Properties

Label 7942.2.a.ca.1.9
Level $7942$
Weight $2$
Character 7942.1
Self dual yes
Analytic conductor $63.417$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7942,2,Mod(1,7942)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7942, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7942.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7942 = 2 \cdot 11 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7942.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.4171892853\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 3 x^{14} - 33 x^{13} + 101 x^{12} + 408 x^{11} - 1314 x^{10} - 2271 x^{9} + 8292 x^{8} + \cdots - 3592 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 418)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(1.11596\) of defining polynomial
Character \(\chi\) \(=\) 7942.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.11596 q^{3} +1.00000 q^{4} +1.31280 q^{5} +1.11596 q^{6} +4.27450 q^{7} +1.00000 q^{8} -1.75463 q^{9} +1.31280 q^{10} -1.00000 q^{11} +1.11596 q^{12} +1.28738 q^{13} +4.27450 q^{14} +1.46503 q^{15} +1.00000 q^{16} +4.16533 q^{17} -1.75463 q^{18} +1.31280 q^{20} +4.77018 q^{21} -1.00000 q^{22} -5.17499 q^{23} +1.11596 q^{24} -3.27656 q^{25} +1.28738 q^{26} -5.30599 q^{27} +4.27450 q^{28} -4.44333 q^{29} +1.46503 q^{30} +1.41424 q^{31} +1.00000 q^{32} -1.11596 q^{33} +4.16533 q^{34} +5.61155 q^{35} -1.75463 q^{36} +9.94702 q^{37} +1.43667 q^{39} +1.31280 q^{40} +1.43023 q^{41} +4.77018 q^{42} +7.81236 q^{43} -1.00000 q^{44} -2.30347 q^{45} -5.17499 q^{46} +7.17369 q^{47} +1.11596 q^{48} +11.2714 q^{49} -3.27656 q^{50} +4.64835 q^{51} +1.28738 q^{52} +7.03965 q^{53} -5.30599 q^{54} -1.31280 q^{55} +4.27450 q^{56} -4.44333 q^{58} +1.81150 q^{59} +1.46503 q^{60} -5.39823 q^{61} +1.41424 q^{62} -7.50015 q^{63} +1.00000 q^{64} +1.69007 q^{65} -1.11596 q^{66} +3.85733 q^{67} +4.16533 q^{68} -5.77510 q^{69} +5.61155 q^{70} -4.84903 q^{71} -1.75463 q^{72} +10.5626 q^{73} +9.94702 q^{74} -3.65652 q^{75} -4.27450 q^{77} +1.43667 q^{78} +7.22195 q^{79} +1.31280 q^{80} -0.657405 q^{81} +1.43023 q^{82} +11.8052 q^{83} +4.77018 q^{84} +5.46823 q^{85} +7.81236 q^{86} -4.95859 q^{87} -1.00000 q^{88} -2.08674 q^{89} -2.30347 q^{90} +5.50292 q^{91} -5.17499 q^{92} +1.57824 q^{93} +7.17369 q^{94} +1.11596 q^{96} -9.42699 q^{97} +11.2714 q^{98} +1.75463 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q + 15 q^{2} + 3 q^{3} + 15 q^{4} + 9 q^{5} + 3 q^{6} + 15 q^{8} + 30 q^{9} + 9 q^{10} - 15 q^{11} + 3 q^{12} + 21 q^{15} + 15 q^{16} + 21 q^{17} + 30 q^{18} + 9 q^{20} - 9 q^{21} - 15 q^{22} + 21 q^{23}+ \cdots - 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.11596 0.644301 0.322151 0.946688i \(-0.395594\pi\)
0.322151 + 0.946688i \(0.395594\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.31280 0.587101 0.293550 0.955944i \(-0.405163\pi\)
0.293550 + 0.955944i \(0.405163\pi\)
\(6\) 1.11596 0.455590
