Properties

Label 784.6.a.bg.1.4
Level $784$
Weight $6$
Character 784.1
Self dual yes
Analytic conductor $125.741$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [784,6,Mod(1,784)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(784, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("784.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 784.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(125.740914733\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{793})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 399x^{2} + 400x + 38414 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 98)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-14.9943\) of defining polynomial
Character \(\chi\) \(=\) 784.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+24.8621 q^{3} -84.4857 q^{5} +375.122 q^{9} +434.365 q^{11} +848.786 q^{13} -2100.49 q^{15} -301.445 q^{17} -2909.92 q^{19} +1709.46 q^{23} +4012.83 q^{25} +3284.82 q^{27} +3841.63 q^{29} +969.851 q^{31} +10799.2 q^{33} +2507.10 q^{37} +21102.6 q^{39} -13284.0 q^{41} -7781.29 q^{43} -31692.4 q^{45} +5489.13 q^{47} -7494.54 q^{51} +22859.9 q^{53} -36697.6 q^{55} -72346.6 q^{57} +11109.9 q^{59} +22205.2 q^{61} -71710.3 q^{65} +7218.58 q^{67} +42500.7 q^{69} -46153.3 q^{71} +67681.2 q^{73} +99767.1 q^{75} +69949.5 q^{79} -9487.24 q^{81} +3915.73 q^{83} +25467.8 q^{85} +95510.9 q^{87} +52951.2 q^{89} +24112.5 q^{93} +245847. q^{95} -64.5382 q^{97} +162940. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 712 q^{9} - 628 q^{11} - 5248 q^{15} - 2624 q^{23} + 4224 q^{25} + 17732 q^{29} + 2932 q^{37} + 41832 q^{39} - 9836 q^{43} + 51236 q^{51} + 1552 q^{53} - 104092 q^{57} - 142548 q^{65} - 13704 q^{67}+ \cdots + 354500 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 24.8621 1.59490 0.797451 0.603384i \(-0.206181\pi\)
0.797451 + 0.603384i \(0.206181\pi\)
\(4\) 0 0
\(5\) −84.4857 −1.51133 −0.755663 0.654961i \(-0.772685\pi\)
−0.755663 + 0.654961i \(0.772685\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 375.122 1.54371
\(10\) 0 0
\(11\) 434.365 1.08236 0.541182 0.840905i \(-0.317977\pi\)
0.541182 + 0.840905i \(0.317977\pi\)
\(12\) 0 0
\(13\) 848.786 1.39296 0.696482 0.717574i \(-0.254747\pi\)
0.696482 + 0.717574i \(0.254747\pi\)
\(14\) 0 0
\(15\) −2100.49 −2.41042
\(16\) 0 0
\(17\) −301.445 −0.252980 −0.126490 0.991968i \(-0.540371\pi\)
−0.126490 + 0.991968i \(0.540371\pi\)
\(18\) 0 0
\(19\) −2909.92 −1.84926 −0.924628 0.380870i \(-0.875624\pi\)
−0.924628 + 0.380870i \(0.875624\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1709.46 0.673814 0.336907 0.941538i \(-0.390619\pi\)
0.336907 + 0.941538i \(0.390619\pi\)
\(24\) 0 0
\(25\) 4012.83 1.28410
\(26\) 0 0
\(27\) 3284.82 0.867166
\(28\) 0 0
\(29\) 3841.63 0.848245 0.424122 0.905605i \(-0.360583\pi\)
0.424122 + 0.905605i \(0.360583\pi\)
\(30\) 0 0
\(31\) 969.851 0.181260 0.0906298 0.995885i \(-0.471112\pi\)
0.0906298 + 0.995885i \(0.471112\pi\)
\(32\) 0 0
\(33\) 10799.2 1.72626
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2507.10 0.301069 0.150535 0.988605i \(-0.451900\pi\)
0.150535 + 0.988605i \(0.451900\pi\)
\(38\) 0 0
\(39\) 21102.6 2.22164
\(40\) 0 0
\(41\) −13284.0 −1.23415 −0.617076 0.786904i \(-0.711683\pi\)
−0.617076 + 0.786904i \(0.711683\pi\)
\(42\) 0 0
\(43\) −7781.29 −0.641771 −0.320886 0.947118i \(-0.603981\pi\)
−0.320886 + 0.947118i \(0.603981\pi\)
\(44\) 0 0
\(45\) −31692.4 −2.33305
\(46\) 0 0
\(47\) 5489.13 0.362459 0.181230 0.983441i \(-0.441992\pi\)
0.181230 + 0.983441i \(0.441992\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −7494.54 −0.403478
\(52\) 0 0
\(53\) 22859.9 1.11785 0.558926 0.829218i \(-0.311214\pi\)
0.558926 + 0.829218i \(0.311214\pi\)
\(54\) 0 0
\(55\) −36697.6 −1.63580
\(56\) 0 0
\(57\) −72346.6 −2.94938
\(58\) 0 0
\(59\) 11109.9 0.415508 0.207754 0.978181i \(-0.433385\pi\)
0.207754 + 0.978181i \(0.433385\pi\)
\(60\) 0 0
\(61\) 22205.2 0.764064 0.382032 0.924149i \(-0.375224\pi\)
0.382032 + 0.924149i \(0.375224\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −71710.3 −2.10522
\(66\) 0 0
\(67\) 7218.58 0.196456 0.0982278 0.995164i \(-0.468683\pi\)
0.0982278 + 0.995164i \(0.468683\pi\)
\(68\) 0 0
\(69\) 42500.7 1.07467
\(70\) 0 0
