Properties

Label 7840.2.a.bc.1.1
Level $7840$
Weight $2$
Character 7840.1
Self dual yes
Analytic conductor $62.603$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7840,2,Mod(1,7840)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7840, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7840.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7840 = 2^{5} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7840.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.6027151847\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1120)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.56155\) of defining polynomial
Character \(\chi\) \(=\) 7840.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.56155 q^{3} -1.00000 q^{5} +3.56155 q^{9} +2.56155 q^{11} +0.561553 q^{13} +2.56155 q^{15} -4.56155 q^{17} +1.00000 q^{25} -1.43845 q^{27} -5.68466 q^{29} -5.12311 q^{31} -6.56155 q^{33} +7.12311 q^{37} -1.43845 q^{39} -2.00000 q^{41} +4.00000 q^{43} -3.56155 q^{45} +11.6847 q^{47} +11.6847 q^{51} +4.87689 q^{53} -2.56155 q^{55} +10.2462 q^{59} +2.00000 q^{61} -0.561553 q^{65} -6.24621 q^{67} -4.00000 q^{71} -16.2462 q^{73} -2.56155 q^{75} -12.8078 q^{79} -7.00000 q^{81} +6.24621 q^{83} +4.56155 q^{85} +14.5616 q^{87} -12.2462 q^{89} +13.1231 q^{93} +15.9309 q^{97} +9.12311 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} - 2 q^{5} + 3 q^{9} + q^{11} - 3 q^{13} + q^{15} - 5 q^{17} + 2 q^{25} - 7 q^{27} + q^{29} - 2 q^{31} - 9 q^{33} + 6 q^{37} - 7 q^{39} - 4 q^{41} + 8 q^{43} - 3 q^{45} + 11 q^{47} + 11 q^{51}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.56155 −1.47891 −0.739457 0.673204i \(-0.764917\pi\)
−0.739457 + 0.673204i \(0.764917\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 3.56155 1.18718
\(10\) 0 0
\(11\) 2.56155 0.772337 0.386169 0.922428i \(-0.373798\pi\)
0.386169 + 0.922428i \(0.373798\pi\)
\(12\) 0 0
\(13\) 0.561553 0.155747 0.0778734 0.996963i \(-0.475187\pi\)
0.0778734 + 0.996963i \(0.475187\pi\)
\(14\) 0 0
\(15\) 2.56155 0.661390
\(16\) 0 0
\(17\) −4.56155 −1.10634 −0.553170 0.833069i \(-0.686582\pi\)
−0.553170 + 0.833069i \(0.686582\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −1.43845 −0.276829
\(28\) 0 0
\(29\) −5.68466 −1.05561 −0.527807 0.849364i \(-0.676986\pi\)
−0.527807 + 0.849364i \(0.676986\pi\)
\(30\) 0 0
\(31\) −5.12311 −0.920137 −0.460068 0.887883i \(-0.652175\pi\)
−0.460068 + 0.887883i \(0.652175\pi\)
\(32\) 0 0
\(33\) −6.56155 −1.14222
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 7.12311 1.17103 0.585516 0.810661i \(-0.300892\pi\)
0.585516 + 0.810661i \(0.300892\pi\)
\(38\) 0 0
\(39\) −1.43845 −0.230336
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) −3.56155 −0.530925
\(46\) 0 0
\(47\) 11.6847 1.70438 0.852191 0.523230i \(-0.175273\pi\)
0.852191 + 0.523230i \(0.175273\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 11.6847 1.63618
\(52\) 0 0
\(53\) 4.87689 0.669893 0.334946 0.942237i \(-0.391282\pi\)
0.334946 + 0.942237i \(0.391282\pi\)
\(54\) 0 0
\(55\) −2.56155 −0.345400
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 10.2462 1.33394 0.666972 0.745083i \(-0.267590\pi\)
0.666972 + 0.745083i \(0.267590\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.561553 −0.0696521
\(66\) 0 0
\(67\) −6.24621 −0.763096 −0.381548 0.924349i \(-0.624609\pi\)
−0.381548 + 0.924349i \(0.624609\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −4.00000 −0.474713 −0.237356 0.971423i \(-0.576281\pi\)
−0.237356 + 0.971423i \(0.576281\pi\)
\(72\) 0 0
\(73\) −16.2462 −1.90148 −0.950738 0.309997i \(-0.899672\pi\)
−0.950738 + 0.309997i \(0.899672\pi\)
\(74\) 0 0
\(75\) −2.56155 −0.295783
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −12.8078 −1.44099 −0.720493 0.693462i \(-0.756084\pi\)
−0.720493 + 0.693462i \(0.756084\pi\)
\(80\) 0 0
\(81\) −7.00000 −0.777778
\(82\) 0 0
\(83\) 6.24621 0.685611 0.342805 0.939406i \(-0.388623\pi\)
0.342805 + 0.939406i \(0.388623\pi\)
