Properties

Label 7942.2.a.bn
Level 79427942
Weight 22
Character orbit 7942.a
Self dual yes
Analytic conductor 63.41763.417
Analytic rank 11
Dimension 88
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7942,2,Mod(1,7942)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7942, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7942.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 7942=211192 7942 = 2 \cdot 11 \cdot 19^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 7942.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 63.417189285363.4171892853
Analytic rank: 11
Dimension: 88
Coefficient field: Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x719x6+14x5+116x465x3235x2+120x+80 x^{8} - x^{7} - 19x^{6} + 14x^{5} + 116x^{4} - 65x^{3} - 235x^{2} + 120x + 80 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 5 5
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qq2β1q3+q4+(β3+β1)q5+β1q6β4q7q8+(β2+2)q9+(β3β1)q10+q11β1q12+(β3β2)q13++(β2+2)q99+O(q100) q - q^{2} - \beta_1 q^{3} + q^{4} + ( - \beta_{3} + \beta_1) q^{5} + \beta_1 q^{6} - \beta_{4} q^{7} - q^{8} + (\beta_{2} + 2) q^{9} + (\beta_{3} - \beta_1) q^{10} + q^{11} - \beta_1 q^{12} + ( - \beta_{3} - \beta_{2}) q^{13}+ \cdots + (\beta_{2} + 2) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q8q2q3+8q43q5+q68q8+15q9+3q10+8q11q123q1336q15+8q164q1715q183q203q218q22q23++15q99+O(q100) 8 q - 8 q^{2} - q^{3} + 8 q^{4} - 3 q^{5} + q^{6} - 8 q^{8} + 15 q^{9} + 3 q^{10} + 8 q^{11} - q^{12} - 3 q^{13} - 36 q^{15} + 8 q^{16} - 4 q^{17} - 15 q^{18} - 3 q^{20} - 3 q^{21} - 8 q^{22} - q^{23}+ \cdots + 15 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8x719x6+14x5+116x465x3235x2+120x+80 x^{8} - x^{7} - 19x^{6} + 14x^{5} + 116x^{4} - 65x^{3} - 235x^{2} + 120x + 80 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν25 \nu^{2} - 5 Copy content Toggle raw display
β3\beta_{3}== (21ν7+23ν6427ν5334ν4+2460ν3+1275ν23635ν220)/800 ( 21\nu^{7} + 23\nu^{6} - 427\nu^{5} - 334\nu^{4} + 2460\nu^{3} + 1275\nu^{2} - 3635\nu - 220 ) / 800 Copy content Toggle raw display
β4\beta_{4}== (7ν759ν69ν5+822ν4580ν33175ν2+1855ν+2060)/200 ( 7\nu^{7} - 59\nu^{6} - 9\nu^{5} + 822\nu^{4} - 580\nu^{3} - 3175\nu^{2} + 1855\nu + 2060 ) / 200 Copy content Toggle raw display
β5\beta_{5}== (11ν7+7ν6+157ν56ν4460ν3525ν2515ν+1220)/200 ( -11\nu^{7} + 7\nu^{6} + 157\nu^{5} - 6\nu^{4} - 460\nu^{3} - 525\nu^{2} - 515\nu + 1220 ) / 200 Copy content Toggle raw display
β6\beta_{6}== (11ν77ν6157ν5+6ν4+660ν3+325ν2885ν420)/200 ( 11\nu^{7} - 7\nu^{6} - 157\nu^{5} + 6\nu^{4} + 660\nu^{3} + 325\nu^{2} - 885\nu - 420 ) / 200 Copy content Toggle raw display
β7\beta_{7}== (89ν793ν61543ν5+794ν4+8140ν3425ν211215ν1580)/800 ( 89\nu^{7} - 93\nu^{6} - 1543\nu^{5} + 794\nu^{4} + 8140\nu^{3} - 425\nu^{2} - 11215\nu - 1580 ) / 800 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+5 \beta_{2} + 5 Copy content Toggle raw display
ν3\nu^{3}== β6+β5+β2+7β1+1 \beta_{6} + \beta_{5} + \beta_{2} + 7\beta _1 + 1 Copy content Toggle raw display
ν4\nu^{4}== β7+β5+β4+5β3+10β2+2β1+33 -\beta_{7} + \beta_{5} + \beta_{4} + 5\beta_{3} + 10\beta_{2} + 2\beta _1 + 33 Copy content Toggle raw display
ν5\nu^{5}== 3β7+15β6+11β5+β4+3β3+14β2+57β1+19 -3\beta_{7} + 15\beta_{6} + 11\beta_{5} + \beta_{4} + 3\beta_{3} + 14\beta_{2} + 57\beta _1 + 19 Copy content Toggle raw display
ν6\nu^{6}== 20β7+9β6+15β5+13β4+80β3+93β2+41β1+241 -20\beta_{7} + 9\beta_{6} + 15\beta_{5} + 13\beta_{4} + 80\beta_{3} + 93\beta_{2} + 41\beta _1 + 241 Copy content Toggle raw display
ν7\nu^{7}== 55β7+178β6+106β5+22β4+91β3+164β2+499β1+237 -55\beta_{7} + 178\beta_{6} + 106\beta_{5} + 22\beta_{4} + 91\beta_{3} + 164\beta_{2} + 499\beta _1 + 237 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