\(71\) −46153.3 −1.08657 −0.543284 0.839549i \(-0.682819\pi\)
−0.543284 + 0.839549i \(0.682819\pi\)
\(72\) 0 0
\(73\) 67681.2 1.48649 0.743244 0.669021i \(-0.233286\pi\)
0.743244 + 0.669021i \(0.233286\pi\)
\(74\) 0 0
\(75\) 99767.1 2.04802
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 69949.5 1.26101 0.630503 0.776187i \(-0.282849\pi\)
0.630503 + 0.776187i \(0.282849\pi\)
\(80\) 0 0
\(81\) −9487.24 −0.160667
\(82\) 0 0
\(83\) 3915.73 0.0623903 0.0311951 0.999513i \(-0.490069\pi\)
0.0311951 + 0.999513i \(0.490069\pi\)
\(84\) 0 0
\(85\) 25467.8 0.382335
\(86\) 0 0
\(87\) 95510.9 1.35287
\(88\) 0 0
\(89\) 52951.2 0.708599 0.354300 0.935132i \(-0.384719\pi\)
0.354300 + 0.935132i \(0.384719\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 24112.5 0.289091
\(94\) 0 0
\(95\) 245847. 2.79483
\(96\) 0 0
\(97\) −64.5382 −0.000696447 0 −0.000348223 1.00000i \(-0.500111\pi\)
−0.000348223 1.00000i \(0.500111\pi\)
\(98\) 0 0
\(99\) 162940. 1.67086
\(100\) 0 0
\(101\) 72493.6 0.707125 0.353563 0.935411i \(-0.384970\pi\)
0.353563 + 0.935411i \(0.384970\pi\)
\(102\) 0 0
\(103\) 78987.2 0.733607 0.366804 0.930298i \(-0.380452\pi\)
0.366804 + 0.930298i \(0.380452\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −126386. −1.06718 −0.533592 0.845742i \(-0.679158\pi\)
−0.533592 + 0.845742i \(0.679158\pi\)
\(108\) 0 0
\(109\) 179718. 1.44886 0.724428 0.689351i \(-0.242104\pi\)
0.724428 + 0.689351i \(0.242104\pi\)
\(110\) 0 0
\(111\) 62331.6 0.480176
\(112\) 0 0
\(113\) 258027. 1.90094 0.950471 0.310812i \(-0.100601\pi\)
0.950471 + 0.310812i \(0.100601\pi\)
\(114\) 0 0
\(115\) −144425. −1.01835
\(116\) 0 0
\(117\) 318398. 2.15033
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 27622.3 0.171513
\(122\) 0 0
\(123\) −330267. −1.96835
\(124\) 0 0
\(125\) −75008.6 −0.429374
\(126\) 0 0
\(127\) 71222.2 0.391838 0.195919 0.980620i \(-0.437231\pi\)
0.195919 + 0.980620i \(0.437231\pi\)
\(128\) 0 0
\(129\) −193459. −1.02356
\(130\) 0 0
\(131\) −136703. −0.695983 −0.347991 0.937498i \(-0.613136\pi\)
−0.347991 + 0.937498i \(0.613136\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −277520. −1.31057
\(136\) 0 0
\(137\) 144193. 0.656361 0.328181 0.944615i \(-0.393565\pi\)
0.328181 + 0.944615i \(0.393565\pi\)
\(138\) 0 0
\(139\) 217792. 0.956102 0.478051 0.878332i \(-0.341343\pi\)
0.478051 + 0.878332i \(0.341343\pi\)
\(140\) 0 0
\(141\) 136471. 0.578087
\(142\) 0 0
\(143\) 368683. 1.50770
\(144\) 0 0
\(145\) −324563. −1.28197
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 285078. 1.05196 0.525978 0.850498i \(-0.323699\pi\)
0.525978 + 0.850498i \(0.323699\pi\)
\(150\) 0 0
\(151\) −101076. −0.360750 −0.180375 0.983598i \(-0.557731\pi\)
−0.180375 + 0.983598i \(0.557731\pi\)
\(152\) 0 0
\(153\) −113079. −0.390528
\(154\) 0 0
\(155\) −81938.5 −0.273942
\(156\) 0 0
\(157\) 271885. 0.880310 0.440155 0.897922i \(-0.354923\pi\)
0.440155 + 0.897922i \(0.354923\pi\)
\(158\) 0 0
\(159\) 568344. 1.78286
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 381176. 1.12372 0.561858 0.827234i \(-0.310087\pi\)
0.561858 + 0.827234i \(0.310087\pi\)
\(164\) 0 0
\(165\) −912379. −2.60895
\(166\) 0 0
\(167\) −216934. −0.601917 −0.300958 0.953637i \(-0.597306\pi\)
−0.300958 + 0.953637i \(0.597306\pi\)
\(168\) 0 0
\(169\) 349146. 0.940350
\(170\) 0 0
\(171\) −1.09157e6 −2.85472
\(172\) 0 0
\(173\) 278202. 0.706716 0.353358 0.935488i \(-0.385040\pi\)
0.353358 + 0.935488i \(0.385040\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 276215. 0.662695
\(178\) 0 0
\(179\) −360162. −0.840166 −0.420083 0.907486i \(-0.637999\pi\)
−0.420083 + 0.907486i \(0.637999\pi\)
\(180\) 0 0
\(181\) −309871. −0.703047 −0.351524 0.936179i \(-0.614336\pi\)
−0.351524 + 0.936179i \(0.614336\pi\)
\(182\) 0 0
\(183\) 552066. 1.21861
\(184\) 0 0
\(185\) −211814. −0.455014
\(186\) 0 0
\(187\) −130937. −0.273816
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 960954. 1.90598 0.952992 0.302995i \(-0.0979867\pi\)
0.952992 + 0.302995i \(0.0979867\pi\)
\(192\) 0 0
\(193\) 513006. 0.991356 0.495678 0.868506i \(-0.334920\pi\)
0.495678 + 0.868506i \(0.334920\pi\)
\(194\) 0 0
\(195\) −1.78287e6 −3.35762
\(196\) 0 0
\(197\) −768131. −1.41017 −0.705083 0.709125i \(-0.749090\pi\)