\(7\) 4.27450 1.61561 0.807805 0.589450i \(-0.200656\pi\)
0.807805 + 0.589450i \(0.200656\pi\)
\(8\) 1.00000 0.353553
\(9\) −1.75463 −0.584876
\(10\) 1.31280 0.415143
\(11\) −1.00000 −0.301511
\(12\) 1.11596 0.322151
\(13\) 1.28738 0.357056 0.178528 0.983935i \(-0.442866\pi\)
0.178528 + 0.983935i \(0.442866\pi\)
\(14\) 4.27450 1.14241
\(15\) 1.46503 0.378270
\(16\) 1.00000 0.250000
\(17\) 4.16533 1.01024 0.505120 0.863049i \(-0.331448\pi\)
0.505120 + 0.863049i \(0.331448\pi\)
\(18\) −1.75463 −0.413569
\(19\) 0 0
\(20\) 1.31280 0.293550
\(21\) 4.77018 1.04094
\(22\) −1.00000 −0.213201
\(23\) −5.17499 −1.07906 −0.539530 0.841966i \(-0.681398\pi\)
−0.539530 + 0.841966i \(0.681398\pi\)
\(24\) 1.11596 0.227795
\(25\) −3.27656 −0.655312
\(26\) 1.28738 0.252477
\(27\) −5.30599 −1.02114
\(28\) 4.27450 0.807805
\(29\) −4.44333 −0.825106 −0.412553 0.910934i \(-0.635363\pi\)
−0.412553 + 0.910934i \(0.635363\pi\)
\(30\) 1.46503 0.267477
\(31\) 1.41424 0.254005 0.127002 0.991902i \(-0.459464\pi\)
0.127002 + 0.991902i \(0.459464\pi\)
\(32\) 1.00000 0.176777
\(33\) −1.11596 −0.194264
\(34\) 4.16533 0.714348
\(35\) 5.61155 0.948526
\(36\) −1.75463 −0.292438
\(37\) 9.94702 1.63528 0.817640 0.575730i \(-0.195282\pi\)
0.817640 + 0.575730i \(0.195282\pi\)
\(38\) 0 0
\(39\) 1.43667 0.230052
\(40\) 1.31280 0.207572
\(41\) 1.43023 0.223364 0.111682 0.993744i \(-0.464376\pi\)
0.111682 + 0.993744i \(0.464376\pi\)
\(42\) 4.77018 0.736055
\(43\) 7.81236 1.19137 0.595686 0.803217i \(-0.296880\pi\)
0.595686 + 0.803217i \(0.296880\pi\)
\(44\) −1.00000 −0.150756
\(45\) −2.30347 −0.343381
\(46\) −5.17499 −0.763011
\(47\) 7.17369 1.04639 0.523195 0.852213i \(-0.324740\pi\)
0.523195 + 0.852213i \(0.324740\pi\)
\(48\) 1.11596 0.161075
\(49\) 11.2714 1.61019
\(50\) −3.27656 −0.463376
\(51\) 4.64835 0.650899
\(52\) 1.28738 0.178528
\(53\) 7.03965 0.966970 0.483485 0.875353i \(-0.339371\pi\)
0.483485 + 0.875353i \(0.339371\pi\)
\(54\) −5.30599 −0.722053
\(55\) −1.31280 −0.177018
\(56\) 4.27450 0.571204
\(57\) 0 0
\(58\) −4.44333 −0.583438
\(59\) 1.81150 0.235838 0.117919 0.993023i \(-0.462378\pi\)
0.117919 + 0.993023i \(0.462378\pi\)
\(60\) 1.46503 0.189135
\(61\) −5.39823 −0.691173 −0.345586 0.938387i \(-0.612320\pi\)
−0.345586 + 0.938387i \(0.612320\pi\)
\(62\) 1.41424 0.179608
\(63\) −7.50015 −0.944931
\(64\) 1.00000 0.125000
\(65\) 1.69007 0.209628
\(66\) −1.11596 −0.137366
\(67\) 3.85733 0.471248 0.235624 0.971844i \(-0.424287\pi\)
0.235624 + 0.971844i \(0.424287\pi\)
\(68\) 4.16533 0.505120
\(69\) −5.77510 −0.695240
\(70\) 5.61155 0.670709
\(71\) −4.84903 −0.575474 −0.287737 0.957709i \(-0.592903\pi\)
−0.287737 + 0.957709i \(0.592903\pi\)
\(72\) −1.75463 −0.206785
\(73\) 10.5626 1.23626 0.618128 0.786077i \(-0.287891\pi\)
0.618128 + 0.786077i \(0.287891\pi\)
\(74\) 9.94702 1.15632
\(75\) −3.65652 −0.422219
\(76\) 0 0
\(77\) −4.27450 −0.487125
\(78\) 1.43667 0.162671
