Properties

Label 7942.2.a.bn
Level $7942$
Weight $2$
Character orbit 7942.a
Self dual yes
Analytic conductor $63.417$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7942,2,Mod(1,7942)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7942, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7942.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7942 = 2 \cdot 11 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7942.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.4171892853\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 19x^{6} + 14x^{5} + 116x^{4} - 65x^{3} - 235x^{2} + 120x + 80 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} - \beta_1 q^{3} + q^{4} + ( - \beta_{3} + \beta_1) q^{5} + \beta_1 q^{6} - \beta_{4} q^{7} - q^{8} + (\beta_{2} + 2) q^{9} + (\beta_{3} - \beta_1) q^{10} + q^{11} - \beta_1 q^{12} + ( - \beta_{3} - \beta_{2}) q^{13}+ \cdots + (\beta_{2} + 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} - q^{3} + 8 q^{4} - 3 q^{5} + q^{6} - 8 q^{8} + 15 q^{9} + 3 q^{10} + 8 q^{11} - q^{12} - 3 q^{13} - 36 q^{15} + 8 q^{16} - 4 q^{17} - 15 q^{18} - 3 q^{20} - 3 q^{21} - 8 q^{22} - q^{23}+ \cdots + 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - x^{7} - 19x^{6} + 14x^{5} + 116x^{4} - 65x^{3} - 235x^{2} + 120x + 80 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 21\nu^{7} + 23\nu^{6} - 427\nu^{5} - 334\nu^{4} + 2460\nu^{3} + 1275\nu^{2} - 3635\nu - 220 ) / 800 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 7\nu^{7} - 59\nu^{6} - 9\nu^{5} + 822\nu^{4} - 580\nu^{3} - 3175\nu^{2} + 1855\nu + 2060 ) / 200 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -11\nu^{7} + 7\nu^{6} + 157\nu^{5} - 6\nu^{4} - 460\nu^{3} - 525\nu^{2} - 515\nu + 1220 ) / 200 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 11\nu^{7} - 7\nu^{6} - 157\nu^{5} + 6\nu^{4} + 660\nu^{3} + 325\nu^{2} - 885\nu - 420 ) / 200 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 89\nu^{7} - 93\nu^{6} - 1543\nu^{5} + 794\nu^{4} + 8140\nu^{3} - 425\nu^{2} - 11215\nu - 1580 ) / 800 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{6} + \beta_{5} + \beta_{2} + 7\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -\beta_{7} + \beta_{5} + \beta_{4} + 5\beta_{3} + 10\beta_{2} + 2\beta _1 + 33 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -3\beta_{7} + 15\beta_{6} + 11\beta_{5} + \beta_{4} + 3\beta_{3} + 14\beta_{2} + 57\beta _1 + 19 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -20\beta_{7} + 9\beta_{6} + 15\beta_{5} + 13\beta_{4} + 80\beta_{3} + 93\beta_{2} + 41\beta _1 + 241 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -55\beta_{7} + 178\beta_{6} + 106\beta_{5} + 22\beta_{4} + 91\beta_{3} + 164\beta_{2} + 499\beta _1 + 237 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.24873
2.70544
1.52604
1.10057
−0.405236
−2.03149
−2.39256
−2.75150
−1.00000 −3.24873 1.00000 1.63070 3.24873 −1.84467 −1.00000 7.55426 −1.63070
1.2 −1.00000 −2.70544 1.00000 3.32348 2.70544 3.11031 −1.00000 4.31943 −3.32348
1.3 −1.00000 −1.52604 1.00000 −0.0919939 1.52604 3.95565 −1.00000 −0.671202 0.0919939