−0.705083 + 0.709125i \(0.749090\pi\)
\(198\) 0 0
\(199\) −1.04213e6 −1.86547 −0.932735 0.360563i \(-0.882585\pi\)
−0.932735 + 0.360563i \(0.882585\pi\)
\(200\) 0 0
\(201\) 179469. 0.313327
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 1.12231e6 1.86520
\(206\) 0 0
\(207\) 641256. 1.04017
\(208\) 0 0
\(209\) −1.26397e6 −2.00157
\(210\) 0 0
\(211\) 813317. 1.25763 0.628817 0.777554i \(-0.283540\pi\)
0.628817 + 0.777554i \(0.283540\pi\)
\(212\) 0 0
\(213\) −1.14747e6 −1.73297
\(214\) 0 0
\(215\) 657407. 0.969925
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 1.68269e6 2.37080
\(220\) 0 0
\(221\) −255863. −0.352392
\(222\) 0 0
\(223\) 238869. 0.321661 0.160830 0.986982i \(-0.448583\pi\)
0.160830 + 0.986982i \(0.448583\pi\)
\(224\) 0 0
\(225\) 1.50530e6 1.98229
\(226\) 0 0
\(227\) 585236. 0.753818 0.376909 0.926250i \(-0.376987\pi\)
0.376909 + 0.926250i \(0.376987\pi\)
\(228\) 0 0
\(229\) −1.48546e6 −1.87186 −0.935930 0.352187i \(-0.885438\pi\)
−0.935930 + 0.352187i \(0.885438\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.12071e6 −1.35239 −0.676196 0.736722i \(-0.736373\pi\)
−0.676196 + 0.736722i \(0.736373\pi\)
\(234\) 0 0
\(235\) −463753. −0.547794
\(236\) 0 0
\(237\) 1.73909e6 2.01118
\(238\) 0 0
\(239\) −13757.0 −0.0155786 −0.00778931 0.999970i \(-0.502479\pi\)
−0.00778931 + 0.999970i \(0.502479\pi\)
\(240\) 0 0
\(241\) −1.49876e6 −1.66223 −0.831114 0.556102i \(-0.812296\pi\)
−0.831114 + 0.556102i \(0.812296\pi\)
\(242\) 0 0
\(243\) −1.03408e6 −1.12341
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −2.46990e6 −2.57595
\(248\) 0 0
\(249\) 97353.0 0.0995064
\(250\) 0 0
\(251\) 966842. 0.968660 0.484330 0.874886i \(-0.339064\pi\)
0.484330 + 0.874886i \(0.339064\pi\)
\(252\) 0 0
\(253\) 742531. 0.729312
\(254\) 0 0
\(255\) 633182. 0.609786
\(256\) 0 0
\(257\) 1.71485e6 1.61955 0.809774 0.586743i \(-0.199590\pi\)
0.809774 + 0.586743i \(0.199590\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 1.44108e6 1.30944
\(262\) 0 0
\(263\) 477988. 0.426116 0.213058 0.977040i \(-0.431658\pi\)
0.213058 + 0.977040i \(0.431658\pi\)
\(264\) 0 0
\(265\) −1.93133e6 −1.68944
\(266\) 0 0
\(267\) 1.31648e6 1.13015
\(268\) 0 0
\(269\) −720098. −0.606751 −0.303376 0.952871i \(-0.598114\pi\)
−0.303376 + 0.952871i \(0.598114\pi\)
\(270\) 0 0
\(271\) 381619. 0.315651 0.157826 0.987467i \(-0.449552\pi\)
0.157826 + 0.987467i \(0.449552\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.74303e6 1.38987
\(276\) 0 0
\(277\) 722576. 0.565828 0.282914 0.959145i \(-0.408699\pi\)
0.282914 + 0.959145i \(0.408699\pi\)
\(278\) 0 0
\(279\) 363812. 0.279812
\(280\) 0 0
\(281\) −51828.2 −0.0391561 −0.0195781 0.999808i \(-0.506232\pi\)
−0.0195781 + 0.999808i \(0.506232\pi\)
\(282\) 0 0
\(283\) −62161.2 −0.0461374 −0.0230687 0.999734i \(-0.507344\pi\)
−0.0230687 + 0.999734i \(0.507344\pi\)
\(284\) 0 0
\(285\) 6.11225e6 4.45748
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −1.32899e6 −0.936001
\(290\) 0 0
\(291\) −1604.55 −0.00111076
\(292\) 0 0
\(293\) 2.00409e6 1.36379 0.681896 0.731449i \(-0.261156\pi\)
0.681896 + 0.731449i \(0.261156\pi\)
\(294\) 0 0
\(295\) −938626. −0.627968
\(296\) 0 0
\(297\) 1.42681e6 0.938589
\(298\) 0 0
\(299\) 1.45097e6 0.938598
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 1.80234e6 1.12780
\(304\) 0 0
\(305\) −1.87602e6 −1.15475
\(306\) 0 0
\(307\) −2.11066e6 −1.27812 −0.639061 0.769156i \(-0.720677\pi\)
−0.639061 + 0.769156i \(0.720677\pi\)
\(308\) 0 0
\(309\) 1.96378e6 1.17003
\(310\) 0 0
\(311\) −1.04343e6 −0.611733 −0.305867 0.952074i \(-0.598946\pi\)
−0.305867 + 0.952074i \(0.598946\pi\)
\(312\) 0 0
\(313\) −919919. −0.530748 −0.265374 0.964145i \(-0.585496\pi\)
−0.265374 + 0.964145i \(0.585496\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.95297e6 1.09156 0.545779 0.837929i \(-0.316234\pi\)
0.545779 + 0.837929i \(0.316234\pi\)
\(318\) 0 0
\(319\) 1.66867e6 0.918110
\(320\) 0 0
\(321\) −3.14221e6 −1.70205
\(322\) 0 0
\(323\) 877181. 0.467825
\(324\) 0 0
\(325\) 3.40603e6 1.78871
\(326\) 0 0
\(327\) 4.46816e6 2.31078
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −3.85038e6 −1.93167 −0.965836 0.259155i \(-0.916556\pi\)
−0.965836 + 0.259155i \(0.916556\pi\)
