Properties

Label 7920.2.a.cm.1.3
Level $7920$
Weight $2$
Character 7920.1
Self dual yes
Analytic conductor $63.242$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7920,2,Mod(1,7920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7920, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7920.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7920 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7920.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.2415184009\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.48704.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 6x^{2} + 4x + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 495)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.26270\) of defining polynomial
Character \(\chi\) \(=\) 7920.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{5} -0.704647 q^{7} -1.00000 q^{11} +3.82075 q^{13} +7.15733 q^{17} -7.33659 q^{19} +5.86198 q^{23} +1.00000 q^{25} -8.97808 q^{29} +0.590706 q^{31} +0.704647 q^{35} +10.4527 q^{37} +7.92729 q^{41} -3.29535 q^{43} +3.64149 q^{47} -6.50347 q^{49} -11.8620 q^{53} +1.00000 q^{55} -10.8112 q^{59} +5.64149 q^{61} -3.82075 q^{65} +10.9128 q^{67} -11.8620 q^{71} +3.82075 q^{73} +0.704647 q^{77} +3.33659 q^{79} -4.04124 q^{83} -7.15733 q^{85} +7.05079 q^{89} -2.69228 q^{91} +7.33659 q^{95} +6.81120 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{5} - 4 q^{7} - 4 q^{11} + 8 q^{13} - 4 q^{17} - 4 q^{19} - 8 q^{23} + 4 q^{25} + 4 q^{29} + 4 q^{35} + 8 q^{37} + 4 q^{41} - 12 q^{43} + 20 q^{49} - 16 q^{53} + 4 q^{55} - 24 q^{59} + 8 q^{61}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −0.704647 −0.266332 −0.133166 0.991094i \(-0.542514\pi\)
−0.133166 + 0.991094i \(0.542514\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) 3.82075 1.05968 0.529842 0.848096i \(-0.322251\pi\)
0.529842 + 0.848096i \(0.322251\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 7.15733 1.73591 0.867954 0.496644i \(-0.165435\pi\)
0.867954 + 0.496644i \(0.165435\pi\)
\(18\) 0 0
\(19\) −7.33659 −1.68313 −0.841564 0.540157i \(-0.818365\pi\)
−0.841564 + 0.540157i \(0.818365\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.86198 1.22231 0.611154 0.791512i \(-0.290706\pi\)
0.611154 + 0.791512i \(0.290706\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −8.97808 −1.66719 −0.833594 0.552378i \(-0.813721\pi\)
−0.833594 + 0.552378i \(0.813721\pi\)
\(30\) 0 0
\(31\) 0.590706 0.106094 0.0530470 0.998592i \(-0.483107\pi\)
0.0530470 + 0.998592i \(0.483107\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.704647 0.119107
\(36\) 0 0
\(37\) 10.4527 1.71841 0.859206 0.511630i \(-0.170958\pi\)
0.859206 + 0.511630i \(0.170958\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.92729 1.23804 0.619018 0.785377i \(-0.287531\pi\)
0.619018 + 0.785377i \(0.287531\pi\)
\(42\) 0 0
\(43\) −3.29535 −0.502537 −0.251268 0.967917i \(-0.580848\pi\)
−0.251268 + 0.967917i \(0.580848\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.64149 0.531166 0.265583 0.964088i \(-0.414436\pi\)
0.265583 + 0.964088i \(0.414436\pi\)
\(48\) 0 0
\(49\) −6.50347 −0.929068
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −11.8620 −1.62937 −0.814684 0.579905i \(-0.803090\pi\)
−0.814684 + 0.579905i \(0.803090\pi\)
\(54\) 0 0
\(55\) 1.00000 0.134840
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −10.8112 −1.40750 −0.703749 0.710449i \(-0.748492\pi\)
−0.703749 + 0.710449i \(0.748492\pi\)
\(60\) 0 0
\(61\) 5.64149 0.722319 0.361159 0.932504i \(-0.382381\pi\)
0.361159 + 0.932504i \(0.382381\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.82075 −0.473905
\(66\) 0 0
\(67\) 10.9128 1.33321 0.666603 0.745413i \(-0.267748\pi\)
0.666603 + 0.745413i \(0.267748\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −11.8620 −1.40776 −0.703879 0.710320i \(-0.748550\pi\)
−0.703879 + 0.710320i \(0.748550\pi\)
\(72\) 0 0
\(73\) 3.82075 0.447184 0.223592 0.974683i \(-0.428222\pi\)
0.223592 + 0.974683i \(0.428222\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.704647 0.0803020