3.24873
2.70544
1.52604
1.10057
−0.405236
−2.03149
−2.39256
−2.75150
−1.00000 −3.24873 1.00000 1.63070 3.24873 −1.84467 −1.00000 7.55426 −1.63070
1.2 −1.00000 −2.70544 1.00000 3.32348 2.70544 3.11031 −1.00000 4.31943 −3.32348
1.3 −1.00000 −1.52604 1.00000 −0.0919939 1.52604 3.95565 −1.00000 −0.671202 0.0919939
1.4 −1.00000 −1.10057 1.00000 1.71860 1.10057 −2.91474 −1.00000 −1.78875 −1.71860
1.5 −1.00000 0.405236 1.00000 −2.02327 −0.405236 −4.23745 −1.00000 −2.83578 2.02327
1.6 −1.00000 2.03149 1.00000 −1.41345 −2.03149 3.91988 −1.00000 1.12694 1.41345
1.7 −1.00000 2.39256 1.00000 −1.77453 −2.39256 −4.11545 −1.00000 2.72434 1.77453
1.8 −1.00000 2.75150 1.00000 −4.36954 −2.75150 2.12647 −1.00000 4.57076 4.36954
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
1111 1 -1
1919 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7942.2.a.bn 8
19.b odd 2 1 7942.2.a.bq yes 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7942.2.a.bn 8 1.a even 1 1 trivial
7942.2.a.bq yes 8 19.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(7942))S_{2}^{\mathrm{new}}(\Gamma_0(7942)):

T38+T3719T3614T35+116T34+65T33235T32120T3+80 T_{3}^{8} + T_{3}^{7} - 19T_{3}^{6} - 14T_{3}^{5} + 116T_{3}^{4} + 65T_{3}^{3} - 235T_{3}^{2} - 120T_{3} + 80 Copy content Toggle raw display
T58+3T5718T5645T55+76T54+180T5387T52216T519 T_{5}^{8} + 3T_{5}^{7} - 18T_{5}^{6} - 45T_{5}^{5} + 76T_{5}^{4} + 180T_{5}^{3} - 87T_{5}^{2} - 216T_{5} - 19 Copy content Toggle raw display
T138+3T13748T13645T135+606T134220T1331387T132+994T13+121 T_{13}^{8} + 3T_{13}^{7} - 48T_{13}^{6} - 45T_{13}^{5} + 606T_{13}^{4} - 220T_{13}^{3} - 1387T_{13}^{2} + 994T_{13} + 121 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T+1)8 (T + 1)^{8} Copy content Toggle raw display
33 T8+T7++80 T^{8} + T^{7} + \cdots + 80 Copy content Toggle raw display
55 T8+3T7+19 T^{8} + 3 T^{7} + \cdots - 19 Copy content Toggle raw display
77 T846T6++9616 T^{8} - 46 T^{6} + \cdots + 9616 Copy content Toggle raw display
1111 (T1)8 (T - 1)^{8} Copy content Toggle raw display
1313 T8+3T7++121 T^{8} + 3 T^{7} + \cdots + 121 Copy content Toggle raw display
1717 T8+4T7++5111 T^{8} + 4 T^{7} + \cdots + 5111 Copy content Toggle raw display
1919 T8 T^{8} Copy content Toggle raw display
2323 T8+T7+304 T^{8} + T^{7} + \cdots - 304 Copy content Toggle raw display
2929 T84T7++625 T^{8} - 4 T^{7} + \cdots + 625 Copy content Toggle raw display
3131 T83T7++3856 T^{8} - 3 T^{7} + \cdots + 3856 Copy content Toggle raw display
3737 T826T7++1737401 T^{8} - 26 T^{7} + \cdots + 1737401 Copy content Toggle raw display
4141 T8+17T7+8002819 T^{8} + 17 T^{7} + \cdots - 8002819 Copy content Toggle raw display
4343 T8+6T7++2349776 T^{8} + 6 T^{7} + \cdots + 2349776 Copy content Toggle raw display
4747 T8111T6+11824 T^{8} - 111 T^{6} + \cdots - 11824 Copy content Toggle raw display
5353 T8+49T7++193351 T^{8} + 49 T^{7} + \cdots + 193351 Copy content Toggle raw display
5959 T8+15T7++14440000 T^{8} + 15 T^{7} + \cdots + 14440000 Copy content Toggle raw display
6161 T8+14T7++186481 T^{8} + 14 T^{7} + \cdots + 186481 Copy content Toggle raw display
6767 T8+5T7++147856 T^{8} + 5 T^{7} + \cdots + 147856 Copy content Toggle raw display
7171 T8T7++42736 T^{8} - T^{7} + \cdots + 42736 Copy content Toggle raw display
7373 T8+10T7+336859 T^{8} + 10 T^{7} + \cdots - 336859 Copy content Toggle raw display
7979 T8+12T7++942400 T^{8} + 12 T^{7} + \cdots + 942400 Copy content Toggle raw display
8383 T8+7T7++535616 T^{8} + 7 T^{7} + \cdots + 535616 Copy content Toggle raw display
8989 T8+8T7++3006125 T^{8} + 8 T^{7} + \cdots + 3006125 Copy content Toggle raw display
9797 T8+54T7++117211 T^{8} + 54 T^{7} + \cdots + 117211 Copy content Toggle raw display
show more
show less