\(332\) 0 0
\(333\) 940466. 0.464764
\(334\) 0 0
\(335\) −609866. −0.296908
\(336\) 0 0
\(337\) 3.34682e6 1.60531 0.802653 0.596447i \(-0.203421\pi\)
0.802653 + 0.596447i \(0.203421\pi\)
\(338\) 0 0
\(339\) 6.41508e6 3.03182
\(340\) 0 0
\(341\) 421270. 0.196189
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −3.59070e6 −1.62417
\(346\) 0 0
\(347\) 1.20659e6 0.537942 0.268971 0.963148i \(-0.413316\pi\)
0.268971 + 0.963148i \(0.413316\pi\)
\(348\) 0 0
\(349\) 398849. 0.175285 0.0876426 0.996152i \(-0.472067\pi\)
0.0876426 + 0.996152i \(0.472067\pi\)
\(350\) 0 0
\(351\) 2.78811e6 1.20793
\(352\) 0 0
\(353\) 841946. 0.359623 0.179812 0.983701i \(-0.442451\pi\)
0.179812 + 0.983701i \(0.442451\pi\)
\(354\) 0 0
\(355\) 3.89929e6 1.64216
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.06994e6 0.438151 0.219075 0.975708i \(-0.429696\pi\)
0.219075 + 0.975708i \(0.429696\pi\)
\(360\) 0 0
\(361\) 5.99154e6 2.41975
\(362\) 0 0
\(363\) 686747. 0.273546
\(364\) 0 0
\(365\) −5.71809e6 −2.24657
\(366\) 0 0
\(367\) −3.33520e6 −1.29258 −0.646290 0.763092i \(-0.723680\pi\)
−0.646290 + 0.763092i \(0.723680\pi\)
\(368\) 0 0
\(369\) −4.98311e6 −1.90517
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −719121. −0.267627 −0.133813 0.991007i \(-0.542722\pi\)
−0.133813 + 0.991007i \(0.542722\pi\)
\(374\) 0 0
\(375\) −1.86487e6 −0.684810
\(376\) 0 0
\(377\) 3.26073e6 1.18157
\(378\) 0 0
\(379\) −1.33953e6 −0.479022 −0.239511 0.970894i \(-0.576987\pi\)
−0.239511 + 0.970894i \(0.576987\pi\)
\(380\) 0 0
\(381\) 1.77073e6 0.624942
\(382\) 0 0
\(383\) −4.24875e6 −1.48001 −0.740005 0.672601i \(-0.765177\pi\)
−0.740005 + 0.672601i \(0.765177\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −2.91893e6 −0.990710
\(388\) 0 0
\(389\) −1.80973e6 −0.606374 −0.303187 0.952931i \(-0.598051\pi\)
−0.303187 + 0.952931i \(0.598051\pi\)
\(390\) 0 0
\(391\) −515309. −0.170461
\(392\) 0 0
\(393\) −3.39871e6 −1.11002
\(394\) 0 0
\(395\) −5.90973e6 −1.90579
\(396\) 0 0
\(397\) 3.94167e6 1.25517 0.627587 0.778546i \(-0.284043\pi\)
0.627587 + 0.778546i \(0.284043\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 164541. 0.0510992 0.0255496 0.999674i \(-0.491866\pi\)
0.0255496 + 0.999674i \(0.491866\pi\)
\(402\) 0 0
\(403\) 823197. 0.252488
\(404\) 0 0
\(405\) 801536. 0.242820
\(406\) 0 0
\(407\) 1.08900e6 0.325867
\(408\) 0 0
\(409\) −2.39073e6 −0.706680 −0.353340 0.935495i \(-0.614954\pi\)
−0.353340 + 0.935495i \(0.614954\pi\)
\(410\) 0 0
\(411\) 3.58494e6 1.04683
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −330823. −0.0942920
\(416\) 0 0
\(417\) 5.41475e6 1.52489
\(418\) 0 0
\(419\) 3.45750e6 0.962114 0.481057 0.876689i \(-0.340253\pi\)
0.481057 + 0.876689i \(0.340253\pi\)
\(420\) 0 0
\(421\) −3.69055e6 −1.01481 −0.507406 0.861707i \(-0.669396\pi\)
−0.507406 + 0.861707i \(0.669396\pi\)
\(422\) 0 0
\(423\) 2.05909e6 0.559532
\(424\) 0 0
\(425\) −1.20965e6 −0.324853
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 9.16623e6 2.40463
\(430\) 0 0
\(431\) 5.26181e6 1.36440 0.682200 0.731166i \(-0.261023\pi\)
0.682200 + 0.731166i \(0.261023\pi\)
\(432\) 0 0
\(433\) −5.01353e6 −1.28506 −0.642530 0.766260i \(-0.722115\pi\)
−0.642530 + 0.766260i \(0.722115\pi\)
\(434\) 0 0
\(435\) −8.06930e6 −2.04462
\(436\) 0 0
\(437\) −4.97440e6 −1.24605
\(438\) 0 0
\(439\) −5.94160e6 −1.47144 −0.735720 0.677286i \(-0.763156\pi\)
−0.735720 + 0.677286i \(0.763156\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1.26333e6 0.305850 0.152925 0.988238i \(-0.451131\pi\)
0.152925 + 0.988238i \(0.451131\pi\)
\(444\) 0 0
\(445\) −4.47362e6 −1.07092
\(446\) 0 0
\(447\) 7.08762e6 1.67777
\(448\) 0 0
\(449\) 6.37580e6 1.49252 0.746258 0.665657i \(-0.231849\pi\)
0.746258 + 0.665657i \(0.231849\pi\)
\(450\) 0 0
\(451\) −5.77010e6 −1.33580
\(452\) 0 0
\(453\) −2.51296e6 −0.575361
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −1.04066e6 −0.233087 −0.116544 0.993186i \(-0.537181\pi\)
−0.116544 + 0.993186i \(0.537181\pi\)
\(458\) 0 0
\(459\) −990193. −0.219375
\(460\) 0 0
\(461\) −4.79707e6 −1.05129 −0.525647 0.850703i \(-0.676177\pi\)
−0.525647 + 0.850703i \(0.676177\pi\)
\(462\) 0 0
\(463\) −1.28428e6 −0.278424 −0.139212 0.990263i \(-0.544457\pi\)
