −0.466921 + 0.269577i −0.714950 0.699176i \(-0.753551\pi\)
0.248029 + 0.968753i \(0.420217\pi\)
\(984\) 0 0
\(985\) 8.24212 14.2758i 0.00836763 0.0144932i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −518.839 + 898.656i −0.524610 + 0.908651i
\(990\) 0 0
\(991\) −249.779 + 144.210i −0.252047 + 0.145520i −0.620701 0.784047i \(-0.713152\pi\)
0.368654 + 0.929567i \(0.379819\pi\)
\(992\) 0 0
\(993\) 120.668 0.121518
\(994\) 0 0
\(995\) 3.30655i 0.00332316i
\(996\) 0 0
\(997\) 221.355 + 383.398i 0.222021 + 0.384551i 0.955421 0.295245i \(-0.0954014\pi\)
−0.733401 + 0.679797i \(0.762068\pi\)
\(998\) 0 0
\(999\) 1318.83 + 761.429i 1.32015 + 0.762191i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.3.r.p.79.1 6
4.3 odd 2 784.3.r.q.79.3 6
7.2 even 3 784.3.d.k.687.1 6
7.3 odd 6 112.3.r.b.95.1 yes 6
7.4 even 3 784.3.r.q.655.3 6
7.5 odd 6 784.3.d.l.687.6 6
7.6 odd 2 112.3.r.c.79.3 yes 6
21.17 even 6 1008.3.cd.j.991.2 6
21.20 even 2 1008.3.cd.k.415.2 6
28.3 even 6 112.3.r.c.95.3 yes 6
28.11 odd 6 inner 784.3.r.p.655.1 6
28.19 even 6 784.3.d.l.687.1 6
28.23 odd 6 784.3.d.k.687.6 6
28.27 even 2 112.3.r.b.79.1 6
56.3 even 6 448.3.r.d.319.1 6
56.13 odd 2 448.3.r.d.191.1 6
56.27 even 2 448.3.r.e.191.3 6
56.45 odd 6 448.3.r.e.319.3 6
84.59 odd 6 1008.3.cd.k.991.2 6
84.83 odd 2 1008.3.cd.j.415.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.3.r.b.79.1 6 28.27 even 2
112.3.r.b.95.1 yes 6 7.3 odd 6
112.3.r.c.79.3 yes 6 7.6 odd 2
112.3.r.c.95.3 yes 6 28.3 even 6
448.3.r.d.191.1 6 56.13 odd 2
448.3.r.d.319.1 6 56.3 even 6
448.3.r.e.191.3 6 56.27 even 2
448.3.r.e.319.3 6 56.45 odd 6
784.3.d.k.687.1 6 7.2 even 3
784.3.d.k.687.6 6 28.23 odd 6
784.3.d.l.687.1 6 28.19 even 6
784.3.d.l.687.6 6 7.5 odd 6
784.3.r.p.79.1 6 1.1 even 1 trivial
784.3.r.p.655.1 6 28.11 odd 6 inner
784.3.r.q.79.3 6 4.3 odd 2
784.3.r.q.655.3 6 7.4 even 3
1008.3.cd.j.415.2 6 84.83 odd 2
1008.3.cd.j.991.2 6 21.17 even 6
1008.3.cd.k.415.2 6 21.20 even 2
1008.3.cd.k.991.2 6 84.59 odd 6