\(79\) 7.22195 0.812533 0.406266 0.913755i \(-0.366830\pi\)
0.406266 + 0.913755i \(0.366830\pi\)
\(80\) 1.31280 0.146775
\(81\) −0.657405 −0.0730450
\(82\) 1.43023 0.157942
\(83\) 11.8052 1.29579 0.647896 0.761729i \(-0.275649\pi\)
0.647896 + 0.761729i \(0.275649\pi\)
\(84\) 4.77018 0.520470
\(85\) 5.46823 0.593113
\(86\) 7.81236 0.842428
\(87\) −4.95859 −0.531617
\(88\) −1.00000 −0.106600
\(89\) −2.08674 −0.221194 −0.110597 0.993865i \(-0.535276\pi\)
−0.110597 + 0.993865i \(0.535276\pi\)
\(90\) −2.30347 −0.242807
\(91\) 5.50292 0.576863
\(92\) −5.17499 −0.539530
\(93\) 1.57824 0.163656
\(94\) 7.17369 0.739909
\(95\) 0 0
\(96\) 1.11596 0.113897
\(97\) −9.42699 −0.957166 −0.478583 0.878042i \(-0.658849\pi\)
−0.478583 + 0.878042i \(0.658849\pi\)
\(98\) 11.2714 1.13858
\(99\) 1.75463 0.176347
\(100\) −3.27656 −0.327656
\(101\) 19.0888 1.89941 0.949703 0.313153i \(-0.101385\pi\)
0.949703 + 0.313153i \(0.101385\pi\)
\(102\) 4.64835 0.460255
\(103\) −9.14040 −0.900630 −0.450315 0.892870i \(-0.648688\pi\)
−0.450315 + 0.892870i \(0.648688\pi\)
\(104\) 1.28738 0.126238
\(105\) 6.26229 0.611137
\(106\) 7.03965 0.683751
\(107\) 10.9124 1.05494 0.527469 0.849575i \(-0.323141\pi\)
0.527469 + 0.849575i \(0.323141\pi\)
\(108\) −5.30599 −0.510569
\(109\) −20.1828 −1.93316 −0.966582 0.256357i \(-0.917478\pi\)
−0.966582 + 0.256357i \(0.917478\pi\)
\(110\) −1.31280 −0.125170
\(111\) 11.1005 1.05361
\(112\) 4.27450 0.403902
\(113\) −1.14974 −0.108158 −0.0540791 0.998537i \(-0.517222\pi\)
−0.0540791 + 0.998537i \(0.517222\pi\)
\(114\) 0 0
\(115\) −6.79372 −0.633517
\(116\) −4.44333 −0.412553
\(117\) −2.25888 −0.208833
\(118\) 1.81150 0.166762
\(119\) 17.8047 1.63215
\(120\) 1.46503 0.133739
\(121\) 1.00000 0.0909091
\(122\) −5.39823 −0.488733
\(123\) 1.59608 0.143914
\(124\) 1.41424 0.127002
\(125\) −10.8655 −0.971836
\(126\) −7.50015 −0.668167
\(127\) −9.97947 −0.885535 −0.442767 0.896637i \(-0.646003\pi\)
−0.442767 + 0.896637i \(0.646003\pi\)
\(128\) 1.00000 0.0883883
\(129\) 8.71830 0.767603
\(130\) 1.69007 0.148229
\(131\) 14.6673 1.28149 0.640746 0.767753i \(-0.278625\pi\)
0.640746 + 0.767753i \(0.278625\pi\)
\(132\) −1.11596 −0.0971321
\(133\) 0 0
\(134\) 3.85733 0.333223
\(135\) −6.96569 −0.599511
\(136\) 4.16533 0.357174
\(137\) −12.2599 −1.04743 −0.523715 0.851893i \(-0.675454\pi\)
−0.523715 + 0.851893i \(0.675454\pi\)
\(138\) −5.77510 −0.491609
\(139\) −6.46785 −0.548596 −0.274298 0.961645i \(-0.588445\pi\)
−0.274298 + 0.961645i \(0.588445\pi\)
\(140\) 5.61155 0.474263
\(141\) 8.00557 0.674191
\(142\) −4.84903 −0.406921
\(143\) −1.28738 −0.107656
\(144\) −1.75463 −0.146219
\(145\) −5.83319 −0.484420
\(146\) 10.5626 0.874165
\(147\) 12.5784 1.03745
\(148\) 9.94702 0.817640
\(149\) 18.1637 1.48803 0.744013 0.668165i \(-0.232920\pi\)
0.744013 + 0.668165i \(0.232920\pi\)
\(150\) −3.65652 −0.298554
\(151\) −3.66729 −0.298440 −0.149220 0.988804i \(-0.547676\pi\)