−0.139212 + 0.990263i \(0.544457\pi\)
\(464\) 0 0
\(465\) −2.03716e6 −0.436911
\(466\) 0 0
\(467\) 1.08659e6 0.230554 0.115277 0.993333i \(-0.463224\pi\)
0.115277 + 0.993333i \(0.463224\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 6.75961e6 1.40401
\(472\) 0 0
\(473\) −3.37992e6 −0.694631
\(474\) 0 0
\(475\) −1.16770e7 −2.37464
\(476\) 0 0
\(477\) 8.57524e6 1.72564
\(478\) 0 0
\(479\) −1.29336e6 −0.257562 −0.128781 0.991673i \(-0.541106\pi\)
−0.128781 + 0.991673i \(0.541106\pi\)
\(480\) 0 0
\(481\) 2.12799e6 0.419379
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 5452.56 0.00105256
\(486\) 0 0
\(487\) −9.61626e6 −1.83732 −0.918658 0.395054i \(-0.870726\pi\)
−0.918658 + 0.395054i \(0.870726\pi\)
\(488\) 0 0
\(489\) 9.47682e6 1.79222
\(490\) 0 0
\(491\) −7.37274e6 −1.38015 −0.690074 0.723739i \(-0.742422\pi\)
−0.690074 + 0.723739i \(0.742422\pi\)
\(492\) 0 0
\(493\) −1.15804e6 −0.214589
\(494\) 0 0
\(495\) −1.37661e7 −2.52521
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −5.42014e6 −0.974449 −0.487224 0.873277i \(-0.661991\pi\)
−0.487224 + 0.873277i \(0.661991\pi\)
\(500\) 0 0
\(501\) −5.39342e6 −0.959998
\(502\) 0 0
\(503\) −410131. −0.0722774 −0.0361387 0.999347i \(-0.511506\pi\)
−0.0361387 + 0.999347i \(0.511506\pi\)
\(504\) 0 0
\(505\) −6.12467e6 −1.06870
\(506\) 0 0
\(507\) 8.68047e6 1.49977
\(508\) 0 0
\(509\) −5.12382e6 −0.876597 −0.438298 0.898830i \(-0.644419\pi\)
−0.438298 + 0.898830i \(0.644419\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −9.55856e6 −1.60361
\(514\) 0 0
\(515\) −6.67328e6 −1.10872
\(516\) 0 0
\(517\) 2.38429e6 0.392313
\(518\) 0 0
\(519\) 6.91667e6 1.12714
\(520\) 0 0
\(521\) 6.67402e6 1.07719 0.538596 0.842564i \(-0.318955\pi\)
0.538596 + 0.842564i \(0.318955\pi\)
\(522\) 0 0
\(523\) −9.40416e6 −1.50337 −0.751685 0.659522i \(-0.770759\pi\)
−0.751685 + 0.659522i \(0.770759\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −292357. −0.0458550
\(528\) 0 0
\(529\) −3.51408e6 −0.545975
\(530\) 0 0
\(531\) 4.16756e6 0.641425
\(532\) 0 0
\(533\) −1.12753e7 −1.71913
\(534\) 0 0
\(535\) 1.06778e7 1.61286
\(536\) 0 0
\(537\) −8.95436e6 −1.33998
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −4.60948e6 −0.677109 −0.338554 0.940947i \(-0.609938\pi\)
−0.338554 + 0.940947i \(0.609938\pi\)
\(542\) 0 0
\(543\) −7.70403e6 −1.12129
\(544\) 0 0
\(545\) −1.51836e7 −2.18969
\(546\) 0 0
\(547\) 31688.1 0.00452822 0.00226411 0.999997i \(-0.499279\pi\)
0.00226411 + 0.999997i \(0.499279\pi\)
\(548\) 0 0
\(549\) 8.32965e6 1.17949
\(550\) 0 0
\(551\) −1.11789e7 −1.56862
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −5.26612e6 −0.725702
\(556\) 0 0
\(557\) −1.08620e6 −0.148345 −0.0741725 0.997245i \(-0.523632\pi\)
−0.0741725 + 0.997245i \(0.523632\pi\)
\(558\) 0 0
\(559\) −6.60465e6 −0.893965
\(560\) 0 0
\(561\) −3.25537e6 −0.436710
\(562\) 0 0
\(563\) 7.56924e6 1.00642 0.503212 0.864163i \(-0.332151\pi\)
0.503212 + 0.864163i \(0.332151\pi\)
\(564\) 0 0
\(565\) −2.17996e7 −2.87294
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.45816e7 1.88809 0.944046 0.329814i \(-0.106986\pi\)
0.944046 + 0.329814i \(0.106986\pi\)
\(570\) 0 0
\(571\) 1.15216e7 1.47884 0.739419 0.673245i \(-0.235100\pi\)
0.739419 + 0.673245i \(0.235100\pi\)
\(572\) 0 0
\(573\) 2.38913e7 3.03986
\(574\) 0 0
\(575\) 6.85977e6 0.865247
\(576\) 0 0
\(577\) −1.53853e7 −1.92383 −0.961916 0.273347i \(-0.911869\pi\)
−0.961916 + 0.273347i \(0.911869\pi\)
\(578\) 0 0
\(579\) 1.27544e7 1.58112
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 9.92954e6 1.20992
\(584\) 0 0
\(585\) −2.69001e7 −3.24986
\(586\) 0 0
\(587\) 5.34856e6 0.640680 0.320340 0.947303i \(-0.396203\pi\)
0.320340 + 0.947303i \(0.396203\pi\)
\(588\) 0 0
\(589\) −2.82219e6 −0.335195
\(590\) 0 0
\(591\) −1.90973e7 −2.24907
\(592\) 0 0
\(593\) 5.19309e6 0.606441 0.303221 0.952920i \(-0.401938\pi\)
0.303221 + 0.952920i \(0.401938\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −2.59094e7 −2.97524
\(598\) 0 0
\(599\) 1.12929e7 1.28599 0.642994 0.765871i \(-0.277692\pi\)
0.642994 + 0.765871i \(0.277692\pi\)
\(600\) 0 0
\(601\) 3.49678e6 0.394895 0.197447 0.980313i \(-0.436735\pi\)
0.197447 + 0.980313i \(0.436735\pi\)
\(602\) 0 0
\(603\) 2.70785e6 0.303271