\(78\) 0 0
\(79\) 3.33659 0.375396 0.187698 0.982227i \(-0.439897\pi\)
0.187698 + 0.982227i \(0.439897\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −4.04124 −0.443583 −0.221792 0.975094i \(-0.571190\pi\)
−0.221792 + 0.975094i \(0.571190\pi\)
\(84\) 0 0
\(85\) −7.15733 −0.776322
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 7.05079 0.747382 0.373691 0.927553i \(-0.378092\pi\)
0.373691 + 0.927553i \(0.378092\pi\)
\(90\) 0 0
\(91\) −2.69228 −0.282227
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 7.33659 0.752718
\(96\) 0 0
\(97\) 6.81120 0.691572 0.345786 0.938313i \(-0.387612\pi\)
0.345786 + 0.938313i \(0.387612\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −6.38737 −0.635567 −0.317784 0.948163i \(-0.602939\pi\)
−0.317784 + 0.948163i \(0.602939\pi\)
\(102\) 0 0
\(103\) 11.4019 1.12346 0.561731 0.827320i \(-0.310135\pi\)
0.561731 + 0.827320i \(0.310135\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.58116 0.539551 0.269775 0.962923i \(-0.413051\pi\)
0.269775 + 0.962923i \(0.413051\pi\)
\(108\) 0 0
\(109\) 0.949215 0.0909183 0.0454591 0.998966i \(-0.485525\pi\)
0.0454591 + 0.998966i \(0.485525\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −9.27128 −0.872168 −0.436084 0.899906i \(-0.643635\pi\)
−0.436084 + 0.899906i \(0.643635\pi\)
\(114\) 0 0
\(115\) −5.86198 −0.546633
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −5.04339 −0.462327
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 11.0193 0.977806 0.488903 0.872338i \(-0.337397\pi\)
0.488903 + 0.872338i \(0.337397\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −3.64149 −0.318159 −0.159079 0.987266i \(-0.550853\pi\)
−0.159079 + 0.987266i \(0.550853\pi\)
\(132\) 0 0
\(133\) 5.16970 0.448270
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.00000 0.512615 0.256307 0.966595i \(-0.417494\pi\)
0.256307 + 0.966595i \(0.417494\pi\)
\(138\) 0 0
\(139\) 2.07271 0.175805 0.0879023 0.996129i \(-0.471984\pi\)
0.0879023 + 0.996129i \(0.471984\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.82075 −0.319507
\(144\) 0 0
\(145\) 8.97808 0.745589
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 19.4382 1.59244 0.796218 0.605010i \(-0.206831\pi\)
0.796218 + 0.605010i \(0.206831\pi\)
\(150\) 0 0
\(151\) −7.33659 −0.597043 −0.298522 0.954403i \(-0.596493\pi\)
−0.298522 + 0.954403i \(0.596493\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.590706 −0.0474467
\(156\) 0 0
\(157\) −11.2639 −0.898956 −0.449478 0.893291i \(-0.648390\pi\)
−0.449478 + 0.893291i \(0.648390\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −4.13063 −0.325539
\(162\) 0 0
\(163\) 13.5035 1.05767 0.528837 0.848724i \(-0.322628\pi\)
0.528837 + 0.848724i \(0.322628\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 16.0412 1.24131 0.620654 0.784085i \(-0.286867\pi\)
0.620654 + 0.784085i \(0.286867\pi\)
\(168\) 0 0
\(169\) 1.59810 0.122931
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −4.84267 −0.368181 −0.184091 0.982909i \(-0.558934\pi\)
−0.184091 + 0.982909i \(0.558934\pi\)
\(174\) 0 0
\(175\) −0.704647 −0.0532663
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1.05079 −0.0785394 −0.0392697 0.999229i \(-0.512503\pi\)
−0.0392697 + 0.999229i \(0.512503\pi\)
\(180\) 0 0
\(181\) 0.598098 0.0444563 0.0222281 0.999753i \(-0.492924\pi\)
0.0222281 + 0.999753i \(0.492924\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −10.4527 −0.768497
\(186\) 0 0
\(187\) −7.15733 −0.523396
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −24.7747 −1.79264 −0.896319 0.443410i \(-0.853769\pi\)
−0.896319 + 0.443410i \(0.853769\pi\)
\(192\) 0 0
\(193\) 23.9032 1.72059 0.860296 0.509796i \(-0.170279\pi\)
0.860296 + 0.509796i \(0.170279\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −16.5666 −1.18032 −0.590162 0.807285i \(-0.700936\pi\)
−0.590162 + 0.807285i \(0.700936\pi\)
\(198\) 0 0
\(199\) 5.05079 0.358041 0.179020 0.983845i \(-0.442707\pi\)
0.179020 + 0.983845i \(0.442707\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 6.32638 0.444025
