Properties

Label 7942.2.a.bp
Level $7942$
Weight $2$
Character orbit 7942.a
Self dual yes
Analytic conductor $63.417$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7942,2,Mod(1,7942)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7942, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7942.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7942 = 2 \cdot 11 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7942.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.4171892853\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} - 14x^{6} + 29x^{5} + 64x^{4} - 50x^{3} - 36x^{2} + 30x - 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + (\beta_1 - 1) q^{3} + q^{4} + ( - \beta_{3} - \beta_1) q^{5} + (\beta_1 - 1) q^{6} + \beta_{6} q^{7} + q^{8} + ( - \beta_{6} + \beta_{5} + 1) q^{9} + ( - \beta_{3} - \beta_1) q^{10} - q^{11}+ \cdots + (\beta_{6} - \beta_{5} - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} - 5 q^{3} + 8 q^{4} + q^{5} - 5 q^{6} - 4 q^{7} + 8 q^{8} + 15 q^{9} + q^{10} - 8 q^{11} - 5 q^{12} - 3 q^{13} - 4 q^{14} - 34 q^{15} + 8 q^{16} - 6 q^{17} + 15 q^{18} + q^{20} + 11 q^{21}+ \cdots - 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 3x^{7} - 14x^{6} + 29x^{5} + 64x^{4} - 50x^{3} - 36x^{2} + 30x - 5 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -3\nu^{7} + 10\nu^{6} + 36\nu^{5} - 83\nu^{4} - 159\nu^{3} + 91\nu^{2} + 91\nu - 35 ) / 8 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 7\nu^{7} - 18\nu^{6} - 108\nu^{5} + 167\nu^{4} + 531\nu^{3} - 191\nu^{2} - 343\nu + 111 ) / 8 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -9\nu^{7} + 22\nu^{6} + 140\nu^{5} - 193\nu^{4} - 685\nu^{3} + 129\nu^{2} + 369\nu - 97 ) / 8 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 3\nu^{7} - 8\nu^{6} - 44\nu^{5} + 69\nu^{4} + 213\nu^{3} - 57\nu^{2} - 133\nu + 33 ) / 2 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 3\nu^{7} - 8\nu^{6} - 44\nu^{5} + 69\nu^{4} + 213\nu^{3} - 59\nu^{2} - 129\nu + 39 ) / 2 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 39\nu^{7} - 106\nu^{6} - 572\nu^{5} + 951\nu^{4} + 2747\nu^{3} - 1047\nu^{2} - 1695\nu + 583 ) / 8 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{6} + \beta_{5} + 2\beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{6} + 2\beta_{5} + \beta_{4} + \beta_{2} + 11\beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{7} - 10\beta_{6} + 11\beta_{5} + 2\beta_{4} - 3\beta_{3} + 4\beta_{2} + 32\beta _1 + 24 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 4\beta_{7} - 20\beta_{6} + 32\beta_{5} + 14\beta_{4} - 15\beta_{3} + 23\beta_{2} + 135\beta _1 + 49 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 23\beta_{7} - 106\beta_{6} + 135\beta_{5} + 43\beta_{4} - 81\beta_{3} + 97\beta_{2} + 454\beta _1 + 233 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 97\beta_{7} - 294\beta_{6} + 454\beta_{5} + 203\beta_{4} - 367\beta_{3} + 433\beta_{2} + 1756\beta _1 + 621 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.29456
−2.22193
−0.960117
0.304617
0.370513
0.725465
3.33202
3.74399
1.00000 −3.29456 1.00000 1.67652 −3.29456 −4.86985 1.00000 7.85409 1.67652