1.4 −1.00000 −1.10057 1.00000 1.71860 1.10057 −2.91474 −1.00000 −1.78875 −1.71860
1.5 −1.00000 0.405236 1.00000 −2.02327 −0.405236 −4.23745 −1.00000 −2.83578 2.02327
1.6 −1.00000 2.03149 1.00000 −1.41345 −2.03149 3.91988 −1.00000 1.12694 1.41345
1.7 −1.00000 2.39256 1.00000 −1.77453 −2.39256 −4.11545 −1.00000 2.72434 1.77453
1.8 −1.00000 2.75150 1.00000 −4.36954 −2.75150 2.12647 −1.00000 4.57076 4.36954
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(11\) \( -1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7942.2.a.bn 8
19.b odd 2 1 7942.2.a.bq yes 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7942.2.a.bn 8 1.a even 1 1 trivial
7942.2.a.bq yes 8 19.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7942))\):

\( T_{3}^{8} + T_{3}^{7} - 19T_{3}^{6} - 14T_{3}^{5} + 116T_{3}^{4} + 65T_{3}^{3} - 235T_{3}^{2} - 120T_{3} + 80 \) Copy content Toggle raw display
\( T_{5}^{8} + 3T_{5}^{7} - 18T_{5}^{6} - 45T_{5}^{5} + 76T_{5}^{4} + 180T_{5}^{3} - 87T_{5}^{2} - 216T_{5} - 19 \) Copy content Toggle raw display
\( T_{13}^{8} + 3T_{13}^{7} - 48T_{13}^{6} - 45T_{13}^{5} + 606T_{13}^{4} - 220T_{13}^{3} - 1387T_{13}^{2} + 994T_{13} + 121 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{8} \) Copy content Toggle raw display
$3$ \( T^{8} + T^{7} + \cdots + 80 \) Copy content Toggle raw display
$5$ \( T^{8} + 3 T^{7} + \cdots - 19 \) Copy content Toggle raw display
$7$ \( T^{8} - 46 T^{6} + \cdots + 9616 \) Copy content Toggle raw display
$11$ \( (T - 1)^{8} \) Copy content Toggle raw display
$13$ \( T^{8} + 3 T^{7} + \cdots + 121 \) Copy content Toggle raw display
$17$ \( T^{8} + 4 T^{7} + \cdots + 5111 \) Copy content Toggle raw display
$19$ \( T^{8} \) Copy content Toggle raw display
$23$ \( T^{8} + T^{7} + \cdots - 304 \) Copy content Toggle raw display
$29$ \( T^{8} - 4 T^{7} + \cdots + 625 \) Copy content Toggle raw display
$31$ \( T^{8} - 3 T^{7} + \cdots + 3856 \) Copy content Toggle raw display
$37$ \( T^{8} - 26 T^{7} + \cdots + 1737401 \) Copy content Toggle raw display
$41$ \( T^{8} + 17 T^{7} + \cdots - 8002819 \) Copy content Toggle raw display
$43$ \( T^{8} + 6 T^{7} + \cdots + 2349776 \) Copy content Toggle raw display
$47$ \( T^{8} - 111 T^{6} + \cdots - 11824 \) Copy content Toggle raw display
$53$ \( T^{8} + 49 T^{7} + \cdots + 193351 \) Copy content Toggle raw display
$59$ \( T^{8} + 15 T^{7} + \cdots + 14440000 \) Copy content Toggle raw display
$61$ \( T^{8} + 14 T^{7} + \cdots + 186481 \) Copy content Toggle raw display
$67$ \( T^{8} + 5 T^{7} + \cdots + 147856 \) Copy content Toggle raw display
$71$ \( T^{8} - T^{7} + \cdots + 42736 \) Copy content Toggle raw display
$73$ \( T^{8} + 10 T^{7} + \cdots - 336859 \) Copy content Toggle raw display
$79$ \( T^{8} + 12 T^{7} + \cdots + 942400 \) Copy content Toggle raw display
$83$ \( T^{8} + 7 T^{7} + \cdots + 535616 \) Copy content Toggle raw display
$89$ \( T^{8} + 8 T^{7} + \cdots + 3006125 \) Copy content Toggle raw display
$97$ \( T^{8} + 54 T^{7} + \cdots + 117211 \) Copy content Toggle raw display
show more
show less