\(204\) 0 0
\(205\) −7.92729 −0.553666
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 7.33659 0.507482
\(210\) 0 0
\(211\) 10.1552 0.699111 0.349556 0.936916i \(-0.386333\pi\)
0.349556 + 0.936916i \(0.386333\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 3.29535 0.224741
\(216\) 0 0
\(217\) −0.416239 −0.0282562
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 27.3464 1.83951
\(222\) 0 0
\(223\) −10.3147 −0.690721 −0.345361 0.938470i \(-0.612243\pi\)
−0.345361 + 0.938470i \(0.612243\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 9.00955 0.597985 0.298992 0.954255i \(-0.403349\pi\)
0.298992 + 0.954255i \(0.403349\pi\)
\(228\) 0 0
\(229\) 9.28298 0.613437 0.306718 0.951800i \(-0.400769\pi\)
0.306718 + 0.951800i \(0.400769\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3.51584 −0.230331 −0.115165 0.993346i \(-0.536740\pi\)
−0.115165 + 0.993346i \(0.536740\pi\)
\(234\) 0 0
\(235\) −3.64149 −0.237545
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 15.3655 0.993909 0.496954 0.867777i \(-0.334452\pi\)
0.496954 + 0.867777i \(0.334452\pi\)
\(240\) 0 0
\(241\) −0.590706 −0.0380507 −0.0190254 0.999819i \(-0.506056\pi\)
−0.0190254 + 0.999819i \(0.506056\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 6.50347 0.415492
\(246\) 0 0
\(247\) −28.0312 −1.78359
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 23.5859 1.48873 0.744366 0.667772i \(-0.232752\pi\)
0.744366 + 0.667772i \(0.232752\pi\)
\(252\) 0 0
\(253\) −5.86198 −0.368540
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 20.3147 1.26719 0.633597 0.773663i \(-0.281578\pi\)
0.633597 + 0.773663i \(0.281578\pi\)
\(258\) 0 0
\(259\) −7.36545 −0.457667
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 19.8958 1.22683 0.613415 0.789761i \(-0.289795\pi\)
0.613415 + 0.789761i \(0.289795\pi\)
\(264\) 0 0
\(265\) 11.8620 0.728676
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 19.2830 1.17570 0.587852 0.808968i \(-0.299974\pi\)
0.587852 + 0.808968i \(0.299974\pi\)
\(270\) 0 0
\(271\) −9.43816 −0.573327 −0.286664 0.958031i \(-0.592546\pi\)
−0.286664 + 0.958031i \(0.592546\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.00000 −0.0603023
\(276\) 0 0
\(277\) 22.5764 1.35648 0.678242 0.734839i \(-0.262742\pi\)
0.678242 + 0.734839i \(0.262742\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −7.65126 −0.456436 −0.228218 0.973610i \(-0.573290\pi\)
−0.228218 + 0.973610i \(0.573290\pi\)
\(282\) 0 0
\(283\) 30.8887 1.83614 0.918071 0.396416i \(-0.129746\pi\)
0.918071 + 0.396416i \(0.129746\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −5.58594 −0.329728
\(288\) 0 0
\(289\) 34.2274 2.01338
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −10.3344 −0.603744 −0.301872 0.953348i \(-0.597612\pi\)
−0.301872 + 0.953348i \(0.597612\pi\)
\(294\) 0 0
\(295\) 10.8112 0.629452
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 22.3971 1.29526
\(300\) 0 0
\(301\) 2.32206 0.133841
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −5.64149 −0.323031
\(306\) 0 0
\(307\) 13.3969 0.764603 0.382301 0.924038i \(-0.375132\pi\)
0.382301 + 0.924038i \(0.375132\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 6.37022 0.361222 0.180611 0.983555i \(-0.442193\pi\)
0.180611 + 0.983555i \(0.442193\pi\)
\(312\) 0 0
\(313\) −1.27128 −0.0718567 −0.0359284 0.999354i \(-0.511439\pi\)
−0.0359284 + 0.999354i \(0.511439\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4.55426 0.255793 0.127896 0.991788i \(-0.459178\pi\)
0.127896 + 0.991788i \(0.459178\pi\)
\(318\) 0 0
\(319\) 8.97808 0.502676
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −52.5104 −2.92176
\(324\) 0 0
\(325\) 3.82075 0.211937
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −2.56597 −0.141466
\(330\) 0 0
\(331\) 30.5469 1.67901 0.839504 0.543354i \(-0.182846\pi\)
0.839504 + 0.543354i \(0.182846\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −10.9128 −0.596228
\(336\) 0 0
\(337\) −22.2179 −1.21029 −0.605143 0.796117i \(-0.706884\pi\)