\(84\) 0 0
\(85\) 4.56155 0.494770
\(86\) 0 0
\(87\) 14.5616 1.56116
\(88\) 0 0
\(89\) −12.2462 −1.29810 −0.649048 0.760748i \(-0.724833\pi\)
−0.649048 + 0.760748i \(0.724833\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 13.1231 1.36080
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 15.9309 1.61753 0.808767 0.588129i \(-0.200135\pi\)
0.808767 + 0.588129i \(0.200135\pi\)
\(98\) 0 0
\(99\) 9.12311 0.916907
\(100\) 0 0
\(101\) −13.3693 −1.33030 −0.665148 0.746711i \(-0.731632\pi\)
−0.665148 + 0.746711i \(0.731632\pi\)
\(102\) 0 0
\(103\) 19.6847 1.93959 0.969794 0.243927i \(-0.0784358\pi\)
0.969794 + 0.243927i \(0.0784358\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.87689 0.664814 0.332407 0.943136i \(-0.392139\pi\)
0.332407 + 0.943136i \(0.392139\pi\)
\(108\) 0 0
\(109\) −10.8078 −1.03520 −0.517598 0.855624i \(-0.673174\pi\)
−0.517598 + 0.855624i \(0.673174\pi\)
\(110\) 0 0
\(111\) −18.2462 −1.73185
\(112\) 0 0
\(113\) −5.36932 −0.505103 −0.252551 0.967583i \(-0.581270\pi\)
−0.252551 + 0.967583i \(0.581270\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2.00000 0.184900
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −4.43845 −0.403495
\(122\) 0 0
\(123\) 5.12311 0.461935
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −10.2462 −0.909204 −0.454602 0.890695i \(-0.650219\pi\)
−0.454602 + 0.890695i \(0.650219\pi\)
\(128\) 0 0
\(129\) −10.2462 −0.902129
\(130\) 0 0
\(131\) −2.24621 −0.196252 −0.0981262 0.995174i \(-0.531285\pi\)
−0.0981262 + 0.995174i \(0.531285\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 1.43845 0.123802
\(136\) 0 0
\(137\) −16.2462 −1.38801 −0.694004 0.719971i \(-0.744155\pi\)
−0.694004 + 0.719971i \(0.744155\pi\)
\(138\) 0 0
\(139\) −10.8769 −0.922566 −0.461283 0.887253i \(-0.652611\pi\)
−0.461283 + 0.887253i \(0.652611\pi\)
\(140\) 0 0
\(141\) −29.9309 −2.52063
\(142\) 0 0
\(143\) 1.43845 0.120289
\(144\) 0 0
\(145\) 5.68466 0.472085
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 8.24621 0.675556 0.337778 0.941226i \(-0.390325\pi\)
0.337778 + 0.941226i \(0.390325\pi\)
\(150\) 0 0
\(151\) −0.315342 −0.0256621 −0.0128311 0.999918i \(-0.504084\pi\)
−0.0128311 + 0.999918i \(0.504084\pi\)
\(152\) 0 0
\(153\) −16.2462 −1.31343
\(154\) 0 0
\(155\) 5.12311 0.411498
\(156\) 0 0
\(157\) −10.4924 −0.837386 −0.418693 0.908128i \(-0.637512\pi\)
−0.418693 + 0.908128i \(0.637512\pi\)
\(158\) 0 0
\(159\) −12.4924 −0.990714
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 17.1231 1.34119 0.670593 0.741826i \(-0.266040\pi\)
0.670593 + 0.741826i \(0.266040\pi\)
\(164\) 0 0
\(165\) 6.56155 0.510816
\(166\) 0 0
\(167\) −8.80776 −0.681565 −0.340783 0.940142i \(-0.610692\pi\)
−0.340783 + 0.940142i \(0.610692\pi\)
\(168\) 0 0
\(169\) −12.6847 −0.975743
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −12.5616 −0.955037 −0.477519 0.878622i \(-0.658464\pi\)
−0.477519 + 0.878622i \(0.658464\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −26.2462 −1.97279
\(178\) 0 0
\(179\) −14.2462 −1.06481 −0.532406 0.846489i \(-0.678712\pi\)
−0.532406 + 0.846489i \(0.678712\pi\)
\(180\) 0 0
\(181\) 12.8769 0.957132 0.478566 0.878052i \(-0.341157\pi\)
0.478566 + 0.878052i \(0.341157\pi\)
\(182\) 0 0
\(183\) −5.12311 −0.378711
\(184\) 0 0
\(185\) −7.12311 −0.523701
\(186\) 0 0
\(187\) −11.6847 −0.854467
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 26.5616 1.92193 0.960963 0.276676i \(-0.0892329\pi\)
0.960963 + 0.276676i \(0.0892329\pi\)
\(192\) 0 0
\(193\) −16.2462 −1.16943 −0.584714 0.811240i \(-0.698793\pi\)
−0.584714 + 0.811240i \(0.698793\pi\)
\(194\) 0 0
\(195\) 1.43845 0.103009
\(196\) 0 0
\(197\) 24.7386 1.76255 0.881277 0.472599i \(-0.156684\pi\)
0.881277 + 0.472599i \(0.156684\pi\)
\(198\) 0 0
\(199\) 16.0000 1.13421 0.567105 0.823646i \(-0.308063\pi\)
0.567105 + 0.823646i \(0.308063\pi\)
\(200\) 0 0
\(201\) 16.0000 1.12855
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 2.00000 0.139686