\(604\) 0 0
\(605\) −2.33369e6 −0.259211
\(606\) 0 0
\(607\) 8.43932e6 0.929685 0.464842 0.885393i \(-0.346111\pi\)
0.464842 + 0.885393i \(0.346111\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4.65910e6 0.504893
\(612\) 0 0
\(613\) 1.58823e7 1.70711 0.853557 0.520999i \(-0.174441\pi\)
0.853557 + 0.520999i \(0.174441\pi\)
\(614\) 0 0
\(615\) 2.79028e7 2.97482
\(616\) 0 0
\(617\) −1.68397e6 −0.178082 −0.0890412 0.996028i \(-0.528380\pi\)
−0.0890412 + 0.996028i \(0.528380\pi\)
\(618\) 0 0
\(619\) 1.45879e7 1.53026 0.765131 0.643875i \(-0.222674\pi\)
0.765131 + 0.643875i \(0.222674\pi\)
\(620\) 0 0
\(621\) 5.61527e6 0.584308
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −6.20293e6 −0.635180
\(626\) 0 0
\(627\) −3.14249e7 −3.19231
\(628\) 0 0
\(629\) −755752. −0.0761645
\(630\) 0 0
\(631\) 7.42899e6 0.742773 0.371387 0.928478i \(-0.378882\pi\)
0.371387 + 0.928478i \(0.378882\pi\)
\(632\) 0 0
\(633\) 2.02207e7 2.00580
\(634\) 0 0
\(635\) −6.01725e6 −0.592194
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −1.73131e7 −1.67735
\(640\) 0 0
\(641\) 1.05422e7 1.01342 0.506708 0.862118i \(-0.330862\pi\)
0.506708 + 0.862118i \(0.330862\pi\)
\(642\) 0 0
\(643\) −8.53482e6 −0.814080 −0.407040 0.913410i \(-0.633439\pi\)
−0.407040 + 0.913410i \(0.633439\pi\)
\(644\) 0 0
\(645\) 1.63445e7 1.54694
\(646\) 0 0
\(647\) −9.49608e6 −0.891834 −0.445917 0.895074i \(-0.647122\pi\)
−0.445917 + 0.895074i \(0.647122\pi\)
\(648\) 0 0
\(649\) 4.82575e6 0.449731
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 6.63052e6 0.608506 0.304253 0.952591i \(-0.401593\pi\)
0.304253 + 0.952591i \(0.401593\pi\)
\(654\) 0 0
\(655\) 1.15494e7 1.05186
\(656\) 0 0
\(657\) 2.53887e7 2.29471
\(658\) 0 0
\(659\) −7.54914e6 −0.677149 −0.338574 0.940940i \(-0.609945\pi\)
−0.338574 + 0.940940i \(0.609945\pi\)
\(660\) 0 0
\(661\) −1.86067e6 −0.165641 −0.0828203 0.996564i \(-0.526393\pi\)
−0.0828203 + 0.996564i \(0.526393\pi\)
\(662\) 0 0
\(663\) −6.36127e6 −0.562030
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 6.56713e6 0.571559
\(668\) 0 0
\(669\) 5.93878e6 0.513017
\(670\) 0 0
\(671\) 9.64516e6 0.826996
\(672\) 0 0
\(673\) −1.14956e6 −0.0978350 −0.0489175 0.998803i \(-0.515577\pi\)
−0.0489175 + 0.998803i \(0.515577\pi\)
\(674\) 0 0
\(675\) 1.31814e7 1.11353
\(676\) 0 0
\(677\) 2.01579e6 0.169034 0.0845169 0.996422i \(-0.473065\pi\)
0.0845169 + 0.996422i \(0.473065\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 1.45502e7 1.20227
\(682\) 0 0
\(683\) 7.46429e6 0.612261 0.306131 0.951989i \(-0.400966\pi\)
0.306131 + 0.951989i \(0.400966\pi\)
\(684\) 0 0
\(685\) −1.21822e7 −0.991975
\(686\) 0 0
\(687\) −3.69317e7 −2.98543
\(688\) 0 0
\(689\) 1.94032e7 1.55713
\(690\) 0 0
\(691\) −1.88570e7 −1.50237 −0.751187 0.660090i \(-0.770518\pi\)
−0.751187 + 0.660090i \(0.770518\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.84003e7 −1.44498
\(696\) 0 0
\(697\) 4.00439e6 0.312216
\(698\) 0 0
\(699\) −2.78631e7 −2.15693
\(700\) 0 0
\(701\) −1.66789e7 −1.28195 −0.640976 0.767561i \(-0.721470\pi\)
−0.640976 + 0.767561i \(0.721470\pi\)
\(702\) 0 0
\(703\) −7.29545e6 −0.556755
\(704\) 0 0
\(705\) −1.15299e7 −0.873677
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −1.59824e7 −1.19406 −0.597031 0.802218i \(-0.703653\pi\)
−0.597031 + 0.802218i \(0.703653\pi\)
\(710\) 0 0
\(711\) 2.62396e7 1.94663
\(712\) 0 0
\(713\) 1.65792e6 0.122135
\(714\) 0 0
\(715\) −3.11485e7 −2.27862
\(716\) 0 0
\(717\) −342027. −0.0248463
\(718\) 0 0
\(719\) 1.17813e7 0.849909 0.424954 0.905215i \(-0.360290\pi\)
0.424954 + 0.905215i \(0.360290\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −3.72623e7 −2.65109
\(724\) 0 0
\(725\) 1.54158e7 1.08923
\(726\) 0 0
\(727\) 1.26528e7 0.887870 0.443935 0.896059i \(-0.353582\pi\)
0.443935 + 0.896059i \(0.353582\pi\)
\(728\) 0 0
\(729\) −2.34040e7 −1.63107
\(730\) 0 0
\(731\) 2.34563e6 0.162355
\(732\) 0 0
\(733\) −5.34339e6 −0.367330 −0.183665 0.982989i \(-0.558796\pi\)
−0.183665 + 0.982989i \(0.558796\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3.13550e6 0.212637
\(738\) 0 0
\(739\) 4.22491e6 0.284581 0.142290 0.989825i \(-0.454553\pi\)
0.142290 + 0.989825i \(0.454553\pi\)
\(740\) 0 0
