Properties

Label 7920.2.a.ck
Level 79207920
Weight 22
Character orbit 7920.a
Self dual yes
Analytic conductor 63.24263.242
Analytic rank 00
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7920,2,Mod(1,7920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7920, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7920.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 7920=2432511 7920 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 7920.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 63.241518400963.2415184009
Analytic rank: 00
Dimension: 33
Coefficient field: 3.3.1016.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x3x26x+2 x^{3} - x^{2} - 6x + 2 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 3960)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β21,\beta_1,\beta_2 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qq5β2q7+q11+(β2β1+1)q13+(β22)q17+(β11)q19+(β11)q23+q252q29+(β1+1)q31++(2β22β1)q97+O(q100) q - q^{5} - \beta_{2} q^{7} + q^{11} + ( - \beta_{2} - \beta_1 + 1) q^{13} + ( - \beta_{2} - 2) q^{17} + ( - \beta_1 - 1) q^{19} + ( - \beta_1 - 1) q^{23} + q^{25} - 2 q^{29} + ( - \beta_1 + 1) q^{31}+ \cdots + (2 \beta_{2} - 2 \beta_1) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q3q5+3q11+4q136q172q192q23+3q256q29+4q31+6q376q41+2q43+14q47+7q496q533q55+4q594q65++2q97+O(q100) 3 q - 3 q^{5} + 3 q^{11} + 4 q^{13} - 6 q^{17} - 2 q^{19} - 2 q^{23} + 3 q^{25} - 6 q^{29} + 4 q^{31} + 6 q^{37} - 6 q^{41} + 2 q^{43} + 14 q^{47} + 7 q^{49} - 6 q^{53} - 3 q^{55} + 4 q^{59} - 4 q^{65}+ \cdots + 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x3x26x+2 x^{3} - x^{2} - 6x + 2 : Copy content Toggle raw display

β1\beta_{1}== 2ν1 2\nu - 1 Copy content Toggle raw display
β2\beta_{2}== ν2ν4 \nu^{2} - \nu - 4 Copy content Toggle raw display
ν\nu== (β1+1)/2 ( \beta _1 + 1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (2β2+β1+9)/2 ( 2\beta_{2} + \beta _1 + 9 ) / 2 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−2.17741
2.85577
0.321637
0 0 0 −1.00000 0 −2.91852 0 0 0
1.2 0 0 0 −1.00000 0 −1.29966 0 0 0
1.3 0 0 0 −1.00000 0 4.21819 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 +1 +1
55 +1 +1
1111 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7920.2.a.ck 3
3.b odd 2 1 7920.2.a.cl 3
4.b odd 2 1 3960.2.a.bg 3
12.b even 2 1 3960.2.a.bh yes 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3960.2.a.bg 3 4.b odd 2 1
3960.2.a.bh yes 3 12.b even 2 1
7920.2.a.ck 3 1.a even 1 1 trivial
7920.2.a.cl 3 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(7920))S_{2}^{\mathrm{new}}(\Gamma_0(7920)):

T7314T716 T_{7}^{3} - 14T_{7} - 16 Copy content Toggle raw display
T1334T13226T13+96 T_{13}^{3} - 4T_{13}^{2} - 26T_{13} + 96 Copy content Toggle raw display
T173+6T1722T1736 T_{17}^{3} + 6T_{17}^{2} - 2T_{17} - 36 Copy content Toggle raw display
T193+2T19224T1916 T_{19}^{3} + 2T_{19}^{2} - 24T_{19} - 16 Copy content Toggle raw display
T233+2T23224T2316 T_{23}^{3} + 2T_{23}^{2} - 24T_{23} - 16 Copy content Toggle raw display
T29+2 T_{29} + 2 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T3 T^{3} Copy content Toggle raw display
33 T3 T^{3} Copy content Toggle raw display
55 (T+1)3 (T + 1)^{3} Copy content Toggle raw display
77 T314T16 T^{3} - 14T - 16 Copy content Toggle raw display
1111 (T1)3 (T - 1)^{3} Copy content Toggle raw display
1313 T34T2++96 T^{3} - 4 T^{2} + \cdots + 96 Copy content Toggle raw display
1717 T3+6T2+36 T^{3} + 6 T^{2} + \cdots - 36 Copy content Toggle raw display
1919 T3+2T2+16 T^{3} + 2 T^{2} + \cdots - 16 Copy content Toggle raw display
2323 T3+2T2+16 T^{3} + 2 T^{2} + \cdots - 16 Copy content Toggle raw display
2929 (T+2)3 (T + 2)^{3} Copy content Toggle raw display
3131 T34T2++32 T^{3} - 4 T^{2} + \cdots + 32 Copy content Toggle raw display
3737 (T2)3 (T - 2)^{3} Copy content Toggle raw display
4141 (T+2)3 (T + 2)^{3} Copy content Toggle raw display
4343 T32T2++156 T^{3} - 2 T^{2} + \cdots + 156 Copy content Toggle raw display
4747 T314T2++16 T^{3} - 14 T^{2} + \cdots + 16 Copy content Toggle raw display
5353 T3+6T2+232 T^{3} + 6 T^{2} + \cdots - 232 Copy content Toggle raw display
5959 T34T2++32 T^{3} - 4 T^{2} + \cdots + 32 Copy content Toggle raw display
6161 T3228T16 T^{3} - 228T - 16 Copy content Toggle raw display
6767 T312T2++32 T^{3} - 12 T^{2} + \cdots + 32 Copy content Toggle raw display
7171 T310T2+72 T^{3} - 10 T^{2} + \cdots - 72 Copy content Toggle raw display
7373 T3+6T2+676 T^{3} + 6 T^{2} + \cdots - 676 Copy content Toggle raw display
7979 T34T2+288 T^{3} - 4 T^{2} + \cdots - 288 Copy content Toggle raw display
8383 T34T2++1832 T^{3} - 4 T^{2} + \cdots + 1832 Copy content Toggle raw display
8989 T3+12T2+3456 T^{3} + 12 T^{2} + \cdots - 3456 Copy content Toggle raw display
9797 T32T2+872 T^{3} - 2 T^{2} + \cdots - 872 Copy content Toggle raw display
show more
show less