−0.605143 + 0.796117i \(0.706884\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −0.590706 −0.0319885
\(342\) 0 0
\(343\) 9.51518 0.513771
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0.186646 0.0100197 0.00500984 0.999987i \(-0.498405\pi\)
0.00500984 + 0.999987i \(0.498405\pi\)
\(348\) 0 0
\(349\) 8.44530 0.452066 0.226033 0.974120i \(-0.427424\pi\)
0.226033 + 0.974120i \(0.427424\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 17.0434 0.907128 0.453564 0.891224i \(-0.350152\pi\)
0.453564 + 0.891224i \(0.350152\pi\)
\(354\) 0 0
\(355\) 11.8620 0.629569
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −19.4961 −1.02896 −0.514482 0.857501i \(-0.672016\pi\)
−0.514482 + 0.857501i \(0.672016\pi\)
\(360\) 0 0
\(361\) 34.8255 1.83292
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −3.82075 −0.199987
\(366\) 0 0
\(367\) 18.5907 0.970427 0.485213 0.874396i \(-0.338742\pi\)
0.485213 + 0.874396i \(0.338742\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 8.35851 0.433952
\(372\) 0 0
\(373\) 10.6393 0.550884 0.275442 0.961318i \(-0.411176\pi\)
0.275442 + 0.961318i \(0.411176\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −34.3030 −1.76669
\(378\) 0 0
\(379\) 32.6293 1.67606 0.838028 0.545627i \(-0.183708\pi\)
0.838028 + 0.545627i \(0.183708\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −19.4019 −0.991391 −0.495695 0.868496i \(-0.665087\pi\)
−0.495695 + 0.868496i \(0.665087\pi\)
\(384\) 0 0
\(385\) −0.704647 −0.0359121
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −5.95616 −0.301989 −0.150995 0.988535i \(-0.548248\pi\)
−0.150995 + 0.988535i \(0.548248\pi\)
\(390\) 0 0
\(391\) 41.9562 2.12181
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −3.33659 −0.167882
\(396\) 0 0
\(397\) −0.00739165 −0.000370976 0 −0.000185488 1.00000i \(-0.500059\pi\)
−0.000185488 1.00000i \(0.500059\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.55902 0.0778538 0.0389269 0.999242i \(-0.487606\pi\)
0.0389269 + 0.999242i \(0.487606\pi\)
\(402\) 0 0
\(403\) 2.25694 0.112426
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −10.4527 −0.518120
\(408\) 0 0
\(409\) −27.6801 −1.36869 −0.684347 0.729156i \(-0.739913\pi\)
−0.684347 + 0.729156i \(0.739913\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 7.61808 0.374861
\(414\) 0 0
\(415\) 4.04124 0.198376
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −12.7747 −0.624087 −0.312044 0.950068i \(-0.601014\pi\)
−0.312044 + 0.950068i \(0.601014\pi\)
\(420\) 0 0
\(421\) −20.3221 −0.990437 −0.495218 0.868769i \(-0.664912\pi\)
−0.495218 + 0.868769i \(0.664912\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 7.15733 0.347182
\(426\) 0 0
\(427\) −3.97526 −0.192376
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 7.28298 0.350809 0.175404 0.984496i \(-0.443877\pi\)
0.175404 + 0.984496i \(0.443877\pi\)
\(432\) 0 0
\(433\) 2.37022 0.113905 0.0569527 0.998377i \(-0.481862\pi\)
0.0569527 + 0.998377i \(0.481862\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −43.0069 −2.05730
\(438\) 0 0
\(439\) 17.9273 0.855623 0.427812 0.903868i \(-0.359285\pi\)
0.427812 + 0.903868i \(0.359285\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −14.2205 −0.675636 −0.337818 0.941211i \(-0.609689\pi\)
−0.337818 + 0.941211i \(0.609689\pi\)
\(444\) 0 0
\(445\) −7.05079 −0.334239
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −17.1376 −0.808772 −0.404386 0.914588i \(-0.632515\pi\)
−0.404386 + 0.914588i \(0.632515\pi\)
\(450\) 0 0
\(451\) −7.92729 −0.373282
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2.69228 0.126216
\(456\) 0 0
\(457\) −16.7261 −0.782415 −0.391207 0.920303i \(-0.627943\pi\)
−0.391207 + 0.920303i \(0.627943\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −9.77757 −0.455387 −0.227693 0.973733i \(-0.573118\pi\)
−0.227693 + 0.973733i \(0.573118\pi\)
\(462\) 0 0
\(463\) −27.2200 −1.26502 −0.632511 0.774551i \(-0.717976\pi\)
−0.632511 + 0.774551i \(0.717976\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 24.8689 1.15080 0.575398 0.817873i \(-0.304847\pi\)