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −10.5616 −0.727087 −0.363544 0.931577i \(-0.618433\pi\)
−0.363544 + 0.931577i \(0.618433\pi\)
\(212\) 0 0
\(213\) 10.2462 0.702059
\(214\) 0 0
\(215\) −4.00000 −0.272798
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 41.6155 2.81212
\(220\) 0 0
\(221\) −2.56155 −0.172309
\(222\) 0 0
\(223\) −16.8078 −1.12553 −0.562766 0.826617i \(-0.690263\pi\)
−0.562766 + 0.826617i \(0.690263\pi\)
\(224\) 0 0
\(225\) 3.56155 0.237437
\(226\) 0 0
\(227\) 13.4384 0.891941 0.445971 0.895048i \(-0.352859\pi\)
0.445971 + 0.895048i \(0.352859\pi\)
\(228\) 0 0
\(229\) −0.246211 −0.0162701 −0.00813505 0.999967i \(-0.502589\pi\)
−0.00813505 + 0.999967i \(0.502589\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 25.3693 1.66200 0.831000 0.556273i \(-0.187769\pi\)
0.831000 + 0.556273i \(0.187769\pi\)
\(234\) 0 0
\(235\) −11.6847 −0.762223
\(236\) 0 0
\(237\) 32.8078 2.13109
\(238\) 0 0
\(239\) −4.80776 −0.310988 −0.155494 0.987837i \(-0.549697\pi\)
−0.155494 + 0.987837i \(0.549697\pi\)
\(240\) 0 0
\(241\) 19.1231 1.23183 0.615914 0.787814i \(-0.288787\pi\)
0.615914 + 0.787814i \(0.288787\pi\)
\(242\) 0 0
\(243\) 22.2462 1.42710
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −16.0000 −1.01396
\(250\) 0 0
\(251\) 23.3693 1.47506 0.737529 0.675315i \(-0.235992\pi\)
0.737529 + 0.675315i \(0.235992\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −11.6847 −0.731722
\(256\) 0 0
\(257\) 30.4924 1.90207 0.951033 0.309091i \(-0.100025\pi\)
0.951033 + 0.309091i \(0.100025\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −20.2462 −1.25321
\(262\) 0 0
\(263\) 7.36932 0.454412 0.227206 0.973847i \(-0.427041\pi\)
0.227206 + 0.973847i \(0.427041\pi\)
\(264\) 0 0
\(265\) −4.87689 −0.299585
\(266\) 0 0
\(267\) 31.3693 1.91977
\(268\) 0 0
\(269\) 22.4924 1.37139 0.685694 0.727890i \(-0.259499\pi\)
0.685694 + 0.727890i \(0.259499\pi\)
\(270\) 0 0
\(271\) 7.36932 0.447654 0.223827 0.974629i \(-0.428145\pi\)
0.223827 + 0.974629i \(0.428145\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.56155 0.154467
\(276\) 0 0
\(277\) 12.2462 0.735804 0.367902 0.929865i \(-0.380076\pi\)
0.367902 + 0.929865i \(0.380076\pi\)
\(278\) 0 0
\(279\) −18.2462 −1.09237
\(280\) 0 0
\(281\) −9.68466 −0.577738 −0.288869 0.957369i \(-0.593279\pi\)
−0.288869 + 0.957369i \(0.593279\pi\)
\(282\) 0 0
\(283\) 10.5616 0.627819 0.313910 0.949453i \(-0.398361\pi\)
0.313910 + 0.949453i \(0.398361\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 3.80776 0.223986
\(290\) 0 0
\(291\) −40.8078 −2.39219
\(292\) 0 0
\(293\) −2.31534 −0.135264 −0.0676318 0.997710i \(-0.521544\pi\)
−0.0676318 + 0.997710i \(0.521544\pi\)
\(294\) 0 0
\(295\) −10.2462 −0.596557
\(296\) 0 0
\(297\) −3.68466 −0.213806
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 34.2462 1.96739
\(304\) 0 0
\(305\) −2.00000 −0.114520
\(306\) 0 0
\(307\) −3.19224 −0.182191 −0.0910953 0.995842i \(-0.529037\pi\)
−0.0910953 + 0.995842i \(0.529037\pi\)
\(308\) 0 0
\(309\) −50.4233 −2.86848
\(310\) 0 0
\(311\) 4.49242 0.254742 0.127371 0.991855i \(-0.459346\pi\)
0.127371 + 0.991855i \(0.459346\pi\)
\(312\) 0 0
\(313\) −11.9309 −0.674373 −0.337186 0.941438i \(-0.609475\pi\)
−0.337186 + 0.941438i \(0.609475\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 10.0000 0.561656 0.280828 0.959758i \(-0.409391\pi\)
0.280828 + 0.959758i \(0.409391\pi\)
\(318\) 0 0
\(319\) −14.5616 −0.815290
\(320\) 0 0
\(321\) −17.6155 −0.983203
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0.561553 0.0311493
\(326\) 0 0
\(327\) 27.6847 1.53097
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −8.49242 −0.466786 −0.233393 0.972383i \(-0.574983\pi\)
−0.233393 + 0.972383i \(0.574983\pi\)
\(332\) 0 0
\(333\) 25.3693 1.39023
\(334\) 0 0
\(335\) 6.24621 0.341267
\(336\) 0 0
\(337\) 34.9848 1.90575 0.952873 0.303370i \(-0.0981117\pi\)
0.952873 + 0.303370i \(0.0981117\pi\)