\(741\) −6.14068e7 −4.10839
\(742\) 0 0
\(743\) −1.70227e7 −1.13124 −0.565622 0.824665i \(-0.691364\pi\)
−0.565622 + 0.824665i \(0.691364\pi\)
\(744\) 0 0
\(745\) −2.40850e7 −1.58985
\(746\) 0 0
\(747\) 1.46887e6 0.0963126
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 2.39433e6 0.154912 0.0774560 0.996996i \(-0.475320\pi\)
0.0774560 + 0.996996i \(0.475320\pi\)
\(752\) 0 0
\(753\) 2.40377e7 1.54492
\(754\) 0 0
\(755\) 8.53950e6 0.545211
\(756\) 0 0
\(757\) 3.82315e6 0.242483 0.121242 0.992623i \(-0.461312\pi\)
0.121242 + 0.992623i \(0.461312\pi\)
\(758\) 0 0
\(759\) 1.84608e7 1.16318
\(760\) 0 0
\(761\) 1.83640e7 1.14949 0.574745 0.818333i \(-0.305101\pi\)
0.574745 + 0.818333i \(0.305101\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 9.55352e6 0.590215
\(766\) 0 0
\(767\) 9.42992e6 0.578788
\(768\) 0 0
\(769\) 1.24704e7 0.760441 0.380220 0.924896i \(-0.375848\pi\)
0.380220 + 0.924896i \(0.375848\pi\)
\(770\) 0 0
\(771\) 4.26347e7 2.58302
\(772\) 0 0
\(773\) 1.65412e7 0.995679 0.497840 0.867269i \(-0.334127\pi\)
0.497840 + 0.867269i \(0.334127\pi\)
\(774\) 0 0
\(775\) 3.89185e6 0.232756
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.86553e7 2.28226
\(780\) 0 0
\(781\) −2.00474e7 −1.17606
\(782\) 0 0
\(783\) 1.26191e7 0.735569
\(784\) 0 0
\(785\) −2.29704e7 −1.33043
\(786\) 0 0
\(787\) −7.66364e6 −0.441061 −0.220530 0.975380i \(-0.570779\pi\)
−0.220530 + 0.975380i \(0.570779\pi\)
\(788\) 0 0
\(789\) 1.18838e7 0.679613
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 1.88475e7 1.06431
\(794\) 0 0
\(795\) −4.80169e7 −2.69449
\(796\) 0 0
\(797\) −8.13707e6 −0.453756 −0.226878 0.973923i \(-0.572852\pi\)
−0.226878 + 0.973923i \(0.572852\pi\)
\(798\) 0 0
\(799\) −1.65467e6 −0.0916949
\(800\) 0 0
\(801\) 1.98631e7 1.09387
\(802\) 0 0
\(803\) 2.93984e7 1.60892
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −1.79031e7 −0.967709
\(808\) 0 0
\(809\) 1.39535e7 0.749569 0.374784 0.927112i \(-0.377717\pi\)
0.374784 + 0.927112i \(0.377717\pi\)
\(810\) 0 0
\(811\) −1.92110e7 −1.02564 −0.512822 0.858495i \(-0.671400\pi\)
−0.512822 + 0.858495i \(0.671400\pi\)
\(812\) 0 0
\(813\) 9.48784e6 0.503432
\(814\) 0 0
\(815\) −3.22039e7 −1.69830
\(816\) 0 0
\(817\) 2.26429e7 1.18680
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −3.37694e7 −1.74850 −0.874249 0.485477i \(-0.838646\pi\)
−0.874249 + 0.485477i \(0.838646\pi\)
\(822\) 0 0
\(823\) 1.27140e7 0.654311 0.327156 0.944971i \(-0.393910\pi\)
0.327156 + 0.944971i \(0.393910\pi\)
\(824\) 0 0
\(825\) 4.33354e7 2.21670
\(826\) 0 0
\(827\) −2.85821e7 −1.45322 −0.726608 0.687053i \(-0.758904\pi\)
−0.726608 + 0.687053i \(0.758904\pi\)
\(828\) 0 0
\(829\) −8.04571e6 −0.406610 −0.203305 0.979115i \(-0.565168\pi\)
−0.203305 + 0.979115i \(0.565168\pi\)
\(830\) 0 0
\(831\) 1.79647e7 0.902440
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 1.83278e7 0.909692
\(836\) 0 0
\(837\) 3.18579e6 0.157182
\(838\) 0 0
\(839\) −4.26854e6 −0.209351 −0.104675 0.994506i \(-0.533380\pi\)
−0.104675 + 0.994506i \(0.533380\pi\)
\(840\) 0 0
\(841\) −5.75299e6 −0.280481
\(842\) 0 0
\(843\) −1.28855e6 −0.0624502
\(844\) 0 0
\(845\) −2.94978e7 −1.42118
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −1.54546e6 −0.0735847
\(850\) 0 0
\(851\) 4.28578e6 0.202865
\(852\) 0 0
\(853\) 6.37238e6 0.299867 0.149934 0.988696i \(-0.452094\pi\)
0.149934 + 0.988696i \(0.452094\pi\)
\(854\) 0 0
\(855\) 9.22224e7 4.31441
\(856\) 0 0
\(857\) −2.06675e7 −0.961251 −0.480625 0.876926i \(-0.659590\pi\)
−0.480625 + 0.876926i \(0.659590\pi\)
\(858\) 0 0
\(859\) 2.10547e7 0.973569 0.486784 0.873522i \(-0.338170\pi\)
0.486784 + 0.873522i \(0.338170\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 2.07059e7 0.946384 0.473192 0.880959i \(-0.343102\pi\)
0.473192 + 0.880959i \(0.343102\pi\)
\(864\) 0 0
\(865\) −2.35041e7 −1.06808
\(866\) 0 0
\(867\) −3.30414e7 −1.49283
\(868\) 0 0
\(869\) 3.03836e7 1.36487
\(870\) 0 0
\(871\) 6.12703e6 0.273656
\(872\) 0 0
\(873\) −24209.7 −0.00107511
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 8.47616e6 0.372135 0.186067 0.982537i \(-0.440426\pi\)
0.186067 + 0.982537i \(0.440426\pi\)
\(878\) 0 0
\(879\) 4.98258e7 2.17511
\(880\) 0 0
\(881\) 652358. 0.0283169 0.0141585 0.999900i \(-0.495493\pi\)