0.575398 + 0.817873i \(0.304847\pi\)
\(468\) 0 0
\(469\) −7.68965 −0.355075
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 3.29535 0.151520
\(474\) 0 0
\(475\) −7.33659 −0.336626
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 4.22788 0.193177 0.0965884 0.995324i \(-0.469207\pi\)
0.0965884 + 0.995324i \(0.469207\pi\)
\(480\) 0 0
\(481\) 39.9371 1.82097
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −6.81120 −0.309280
\(486\) 0 0
\(487\) 21.2756 0.964089 0.482045 0.876147i \(-0.339894\pi\)
0.482045 + 0.876147i \(0.339894\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 35.7240 1.61220 0.806100 0.591779i \(-0.201574\pi\)
0.806100 + 0.591779i \(0.201574\pi\)
\(492\) 0 0
\(493\) −64.2591 −2.89409
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 8.35851 0.374930
\(498\) 0 0
\(499\) 9.76780 0.437267 0.218633 0.975807i \(-0.429840\pi\)
0.218633 + 0.975807i \(0.429840\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −23.9106 −1.06612 −0.533061 0.846077i \(-0.678958\pi\)
−0.533061 + 0.846077i \(0.678958\pi\)
\(504\) 0 0
\(505\) 6.38737 0.284234
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 16.9054 0.749318 0.374659 0.927163i \(-0.377760\pi\)
0.374659 + 0.927163i \(0.377760\pi\)
\(510\) 0 0
\(511\) −2.69228 −0.119099
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −11.4019 −0.502428
\(516\) 0 0
\(517\) −3.64149 −0.160153
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 20.8038 0.911431 0.455716 0.890125i \(-0.349383\pi\)
0.455716 + 0.890125i \(0.349383\pi\)
\(522\) 0 0
\(523\) −31.9247 −1.39597 −0.697985 0.716113i \(-0.745920\pi\)
−0.697985 + 0.716113i \(0.745920\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.22788 0.184169
\(528\) 0 0
\(529\) 11.3628 0.494036
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 30.2882 1.31193
\(534\) 0 0
\(535\) −5.58116 −0.241294
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 6.50347 0.280124
\(540\) 0 0
\(541\) −35.8255 −1.54026 −0.770130 0.637887i \(-0.779809\pi\)
−0.770130 + 0.637887i \(0.779809\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −0.949215 −0.0406599
\(546\) 0 0
\(547\) 20.8930 0.893320 0.446660 0.894704i \(-0.352613\pi\)
0.446660 + 0.894704i \(0.352613\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 65.8685 2.80609
\(552\) 0 0
\(553\) −2.35112 −0.0999797
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −21.2589 −0.900769 −0.450384 0.892835i \(-0.648713\pi\)
−0.450384 + 0.892835i \(0.648713\pi\)
\(558\) 0 0
\(559\) −12.5907 −0.532530
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −28.2543 −1.19078 −0.595389 0.803438i \(-0.703002\pi\)
−0.595389 + 0.803438i \(0.703002\pi\)
\(564\) 0 0
\(565\) 9.27128 0.390045
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1.75804 −0.0737007 −0.0368504 0.999321i \(-0.511732\pi\)
−0.0368504 + 0.999321i \(0.511732\pi\)
\(570\) 0 0
\(571\) 12.7459 0.533399 0.266699 0.963780i \(-0.414067\pi\)
0.266699 + 0.963780i \(0.414067\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 5.86198 0.244462
\(576\) 0 0
\(577\) 12.9245 0.538053 0.269026 0.963133i \(-0.413298\pi\)
0.269026 + 0.963133i \(0.413298\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 2.84764 0.118140
\(582\) 0 0
\(583\) 11.8620 0.491273
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 25.8472 1.06683 0.533414 0.845854i \(-0.320909\pi\)
0.533414 + 0.845854i \(0.320909\pi\)
\(588\) 0 0
\(589\) −4.33377 −0.178570
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 40.4789 1.66227 0.831136 0.556070i \(-0.187691\pi\)
0.831136 + 0.556070i \(0.187691\pi\)
\(594\) 0 0
\(595\) 5.04339 0.206759
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −31.2830 −1.27819 −0.639094 0.769129i \(-0.720691\pi\)
−0.639094 + 0.769129i \(0.720691\pi\)
\(600\) 0 0
\(601\) 12.9245 0.527200 0.263600 0.964632i \(-0.415090\pi\)
0.263600 + 0.964632i \(0.415090\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.00000 −0.0406558
\(606\) 0 0
\(607\) 11.0193 0.447260 0.223630 0.974674i \(-0.428209\pi\)