\(338\) 0 0
\(339\) 13.7538 0.747003
\(340\) 0 0
\(341\) −13.1231 −0.710656
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 22.2462 1.19424 0.597120 0.802152i \(-0.296312\pi\)
0.597120 + 0.802152i \(0.296312\pi\)
\(348\) 0 0
\(349\) −5.36932 −0.287413 −0.143706 0.989620i \(-0.545902\pi\)
−0.143706 + 0.989620i \(0.545902\pi\)
\(350\) 0 0
\(351\) −0.807764 −0.0431153
\(352\) 0 0
\(353\) −18.3153 −0.974827 −0.487414 0.873171i \(-0.662060\pi\)
−0.487414 + 0.873171i \(0.662060\pi\)
\(354\) 0 0
\(355\) 4.00000 0.212298
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −18.7386 −0.988987 −0.494494 0.869181i \(-0.664646\pi\)
−0.494494 + 0.869181i \(0.664646\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 11.3693 0.596734
\(364\) 0 0
\(365\) 16.2462 0.850366
\(366\) 0 0
\(367\) −3.05398 −0.159416 −0.0797081 0.996818i \(-0.525399\pi\)
−0.0797081 + 0.996818i \(0.525399\pi\)
\(368\) 0 0
\(369\) −7.12311 −0.370814
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −26.4924 −1.37173 −0.685863 0.727731i \(-0.740575\pi\)
−0.685863 + 0.727731i \(0.740575\pi\)
\(374\) 0 0
\(375\) 2.56155 0.132278
\(376\) 0 0
\(377\) −3.19224 −0.164409
\(378\) 0 0
\(379\) 30.2462 1.55364 0.776822 0.629721i \(-0.216831\pi\)
0.776822 + 0.629721i \(0.216831\pi\)
\(380\) 0 0
\(381\) 26.2462 1.34463
\(382\) 0 0
\(383\) 2.24621 0.114776 0.0573880 0.998352i \(-0.481723\pi\)
0.0573880 + 0.998352i \(0.481723\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 14.2462 0.724176
\(388\) 0 0
\(389\) 23.4384 1.18838 0.594188 0.804326i \(-0.297473\pi\)
0.594188 + 0.804326i \(0.297473\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 5.75379 0.290240
\(394\) 0 0
\(395\) 12.8078 0.644429
\(396\) 0 0
\(397\) 18.1771 0.912282 0.456141 0.889908i \(-0.349231\pi\)
0.456141 + 0.889908i \(0.349231\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5.68466 0.283878 0.141939 0.989875i \(-0.454666\pi\)
0.141939 + 0.989875i \(0.454666\pi\)
\(402\) 0 0
\(403\) −2.87689 −0.143308
\(404\) 0 0
\(405\) 7.00000 0.347833
\(406\) 0 0
\(407\) 18.2462 0.904431
\(408\) 0 0
\(409\) 36.7386 1.81661 0.908304 0.418310i \(-0.137377\pi\)
0.908304 + 0.418310i \(0.137377\pi\)
\(410\) 0 0
\(411\) 41.6155 2.05274
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −6.24621 −0.306614
\(416\) 0 0
\(417\) 27.8617 1.36440
\(418\) 0 0
\(419\) 16.0000 0.781651 0.390826 0.920465i \(-0.372190\pi\)
0.390826 + 0.920465i \(0.372190\pi\)
\(420\) 0 0
\(421\) 3.93087 0.191579 0.0957894 0.995402i \(-0.469462\pi\)
0.0957894 + 0.995402i \(0.469462\pi\)
\(422\) 0 0
\(423\) 41.6155 2.02342
\(424\) 0 0
\(425\) −4.56155 −0.221268
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −3.68466 −0.177897
\(430\) 0 0
\(431\) 8.31534 0.400536 0.200268 0.979741i \(-0.435819\pi\)
0.200268 + 0.979741i \(0.435819\pi\)
\(432\) 0 0
\(433\) 4.24621 0.204060 0.102030 0.994781i \(-0.467466\pi\)
0.102030 + 0.994781i \(0.467466\pi\)
\(434\) 0 0
\(435\) −14.5616 −0.698173
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 2.87689 0.137307 0.0686533 0.997641i \(-0.478130\pi\)
0.0686533 + 0.997641i \(0.478130\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −8.49242 −0.403487 −0.201744 0.979438i \(-0.564661\pi\)
−0.201744 + 0.979438i \(0.564661\pi\)
\(444\) 0 0
\(445\) 12.2462 0.580526
\(446\) 0 0
\(447\) −21.1231 −0.999089
\(448\) 0 0
\(449\) 14.3153 0.675583 0.337791 0.941221i \(-0.390320\pi\)
0.337791 + 0.941221i \(0.390320\pi\)
\(450\) 0 0
\(451\) −5.12311 −0.241238
\(452\) 0 0
\(453\) 0.807764 0.0379521
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −18.4924 −0.865039 −0.432520 0.901625i \(-0.642375\pi\)
−0.432520 + 0.901625i \(0.642375\pi\)
\(458\) 0 0
\(459\) 6.56155 0.306267
\(460\) 0 0
\(461\) 9.36932 0.436373 0.218186 0.975907i \(-0.429986\pi\)
0.218186 + 0.975907i \(0.429986\pi\)
\(462\) 0 0
\(463\) 21.1231 0.981674 0.490837 0.871251i \(-0.336691\pi\)
0.490837 + 0.871251i \(0.336691\pi\)
\(464\) 0 0