0.0141585 + 0.999900i \(0.495493\pi\)
\(882\) 0 0
\(883\) −1.20036e7 −0.518097 −0.259049 0.965864i \(-0.583409\pi\)
−0.259049 + 0.965864i \(0.583409\pi\)
\(884\) 0 0
\(885\) −2.33362e7 −1.00155
\(886\) 0 0
\(887\) −3.03300e6 −0.129439 −0.0647193 0.997904i \(-0.520615\pi\)
−0.0647193 + 0.997904i \(0.520615\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −4.12093e6 −0.173900
\(892\) 0 0
\(893\) −1.59729e7 −0.670280
\(894\) 0 0
\(895\) 3.04285e7 1.26976
\(896\) 0 0
\(897\) 3.60740e7 1.49697
\(898\) 0 0
\(899\) 3.72581e6 0.153752
\(900\) 0 0
\(901\) −6.89100e6 −0.282794
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.61797e7 1.06253
\(906\) 0 0
\(907\) −3.95629e7 −1.59687 −0.798436 0.602079i \(-0.794339\pi\)
−0.798436 + 0.602079i \(0.794339\pi\)
\(908\) 0 0
\(909\) 2.71939e7 1.09160
\(910\) 0 0
\(911\) 8.51152e6 0.339790 0.169895 0.985462i \(-0.445657\pi\)
0.169895 + 0.985462i \(0.445657\pi\)
\(912\) 0 0
\(913\) 1.70086e6 0.0675290
\(914\) 0 0
\(915\) −4.66417e7 −1.84171
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 5.51885e6 0.215556 0.107778 0.994175i \(-0.465626\pi\)
0.107778 + 0.994175i \(0.465626\pi\)
\(920\) 0 0
\(921\) −5.24754e7 −2.03848
\(922\) 0 0
\(923\) −3.91743e7 −1.51355
\(924\) 0 0
\(925\) 1.00605e7 0.386605
\(926\) 0 0
\(927\) 2.96298e7 1.13248
\(928\) 0 0
\(929\) −4.13526e7 −1.57204 −0.786019 0.618202i \(-0.787861\pi\)
−0.786019 + 0.618202i \(0.787861\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −2.59418e7 −0.975655
\(934\) 0 0
\(935\) 1.10623e7 0.413826
\(936\) 0 0
\(937\) 1.56526e7 0.582421 0.291210 0.956659i \(-0.405942\pi\)
0.291210 + 0.956659i \(0.405942\pi\)
\(938\) 0 0
\(939\) −2.28711e7 −0.846492
\(940\) 0 0
\(941\) −3.34176e6 −0.123027 −0.0615137 0.998106i \(-0.519593\pi\)
−0.0615137 + 0.998106i \(0.519593\pi\)
\(942\) 0 0
\(943\) −2.27085e7 −0.831588
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.50563e7 −0.545562 −0.272781 0.962076i \(-0.587943\pi\)
−0.272781 + 0.962076i \(0.587943\pi\)
\(948\) 0 0
\(949\) 5.74469e7 2.07062
\(950\) 0 0
\(951\) 4.85548e7 1.74093
\(952\) 0 0
\(953\) 1.17556e7 0.419289 0.209644 0.977778i \(-0.432769\pi\)
0.209644 + 0.977778i \(0.432769\pi\)
\(954\) 0 0
\(955\) −8.11868e7 −2.88056
\(956\) 0 0
\(957\) 4.14866e7 1.46429
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −2.76885e7 −0.967145
\(962\) 0 0
\(963\) −4.74101e7 −1.64742
\(964\) 0 0
\(965\) −4.33417e7 −1.49826
\(966\) 0 0
\(967\) 3.35850e7 1.15499 0.577496 0.816394i \(-0.304030\pi\)
0.577496 + 0.816394i \(0.304030\pi\)
\(968\) 0 0
\(969\) 2.18085e7 0.746134
\(970\) 0 0
\(971\) −2.91560e7 −0.992384 −0.496192 0.868213i \(-0.665269\pi\)
−0.496192 + 0.868213i \(0.665269\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 8.46810e7 2.85282
\(976\) 0 0
\(977\) −3.52569e7 −1.18170 −0.590850 0.806782i \(-0.701207\pi\)
−0.590850 + 0.806782i \(0.701207\pi\)
\(978\) 0 0
\(979\) 2.30002e7 0.766963
\(980\) 0 0
\(981\) 6.74161e7 2.23661
\(982\) 0 0
\(983\) 3.61304e7 1.19258 0.596291 0.802768i \(-0.296640\pi\)
0.596291 + 0.802768i \(0.296640\pi\)
\(984\) 0 0
\(985\) 6.48961e7 2.13122
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.33018e7 −0.432434
\(990\) 0 0
\(991\) 2.32916e6 0.0753383 0.0376692 0.999290i \(-0.488007\pi\)
0.0376692 + 0.999290i \(0.488007\pi\)
\(992\) 0 0
\(993\) −9.57283e7 −3.08083
\(994\) 0 0
\(995\) 8.80449e7 2.81933
\(996\) 0 0
\(997\) −3.06550e7 −0.976704 −0.488352 0.872647i \(-0.662402\pi\)
−0.488352 + 0.872647i \(0.662402\pi\)
\(998\) 0 0
\(999\) 8.23536e6 0.261077
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.6.a.bg.1.4 4
4.3 odd 2 98.6.a.i.1.1 4
7.6 odd 2 inner 784.6.a.bg.1.1 4
12.11 even 2 882.6.a.bv.1.4 4
28.3 even 6 98.6.c.i.79.1 8
28.11 odd 6 98.6.c.i.79.4 8
28.19 even 6 98.6.c.i.67.1 8
28.23 odd 6 98.6.c.i.67.4 8
28.27 even 2 98.6.a.i.1.4 yes 4
84.83 odd 2 882.6.a.bv.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
98.6.a.i.1.1 4 4.3 odd 2
98.6.a.i.1.4 yes 4 28.27 even 2
98.6.c.i.67.1 8 28.19 even 6
98.6.c.i.67.4 8 28.23 odd 6
98.6.c.i.79.1 8 28.3 even 6
98.6.c.i.79.4 8 28.11 odd 6
784.6.a.bg.1.1 4 7.6 odd 2 inner
784.6.a.bg.1.4 4 1.1 even 1 trivial
882.6.a.bv.1.1 4 84.83 odd 2
882.6.a.bv.1.4 4 12.11 even 2