1.2 1.00000 −3.22193 1.00000 3.83997 −3.22193 −1.13450 1.00000 7.38086 3.83997
1.3 1.00000 −1.96012 1.00000 0.342083 −1.96012 2.97928 1.00000 0.842060 0.342083
1.4 1.00000 −0.695383 1.00000 −0.922651 −0.695383 0.361679 1.00000 −2.51644 −0.922651
1.5 1.00000 −0.629487 1.00000 1.24752 −0.629487 −2.54316 1.00000 −2.60375 1.24752
1.6 1.00000 −0.274535 1.00000 0.892569 −0.274535 2.55547 1.00000 −2.92463 0.892569
1.7 1.00000 2.33202 1.00000 −3.95006 2.33202 −0.471110 1.00000 2.43832 −3.95006
1.8 1.00000 2.74399 1.00000 −2.12596 2.74399 −0.877808 1.00000 4.52948 −2.12596
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(11\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7942.2.a.bp yes 8
19.b odd 2 1 7942.2.a.bo 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7942.2.a.bo 8 19.b odd 2 1
7942.2.a.bp yes 8 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7942))\):

\( T_{3}^{8} + 5T_{3}^{7} - 7T_{3}^{6} - 62T_{3}^{5} - 36T_{3}^{4} + 167T_{3}^{3} + 243T_{3}^{2} + 112T_{3} + 16 \) Copy content Toggle raw display
\( T_{5}^{8} - T_{5}^{7} - 20T_{5}^{6} + 23T_{5}^{5} + 74T_{5}^{4} - 106T_{5}^{3} - 27T_{5}^{2} + 74T_{5} - 19 \) Copy content Toggle raw display
\( T_{13}^{8} + 3T_{13}^{7} - 72T_{13}^{6} - 241T_{13}^{5} + 1342T_{13}^{4} + 4374T_{13}^{3} - 7689T_{13}^{2} - 23004T_{13} + 2911 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{8} \) Copy content Toggle raw display
$3$ \( T^{8} + 5 T^{7} + \cdots + 16 \) Copy content Toggle raw display
$5$ \( T^{8} - T^{7} + \cdots - 19 \) Copy content Toggle raw display
$7$ \( T^{8} + 4 T^{7} + \cdots - 16 \) Copy content Toggle raw display
$11$ \( (T + 1)^{8} \) Copy content Toggle raw display
$13$ \( T^{8} + 3 T^{7} + \cdots + 2911 \) Copy content Toggle raw display
$17$ \( T^{8} + 6 T^{7} + \cdots + 241 \) Copy content Toggle raw display
$19$ \( T^{8} \) Copy content Toggle raw display
$23$ \( T^{8} - 9 T^{7} + \cdots + 27920 \) Copy content Toggle raw display
$29$ \( T^{8} + 4 T^{7} + \cdots - 87169 \) Copy content Toggle raw display
$31$ \( T^{8} + 11 T^{7} + \cdots + 8720 \) Copy content Toggle raw display
$37$ \( T^{8} - 10 T^{7} + \cdots + 12269 \) Copy content Toggle raw display
$41$ \( T^{8} + 29 T^{7} + \cdots - 1301 \) Copy content Toggle raw display
$43$ \( T^{8} - 2 T^{7} + \cdots + 16624 \) Copy content Toggle raw display
$47$ \( T^{8} - 259 T^{6} + \cdots - 15280 \) Copy content Toggle raw display
$53$ \( T^{8} + 59 T^{7} + \cdots + 10843831 \) Copy content Toggle raw display
$59$ \( T^{8} + 23 T^{7} + \cdots - 5134144 \) Copy content Toggle raw display
$61$ \( T^{8} + 2 T^{7} + \cdots + 37902131 \) Copy content Toggle raw display
$67$ \( T^{8} - 3 T^{7} + \cdots + 281264 \) Copy content Toggle raw display
$71$ \( T^{8} + T^{7} + \cdots + 8315920 \) Copy content Toggle raw display
$73$ \( T^{8} + 6 T^{7} + \cdots + 58388219 \) Copy content Toggle raw display
$79$ \( T^{8} - 410 T^{6} + \cdots - 9246464 \) Copy content Toggle raw display
$83$ \( T^{8} - 15 T^{7} + \cdots + 5294656 \) Copy content Toggle raw display
$89$ \( T^{8} + 4 T^{7} + \cdots - 24631 \) Copy content Toggle raw display
$97$ \( T^{8} + 62 T^{7} + \cdots + 53342671 \) Copy content Toggle raw display
show more
show less