\(465\) −13.1231 −0.608569
\(466\) 0 0
\(467\) −1.93087 −0.0893500 −0.0446750 0.999002i \(-0.514225\pi\)
−0.0446750 + 0.999002i \(0.514225\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 26.8769 1.23842
\(472\) 0 0
\(473\) 10.2462 0.471121
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 17.3693 0.795286
\(478\) 0 0
\(479\) −14.7386 −0.673425 −0.336713 0.941607i \(-0.609315\pi\)
−0.336713 + 0.941607i \(0.609315\pi\)
\(480\) 0 0
\(481\) 4.00000 0.182384
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −15.9309 −0.723384
\(486\) 0 0
\(487\) 9.61553 0.435721 0.217861 0.975980i \(-0.430092\pi\)
0.217861 + 0.975980i \(0.430092\pi\)
\(488\) 0 0
\(489\) −43.8617 −1.98350
\(490\) 0 0
\(491\) −6.06913 −0.273896 −0.136948 0.990578i \(-0.543729\pi\)
−0.136948 + 0.990578i \(0.543729\pi\)
\(492\) 0 0
\(493\) 25.9309 1.16787
\(494\) 0 0
\(495\) −9.12311 −0.410053
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 23.0540 1.03204 0.516019 0.856577i \(-0.327413\pi\)
0.516019 + 0.856577i \(0.327413\pi\)
\(500\) 0 0
\(501\) 22.5616 1.00798
\(502\) 0 0
\(503\) −32.1771 −1.43471 −0.717353 0.696710i \(-0.754646\pi\)
−0.717353 + 0.696710i \(0.754646\pi\)
\(504\) 0 0
\(505\) 13.3693 0.594927
\(506\) 0 0
\(507\) 32.4924 1.44304
\(508\) 0 0
\(509\) −44.7386 −1.98301 −0.991503 0.130087i \(-0.958474\pi\)
−0.991503 + 0.130087i \(0.958474\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −19.6847 −0.867410
\(516\) 0 0
\(517\) 29.9309 1.31636
\(518\) 0 0
\(519\) 32.1771 1.41242
\(520\) 0 0
\(521\) 17.8617 0.782537 0.391269 0.920277i \(-0.372036\pi\)
0.391269 + 0.920277i \(0.372036\pi\)
\(522\) 0 0
\(523\) −36.9848 −1.61723 −0.808617 0.588335i \(-0.799784\pi\)
−0.808617 + 0.588335i \(0.799784\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 23.3693 1.01798
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 36.4924 1.58364
\(532\) 0 0
\(533\) −1.12311 −0.0486471
\(534\) 0 0
\(535\) −6.87689 −0.297314
\(536\) 0 0
\(537\) 36.4924 1.57476
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 22.8078 0.980582 0.490291 0.871559i \(-0.336890\pi\)
0.490291 + 0.871559i \(0.336890\pi\)
\(542\) 0 0
\(543\) −32.9848 −1.41552
\(544\) 0 0
\(545\) 10.8078 0.462954
\(546\) 0 0
\(547\) 33.1231 1.41624 0.708121 0.706091i \(-0.249543\pi\)
0.708121 + 0.706091i \(0.249543\pi\)
\(548\) 0 0
\(549\) 7.12311 0.304007
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 18.2462 0.774509
\(556\) 0 0
\(557\) 4.87689 0.206641 0.103320 0.994648i \(-0.467053\pi\)
0.103320 + 0.994648i \(0.467053\pi\)
\(558\) 0 0
\(559\) 2.24621 0.0950046
\(560\) 0 0
\(561\) 29.9309 1.26368
\(562\) 0 0
\(563\) −28.9848 −1.22157 −0.610783 0.791798i \(-0.709145\pi\)
−0.610783 + 0.791798i \(0.709145\pi\)
\(564\) 0 0
\(565\) 5.36932 0.225889
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 15.7538 0.660433 0.330217 0.943905i \(-0.392878\pi\)
0.330217 + 0.943905i \(0.392878\pi\)
\(570\) 0 0
\(571\) −7.50758 −0.314182 −0.157091 0.987584i \(-0.550212\pi\)
−0.157091 + 0.987584i \(0.550212\pi\)
\(572\) 0 0
\(573\) −68.0388 −2.84236
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −13.1922 −0.549200 −0.274600 0.961559i \(-0.588545\pi\)
−0.274600 + 0.961559i \(0.588545\pi\)
\(578\) 0 0
\(579\) 41.6155 1.72948
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 12.4924 0.517383
\(584\) 0 0
\(585\) −2.00000 −0.0826898
\(586\) 0 0
\(587\) −32.4924 −1.34111 −0.670553 0.741862i \(-0.733943\pi\)
−0.670553 + 0.741862i \(0.733943\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −63.3693 −2.60667
\(592\) 0 0
\(593\) −17.6847 −0.726222 −0.363111 0.931746i \(-0.618285\pi\)
−0.363111 + 0.931746i \(0.618285\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −40.9848 −1.67740
\(598\) 0 0
\(599\) 44.8078 1.83080 0.915398 0.402550i \(-0.131876\pi\)
0.915398 + 0.402550i \(0.131876\pi\)
\(600\) 0 0
\(601\) 2.49242 0.101668 0.0508340 0.998707i \(-0.483812\pi\)
0.0508340 + 0.998707i \(0.483812\pi\)