0.223630 + 0.974674i \(0.428209\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 13.9132 0.562868
\(612\) 0 0
\(613\) −18.0529 −0.729152 −0.364576 0.931174i \(-0.618786\pi\)
−0.364576 + 0.931174i \(0.618786\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −31.0820 −1.25132 −0.625658 0.780098i \(-0.715169\pi\)
−0.625658 + 0.780098i \(0.715169\pi\)
\(618\) 0 0
\(619\) 30.5469 1.22778 0.613891 0.789391i \(-0.289603\pi\)
0.613891 + 0.789391i \(0.289603\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −4.96831 −0.199051
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 74.8134 2.98300
\(630\) 0 0
\(631\) −4.33377 −0.172525 −0.0862623 0.996272i \(-0.527492\pi\)
−0.0862623 + 0.996272i \(0.527492\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −11.0193 −0.437288
\(636\) 0 0
\(637\) −24.8481 −0.984518
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 9.85459 0.389233 0.194616 0.980879i \(-0.437654\pi\)
0.194616 + 0.980879i \(0.437654\pi\)
\(642\) 0 0
\(643\) 40.0312 1.57868 0.789339 0.613958i \(-0.210423\pi\)
0.789339 + 0.613958i \(0.210423\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 31.1259 1.22368 0.611842 0.790980i \(-0.290429\pi\)
0.611842 + 0.790980i \(0.290429\pi\)
\(648\) 0 0
\(649\) 10.8112 0.424377
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −18.2131 −0.712734 −0.356367 0.934346i \(-0.615985\pi\)
−0.356367 + 0.934346i \(0.615985\pi\)
\(654\) 0 0
\(655\) 3.64149 0.142285
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 15.1524 0.590252 0.295126 0.955458i \(-0.404638\pi\)
0.295126 + 0.955458i \(0.404638\pi\)
\(660\) 0 0
\(661\) −26.6293 −1.03576 −0.517881 0.855453i \(-0.673279\pi\)
−0.517881 + 0.855453i \(0.673279\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −5.16970 −0.200473
\(666\) 0 0
\(667\) −52.6293 −2.03782
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −5.64149 −0.217787
\(672\) 0 0
\(673\) 24.3924 0.940256 0.470128 0.882598i \(-0.344208\pi\)
0.470128 + 0.882598i \(0.344208\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −3.20549 −0.123197 −0.0615985 0.998101i \(-0.519620\pi\)
−0.0615985 + 0.998101i \(0.519620\pi\)
\(678\) 0 0
\(679\) −4.79949 −0.184187
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 3.36545 0.128776 0.0643878 0.997925i \(-0.479491\pi\)
0.0643878 + 0.997925i \(0.479491\pi\)
\(684\) 0 0
\(685\) −6.00000 −0.229248
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −45.3216 −1.72662
\(690\) 0 0
\(691\) −47.8889 −1.82178 −0.910890 0.412649i \(-0.864603\pi\)
−0.910890 + 0.412649i \(0.864603\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −2.07271 −0.0786222
\(696\) 0 0
\(697\) 56.7383 2.14912
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −23.3175 −0.880689 −0.440345 0.897829i \(-0.645144\pi\)
−0.440345 + 0.897829i \(0.645144\pi\)
\(702\) 0 0
\(703\) −76.6871 −2.89231
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4.50084 0.169272
\(708\) 0 0
\(709\) 17.2274 0.646990 0.323495 0.946230i \(-0.395142\pi\)
0.323495 + 0.946230i \(0.395142\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 3.46271 0.129679
\(714\) 0 0
\(715\) 3.82075 0.142888
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −0.586390 −0.0218687 −0.0109343 0.999940i \(-0.503481\pi\)
−0.0109343 + 0.999940i \(0.503481\pi\)
\(720\) 0 0
\(721\) −8.03432 −0.299214
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −8.97808 −0.333438
\(726\) 0 0
\(727\) 32.1649 1.19293 0.596466 0.802638i \(-0.296571\pi\)
0.596466 + 0.802638i \(0.296571\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −23.5859 −0.872358
\(732\) 0 0
\(733\) 31.3993 1.15976 0.579880 0.814702i \(-0.303100\pi\)
0.579880 + 0.814702i \(0.303100\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −10.9128 −0.401977
\(738\) 0 0
\(739\) −38.0922 −1.40125 −0.700623 0.713532i \(-0.747094\pi\)
−0.700623 + 0.713532i \(0.747094\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.23743 0.0453969 0.0226985 0.999742i \(-0.492774\pi\)
0.0226985 + 0.999742i \(0.492774\pi\)
\(744\) 0 0
\(745\) −19.4382 −0.712159