\(602\) 0 0
\(603\) −22.2462 −0.905936
\(604\) 0 0
\(605\) 4.43845 0.180449
\(606\) 0 0
\(607\) 4.31534 0.175154 0.0875772 0.996158i \(-0.472088\pi\)
0.0875772 + 0.996158i \(0.472088\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 6.56155 0.265452
\(612\) 0 0
\(613\) 26.0000 1.05013 0.525065 0.851062i \(-0.324041\pi\)
0.525065 + 0.851062i \(0.324041\pi\)
\(614\) 0 0
\(615\) −5.12311 −0.206584
\(616\) 0 0
\(617\) 42.9848 1.73050 0.865252 0.501337i \(-0.167158\pi\)
0.865252 + 0.501337i \(0.167158\pi\)
\(618\) 0 0
\(619\) 32.9848 1.32577 0.662886 0.748720i \(-0.269331\pi\)
0.662886 + 0.748720i \(0.269331\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −32.4924 −1.29556
\(630\) 0 0
\(631\) 12.8078 0.509869 0.254935 0.966958i \(-0.417946\pi\)
0.254935 + 0.966958i \(0.417946\pi\)
\(632\) 0 0
\(633\) 27.0540 1.07530
\(634\) 0 0
\(635\) 10.2462 0.406608
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −14.2462 −0.563571
\(640\) 0 0
\(641\) 12.2462 0.483696 0.241848 0.970314i \(-0.422246\pi\)
0.241848 + 0.970314i \(0.422246\pi\)
\(642\) 0 0
\(643\) −10.5616 −0.416507 −0.208253 0.978075i \(-0.566778\pi\)
−0.208253 + 0.978075i \(0.566778\pi\)
\(644\) 0 0
\(645\) 10.2462 0.403444
\(646\) 0 0
\(647\) 50.2462 1.97538 0.987691 0.156416i \(-0.0499942\pi\)
0.987691 + 0.156416i \(0.0499942\pi\)
\(648\) 0 0
\(649\) 26.2462 1.03025
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 23.1231 0.904877 0.452439 0.891796i \(-0.350554\pi\)
0.452439 + 0.891796i \(0.350554\pi\)
\(654\) 0 0
\(655\) 2.24621 0.0877667
\(656\) 0 0
\(657\) −57.8617 −2.25740
\(658\) 0 0
\(659\) −23.6847 −0.922623 −0.461312 0.887238i \(-0.652621\pi\)
−0.461312 + 0.887238i \(0.652621\pi\)
\(660\) 0 0
\(661\) −8.87689 −0.345271 −0.172636 0.984986i \(-0.555228\pi\)
−0.172636 + 0.984986i \(0.555228\pi\)
\(662\) 0 0
\(663\) 6.56155 0.254830
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 43.0540 1.66456
\(670\) 0 0
\(671\) 5.12311 0.197775
\(672\) 0 0
\(673\) −24.2462 −0.934623 −0.467311 0.884093i \(-0.654777\pi\)
−0.467311 + 0.884093i \(0.654777\pi\)
\(674\) 0 0
\(675\) −1.43845 −0.0553659
\(676\) 0 0
\(677\) −13.1922 −0.507019 −0.253509 0.967333i \(-0.581585\pi\)
−0.253509 + 0.967333i \(0.581585\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −34.4233 −1.31910
\(682\) 0 0
\(683\) 6.87689 0.263137 0.131569 0.991307i \(-0.457999\pi\)
0.131569 + 0.991307i \(0.457999\pi\)
\(684\) 0 0
\(685\) 16.2462 0.620736
\(686\) 0 0
\(687\) 0.630683 0.0240621
\(688\) 0 0
\(689\) 2.73863 0.104334
\(690\) 0 0
\(691\) −28.4924 −1.08390 −0.541951 0.840410i \(-0.682314\pi\)
−0.541951 + 0.840410i \(0.682314\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 10.8769 0.412584
\(696\) 0 0
\(697\) 9.12311 0.345562
\(698\) 0 0
\(699\) −64.9848 −2.45795
\(700\) 0 0
\(701\) 30.8078 1.16359 0.581797 0.813334i \(-0.302350\pi\)
0.581797 + 0.813334i \(0.302350\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 29.9309 1.12726
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 11.3002 0.424387 0.212194 0.977228i \(-0.431939\pi\)
0.212194 + 0.977228i \(0.431939\pi\)
\(710\) 0 0
\(711\) −45.6155 −1.71072
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −1.43845 −0.0537949
\(716\) 0 0
\(717\) 12.3153 0.459925
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −48.9848 −1.82177
\(724\) 0 0
\(725\) −5.68466 −0.211123
\(726\) 0 0
\(727\) 32.9848 1.22334 0.611670 0.791113i \(-0.290498\pi\)
0.611670 + 0.791113i \(0.290498\pi\)
\(728\) 0 0
\(729\) −35.9848 −1.33277
\(730\) 0 0
\(731\) −18.2462 −0.674861
\(732\) 0 0
\(733\) −22.1771 −0.819129 −0.409565 0.912281i \(-0.634319\pi\)
−0.409565 + 0.912281i \(0.634319\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −16.0000 −0.589368
\(738\) 0 0
\(739\) −1.93087 −0.0710282 −0.0355141 0.999369i \(-0.511307\pi\)
−0.0355141 + 0.999369i \(0.511307\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −13.7538 −0.504578 −0.252289 0.967652i \(-0.581183\pi\)
−0.252289 + 0.967652i \(0.581183\pi\)
\(744\) 0 0
\(745\) −8.24621 −0.302118
\(746\) 0 0
\(747\) 22.2462 0.813946
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 33.9309 1.23816 0.619078 0.785330i \(-0.287507\pi\)
0.619078 + 0.785330i \(0.287507\pi\)
\(752\) 0 0
\(753\) −59.8617 −2.18148
\(754\) 0 0
\(755\) 0.315342 0.0114765
\(756\) 0 0
\(757\) 43.6155 1.58523 0.792617 0.609720i \(-0.208718\pi\)
0.792617 + 0.609720i \(0.208718\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 13.3693 0.484637 0.242319 0.970197i \(-0.422092\pi\)
0.242319 + 0.970197i \(0.422092\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 16.2462 0.587383
\(766\) 0 0
\(767\) 5.75379 0.207757
\(768\) 0 0
\(769\) 22.0000 0.793340 0.396670 0.917961i \(-0.370166\pi\)
0.396670 + 0.917961i \(0.370166\pi\)
\(770\) 0 0
\(771\) −78.1080 −2.81299
\(772\) 0 0
\(773\) 26.8078 0.964208 0.482104 0.876114i \(-0.339873\pi\)
0.482104 + 0.876114i \(0.339873\pi\)
\(774\) 0 0
\(775\) −5.12311 −0.184027
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −10.2462 −0.366638
\(782\) 0 0
\(783\) 8.17708 0.292225
\(784\) 0 0
\(785\) 10.4924 0.374491
\(786\) 0 0
\(787\) −15.0540 −0.536616 −0.268308 0.963333i \(-0.586465\pi\)
−0.268308 + 0.963333i \(0.586465\pi\)
\(788\) 0 0
\(789\) −18.8769 −0.672035
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 1.12311 0.0398827
\(794\) 0 0
\(795\) 12.4924 0.443061
\(796\) 0 0
\(797\) 39.9309 1.41442 0.707212 0.707002i \(-0.249953\pi\)
0.707212 + 0.707002i \(0.249953\pi\)
\(798\) 0 0
\(799\) −53.3002 −1.88563
\(800\) 0 0
\(801\) −43.6155 −1.54108
\(802\) 0 0
\(803\) −41.6155 −1.46858
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −57.6155 −2.02816
\(808\) 0 0
\(809\) −33.0540 −1.16212 −0.581058 0.813862i \(-0.697361\pi\)
−0.581058 + 0.813862i \(0.697361\pi\)
\(810\) 0 0
\(811\) −27.8617 −0.978358 −0.489179 0.872183i \(-0.662704\pi\)
−0.489179 + 0.872183i \(0.662704\pi\)
\(812\) 0 0
\(813\) −18.8769 −0.662042
\(814\) 0 0
\(815\) −17.1231 −0.599796
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 40.4233 1.41078 0.705391 0.708818i \(-0.250771\pi\)
0.705391 + 0.708818i \(0.250771\pi\)
\(822\) 0 0
\(823\) −31.3693 −1.09347 −0.546733 0.837307i \(-0.684129\pi\)
−0.546733 + 0.837307i \(0.684129\pi\)
\(824\) 0 0
\(825\) −6.56155 −0.228444
\(826\) 0 0
\(827\) −26.1080 −0.907862 −0.453931 0.891037i \(-0.649979\pi\)
−0.453931 + 0.891037i \(0.649979\pi\)
\(828\) 0 0
\(829\) 28.2462 0.981031 0.490516 0.871432i \(-0.336808\pi\)
0.490516 + 0.871432i \(0.336808\pi\)
\(830\) 0 0
\(831\) −31.3693 −1.08819
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 8.80776 0.304805
\(836\) 0 0
\(837\) 7.36932 0.254721
\(838\) 0 0
\(839\) 48.9848 1.69114 0.845572 0.533861i \(-0.179259\pi\)
0.845572 + 0.533861i \(0.179259\pi\)
\(840\) 0 0
\(841\) 3.31534 0.114322
\(842\) 0 0
\(843\) 24.8078 0.854425
\(844\) 0 0
\(845\) 12.6847 0.436366
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −27.0540 −0.928490
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 44.2462 1.51496 0.757481 0.652858i \(-0.226430\pi\)
0.757481 + 0.652858i \(0.226430\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −28.7386 −0.981693 −0.490847 0.871246i \(-0.663312\pi\)
−0.490847 + 0.871246i \(0.663312\pi\)
\(858\) 0 0
\(859\) 43.2311 1.47502 0.737512 0.675334i \(-0.236000\pi\)
0.737512 + 0.675334i \(0.236000\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 48.3542 1.64599 0.822997 0.568045i \(-0.192300\pi\)
0.822997 + 0.568045i \(0.192300\pi\)
\(864\) 0 0
\(865\) 12.5616 0.427106
\(866\) 0 0
\(867\) −9.75379 −0.331256
\(868\) 0 0
\(869\) −32.8078 −1.11293
\(870\) 0 0
\(871\) −3.50758 −0.118850
\(872\) 0 0
\(873\) 56.7386 1.92031
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 18.6307 0.629113 0.314557 0.949239i \(-0.398144\pi\)
0.314557 + 0.949239i \(0.398144\pi\)
\(878\) 0 0
\(879\) 5.93087 0.200043
\(880\) 0 0
\(881\) 3.12311 0.105220 0.0526101 0.998615i \(-0.483246\pi\)