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −3.93274 −0.143699
\(750\) 0 0
\(751\) −35.8546 −1.30835 −0.654176 0.756342i \(-0.726985\pi\)
−0.654176 + 0.756342i \(0.726985\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 7.33659 0.267006
\(756\) 0 0
\(757\) 14.5235 0.527864 0.263932 0.964541i \(-0.414981\pi\)
0.263932 + 0.964541i \(0.414981\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 23.8448 0.864374 0.432187 0.901784i \(-0.357742\pi\)
0.432187 + 0.901784i \(0.357742\pi\)
\(762\) 0 0
\(763\) −0.668861 −0.0242144
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −41.3068 −1.49150
\(768\) 0 0
\(769\) 32.4453 1.17001 0.585004 0.811031i \(-0.301093\pi\)
0.585004 + 0.811031i \(0.301093\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −51.3216 −1.84591 −0.922955 0.384908i \(-0.874233\pi\)
−0.922955 + 0.384908i \(0.874233\pi\)
\(774\) 0 0
\(775\) 0.590706 0.0212188
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −58.1593 −2.08377
\(780\) 0 0
\(781\) 11.8620 0.424455
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 11.2639 0.402025
\(786\) 0 0
\(787\) −17.1209 −0.610294 −0.305147 0.952305i \(-0.598706\pi\)
−0.305147 + 0.952305i \(0.598706\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 6.53298 0.232286
\(792\) 0 0
\(793\) 21.5547 0.765430
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 17.2565 0.611256 0.305628 0.952151i \(-0.401134\pi\)
0.305628 + 0.952151i \(0.401134\pi\)
\(798\) 0 0
\(799\) 26.0634 0.922056
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −3.82075 −0.134831
\(804\) 0 0
\(805\) 4.13063 0.145585
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 14.9342 0.525060 0.262530 0.964924i \(-0.415443\pi\)
0.262530 + 0.964924i \(0.415443\pi\)
\(810\) 0 0
\(811\) −21.9273 −0.769971 −0.384986 0.922923i \(-0.625794\pi\)
−0.384986 + 0.922923i \(0.625794\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −13.5035 −0.473006
\(816\) 0 0
\(817\) 24.1767 0.845834
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 34.8036 1.21465 0.607327 0.794452i \(-0.292242\pi\)
0.607327 + 0.794452i \(0.292242\pi\)
\(822\) 0 0
\(823\) 27.8429 0.970542 0.485271 0.874364i \(-0.338721\pi\)
0.485271 + 0.874364i \(0.338721\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −34.5590 −1.20174 −0.600868 0.799348i \(-0.705178\pi\)
−0.600868 + 0.799348i \(0.705178\pi\)
\(828\) 0 0
\(829\) −21.0243 −0.730204 −0.365102 0.930968i \(-0.618966\pi\)
−0.365102 + 0.930968i \(0.618966\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −46.5475 −1.61278
\(834\) 0 0
\(835\) −16.0412 −0.555130
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 37.3390 1.28908 0.644542 0.764569i \(-0.277048\pi\)
0.644542 + 0.764569i \(0.277048\pi\)
\(840\) 0 0
\(841\) 51.6059 1.77951
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1.59810 −0.0549762
\(846\) 0 0
\(847\) −0.704647 −0.0242120
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 61.2735 2.10043
\(852\) 0 0
\(853\) −22.9831 −0.786925 −0.393462 0.919341i \(-0.628723\pi\)
−0.393462 + 0.919341i \(0.628723\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 46.0584 1.57332 0.786662 0.617383i \(-0.211807\pi\)
0.786662 + 0.617383i \(0.211807\pi\)
\(858\) 0 0
\(859\) −29.3655 −1.00194 −0.500968 0.865466i \(-0.667023\pi\)
−0.500968 + 0.865466i \(0.667023\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −33.7795 −1.14987 −0.574934 0.818200i \(-0.694972\pi\)
−0.574934 + 0.818200i \(0.694972\pi\)
\(864\) 0 0
\(865\) 4.84267 0.164656
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −3.33659 −0.113186
\(870\) 0 0
\(871\) 41.6949 1.41278
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0.704647 0.0238214
\(876\) 0 0
\(877\) 43.9609 1.48446 0.742228 0.670148i \(-0.233769\pi\)
0.742228 + 0.670148i \(0.233769\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 7.86937 0.265126 0.132563 0.991175i \(-0.457679\pi\)
0.132563 + 0.991175i \(0.457679\pi\)
\(882\) 0 0
\(883\) 8.62934 0.290400 0.145200 0.989402i \(-0.453617\pi\)
0.145200 + 0.989402i \(0.453617\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 14.5013 0.486906 0.243453 0.969913i \(-0.421720\pi\)
0.243453 + 0.969913i \(0.421720\pi\)
\(888\) 0 0
\(889\) −7.76473 −0.260421
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −26.7161 −0.894021
\(894\) 0 0
\(895\) 1.05079 0.0351239
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −5.30341 −0.176879
\(900\) 0 0
\(901\) −84.9002 −2.82843
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −0.598098 −0.0198814
\(906\) 0 0
\(907\) 13.5977 0.451503 0.225751 0.974185i \(-0.427516\pi\)
0.225751 + 0.974185i \(0.427516\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −25.0126 −0.828704 −0.414352 0.910117i \(-0.635992\pi\)
−0.414352 + 0.910117i \(0.635992\pi\)
\(912\) 0 0
\(913\) 4.04124 0.133745
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2.56597 0.0847357
\(918\) 0 0
\(919\) −0.580940 −0.0191634 −0.00958172 0.999954i \(-0.503050\pi\)
−0.00958172 + 0.999954i \(0.503050\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −45.3216 −1.49178
\(924\) 0 0
\(925\) 10.4527 0.343682
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −27.5786 −0.904823 −0.452411 0.891809i \(-0.649436\pi\)
−0.452411 + 0.891809i \(0.649436\pi\)
\(930\) 0 0
\(931\) 47.7133 1.56374
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 7.15733 0.234070
\(936\) 0 0
\(937\) −17.9900 −0.587708 −0.293854 0.955850i \(-0.594938\pi\)
−0.293854 + 0.955850i \(0.594938\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0.431214 0.0140572 0.00702858 0.999975i \(-0.497763\pi\)
0.00702858 + 0.999975i \(0.497763\pi\)
\(942\) 0 0
\(943\) 46.4697 1.51326
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −17.4670 −0.567602 −0.283801 0.958883i \(-0.591596\pi\)
−0.283801 + 0.958883i \(0.591596\pi\)
\(948\) 0 0
\(949\) 14.5981 0.473874
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 24.8622 0.805366 0.402683 0.915340i \(-0.368078\pi\)
0.402683 + 0.915340i \(0.368078\pi\)
\(954\) 0 0
\(955\) 24.7747 0.801692
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −4.22788 −0.136525
\(960\) 0 0
\(961\) −30.6511 −0.988744
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −23.9032 −0.769472
\(966\) 0 0
\(967\) 18.1139 0.582505 0.291253 0.956646i \(-0.405928\pi\)
0.291253 + 0.956646i \(0.405928\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 18.5426 0.595059 0.297529 0.954713i \(-0.403837\pi\)
0.297529 + 0.954713i \(0.403837\pi\)
\(972\) 0 0
\(973\) −1.46053 −0.0468223
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 24.2665 0.776355 0.388177 0.921585i \(-0.373105\pi\)
0.388177 + 0.921585i \(0.373105\pi\)
\(978\) 0 0
\(979\) −7.05079 −0.225344
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 44.9514 1.43373 0.716863 0.697214i \(-0.245577\pi\)
0.716863 + 0.697214i \(0.245577\pi\)
\(984\) 0 0
\(985\) 16.5666 0.527857
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −19.3173 −0.614254
\(990\) 0 0
\(991\) −43.1185 −1.36970 −0.684852 0.728682i \(-0.740133\pi\)
−0.684852 + 0.728682i \(0.740133\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −5.05079 −0.160121
\(996\) 0 0
\(997\) −1.38541 −0.0438763 −0.0219381 0.999759i \(-0.506984\pi\)
−0.0219381 + 0.999759i \(0.506984\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7920.2.a.cm.1.3 4
3.2 odd 2 7920.2.a.cn.1.3 4
4.3 odd 2 495.2.a.f.1.3 4
12.11 even 2 495.2.a.g.1.2 yes 4
20.3 even 4 2475.2.c.t.199.4 8
20.7 even 4 2475.2.c.t.199.5 8
20.19 odd 2 2475.2.a.bj.1.2 4
44.43 even 2 5445.2.a.bs.1.2 4
60.23 odd 4 2475.2.c.s.199.5 8
60.47 odd 4 2475.2.c.s.199.4 8
60.59 even 2 2475.2.a.bf.1.3 4
132.131 odd 2 5445.2.a.bh.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
495.2.a.f.1.3 4 4.3 odd 2
495.2.a.g.1.2 yes 4 12.11 even 2
2475.2.a.bf.1.3 4 60.59 even 2
2475.2.a.bj.1.2 4 20.19 odd 2
2475.2.c.s.199.4 8 60.47 odd 4
2475.2.c.s.199.5 8 60.23 odd 4
2475.2.c.t.199.4 8 20.3 even 4
2475.2.c.t.199.5 8 20.7 even 4
5445.2.a.bh.1.3 4 132.131 odd 2
5445.2.a.bs.1.2 4 44.43 even 2
7920.2.a.cm.1.3 4 1.1 even 1 trivial
7920.2.a.cn.1.3 4 3.2 odd 2