0.0526101 + 0.998615i \(0.483246\pi\)
\(882\) 0 0
\(883\) 0.138261 0.00465284 0.00232642 0.999997i \(-0.499259\pi\)
0.00232642 + 0.999997i \(0.499259\pi\)
\(884\) 0 0
\(885\) 26.2462 0.882257
\(886\) 0 0
\(887\) 20.4924 0.688068 0.344034 0.938957i \(-0.388206\pi\)
0.344034 + 0.938957i \(0.388206\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −17.9309 −0.600707
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 14.2462 0.476198
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 29.1231 0.971310
\(900\) 0 0
\(901\) −22.2462 −0.741129
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −12.8769 −0.428042
\(906\) 0 0
\(907\) 1.75379 0.0582336 0.0291168 0.999576i \(-0.490731\pi\)
0.0291168 + 0.999576i \(0.490731\pi\)
\(908\) 0 0
\(909\) −47.6155 −1.57931
\(910\) 0 0
\(911\) 10.7386 0.355787 0.177893 0.984050i \(-0.443072\pi\)
0.177893 + 0.984050i \(0.443072\pi\)
\(912\) 0 0
\(913\) 16.0000 0.529523
\(914\) 0 0
\(915\) 5.12311 0.169365
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −31.0540 −1.02438 −0.512188 0.858873i \(-0.671165\pi\)
−0.512188 + 0.858873i \(0.671165\pi\)
\(920\) 0 0
\(921\) 8.17708 0.269444
\(922\) 0 0
\(923\) −2.24621 −0.0739349
\(924\) 0 0
\(925\) 7.12311 0.234206
\(926\) 0 0
\(927\) 70.1080 2.30265
\(928\) 0 0
\(929\) −40.1080 −1.31590 −0.657950 0.753062i \(-0.728576\pi\)
−0.657950 + 0.753062i \(0.728576\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −11.5076 −0.376741
\(934\) 0 0
\(935\) 11.6847 0.382129
\(936\) 0 0
\(937\) −42.3153 −1.38238 −0.691191 0.722672i \(-0.742914\pi\)
−0.691191 + 0.722672i \(0.742914\pi\)
\(938\) 0 0
\(939\) 30.5616 0.997339
\(940\) 0 0
\(941\) 38.4924 1.25482 0.627409 0.778690i \(-0.284116\pi\)
0.627409 + 0.778690i \(0.284116\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −27.3693 −0.889383 −0.444692 0.895684i \(-0.646687\pi\)
−0.444692 + 0.895684i \(0.646687\pi\)
\(948\) 0 0
\(949\) −9.12311 −0.296149
\(950\) 0 0
\(951\) −25.6155 −0.830640
\(952\) 0 0
\(953\) 12.2462 0.396694 0.198347 0.980132i \(-0.436443\pi\)
0.198347 + 0.980132i \(0.436443\pi\)
\(954\) 0 0
\(955\) −26.5616 −0.859512
\(956\) 0 0
\(957\) 37.3002 1.20574
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −4.75379 −0.153348
\(962\) 0 0
\(963\) 24.4924 0.789257
\(964\) 0 0
\(965\) 16.2462 0.522984
\(966\) 0 0
\(967\) 27.8617 0.895973 0.447987 0.894040i \(-0.352141\pi\)
0.447987 + 0.894040i \(0.352141\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −59.8617 −1.92105 −0.960527 0.278186i \(-0.910267\pi\)
−0.960527 + 0.278186i \(0.910267\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −1.43845 −0.0460672
\(976\) 0 0
\(977\) 29.8617 0.955362 0.477681 0.878533i \(-0.341478\pi\)
0.477681 + 0.878533i \(0.341478\pi\)
\(978\) 0 0
\(979\) −31.3693 −1.00257
\(980\) 0 0
\(981\) −38.4924 −1.22897
\(982\) 0 0
\(983\) 35.0540 1.11805 0.559024 0.829151i \(-0.311176\pi\)
0.559024 + 0.829151i \(0.311176\pi\)
\(984\) 0 0
\(985\) −24.7386 −0.788238
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −25.7538 −0.818096 −0.409048 0.912513i \(-0.634139\pi\)
−0.409048 + 0.912513i \(0.634139\pi\)
\(992\) 0 0
\(993\) 21.7538 0.690336
\(994\) 0 0
\(995\) −16.0000 −0.507234
\(996\) 0 0
\(997\) −2.31534 −0.0733276 −0.0366638 0.999328i \(-0.511673\pi\)
−0.0366638 + 0.999328i \(0.511673\pi\)
\(998\) 0 0
\(999\) −10.2462 −0.324176
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7840.2.a.bc.1.1 2
4.3 odd 2 7840.2.a.bh.1.2 2
7.6 odd 2 1120.2.a.t.1.2 yes 2
28.27 even 2 1120.2.a.r.1.1 2
35.34 odd 2 5600.2.a.ba.1.1 2
56.13 odd 2 2240.2.a.bc.1.1 2
56.27 even 2 2240.2.a.bj.1.2 2
140.139 even 2 5600.2.a.bh.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1120.2.a.r.1.1 2 28.27 even 2
1120.2.a.t.1.2 yes 2 7.6 odd 2
2240.2.a.bc.1.1 2 56.13 odd 2
2240.2.a.bj.1.2 2 56.27 even 2
5600.2.a.ba.1.1 2 35.34 odd 2
5600.2.a.bh.1.2 2 140.139 even 2
7840.2.a.bc.1.1 2 1.1 even 1 trivial
7840.2.a.bh.1.2 2 4.3 odd 2