−0.149220 + 0.988804i \(0.547676\pi\)
\(152\) 0 0
\(153\) −7.30860 −0.590865
\(154\) −4.27450 −0.344449
\(155\) 1.85661 0.149126
\(156\) 1.43667 0.115026
\(157\) −9.47377 −0.756089 −0.378045 0.925787i \(-0.623403\pi\)
−0.378045 + 0.925787i \(0.623403\pi\)
\(158\) 7.22195 0.574548
\(159\) 7.85598 0.623020
\(160\) 1.31280 0.103786
\(161\) −22.1205 −1.74334
\(162\) −0.657405 −0.0516506
\(163\) 11.4020 0.893077 0.446539 0.894764i \(-0.352657\pi\)
0.446539 + 0.894764i \(0.352657\pi\)
\(164\) 1.43023 0.111682
\(165\) −1.46503 −0.114053
\(166\) 11.8052 0.916263
\(167\) −6.70943 −0.519191 −0.259596 0.965717i \(-0.583589\pi\)
−0.259596 + 0.965717i \(0.583589\pi\)
\(168\) 4.77018 0.368028
\(169\) −11.3426 −0.872511
\(170\) 5.46823 0.419394
\(171\) 0 0
\(172\) 7.81236 0.595686
\(173\) 14.7854 1.12411 0.562055 0.827100i \(-0.310011\pi\)
0.562055 + 0.827100i \(0.310011\pi\)
\(174\) −4.95859 −0.375910
\(175\) −14.0057 −1.05873
\(176\) −1.00000 −0.0753778
\(177\) 2.02157 0.151951
\(178\) −2.08674 −0.156408
\(179\) −12.5066 −0.934788 −0.467394 0.884049i \(-0.654807\pi\)
−0.467394 + 0.884049i \(0.654807\pi\)
\(180\) −2.30347 −0.171691
\(181\) −17.5886 −1.30735 −0.653677 0.756774i \(-0.726774\pi\)
−0.653677 + 0.756774i \(0.726774\pi\)
\(182\) 5.50292 0.407904
\(183\) −6.02423 −0.445324
\(184\) −5.17499 −0.381505
\(185\) 13.0584 0.960074
\(186\) 1.57824 0.115722
\(187\) −4.16533 −0.304599
\(188\) 7.17369 0.523195
\(189\) −22.6804 −1.64976
\(190\) 0 0
\(191\) −19.7063 −1.42590 −0.712949 0.701216i \(-0.752641\pi\)
−0.712949 + 0.701216i \(0.752641\pi\)
\(192\) 1.11596 0.0805377
\(193\) −12.6093 −0.907635 −0.453817 0.891095i \(-0.649938\pi\)
−0.453817 + 0.891095i \(0.649938\pi\)
\(194\) −9.42699 −0.676818
\(195\) 1.88606 0.135064
\(196\) 11.2714 0.805097
\(197\) 11.4923 0.818795 0.409398 0.912356i \(-0.365739\pi\)
0.409398 + 0.912356i \(0.365739\pi\)
\(198\) 1.75463 0.124696
\(199\) −22.2171 −1.57493 −0.787465 0.616360i \(-0.788607\pi\)
−0.787465 + 0.616360i \(0.788607\pi\)
\(200\) −3.27656 −0.231688
\(201\) 4.30464 0.303626
\(202\) 19.0888 1.34308
\(203\) −18.9930 −1.33305
\(204\) 4.64835 0.325450
\(205\) 1.87760 0.131137
\(206\) −9.14040 −0.636842
\(207\) 9.08018 0.631116
\(208\) 1.28738 0.0892640
\(209\) 0 0
\(210\) 6.26229 0.432139
\(211\) −25.9989 −1.78984 −0.894918 0.446230i \(-0.852766\pi\)
−0.894918 + 0.446230i \(0.852766\pi\)
\(212\) 7.03965 0.483485
\(213\) −5.41134 −0.370779
\(214\) 10.9124 0.745953
\(215\) 10.2560 0.699456
\(216\) −5.30599 −0.361027
\(217\) 6.04516 0.410372
\(218\) −20.1828 −1.36695
\(219\) 11.7874 0.796522
\(220\) −1.31280 −0.0885088
\(221\) 5.36238 0.360712
\(222\) 11.1005 0.745017
\(223\) 9.44727 0.632636 0.316318 0.948653i \(-0.397553\pi\)
0.316318 + 0.948653i \(0.397553\pi\)
\(224\) 4.27450 0.285602
\(225\) 5.74914 0.383276
\(226\) −1.14974 −0.0764794
\(227\) −27.4851 −1.82425 −0.912124 0.409915i \(-0.865558\pi\)
−0.912124 + 0.409915i \(0.865558\pi\)
\(228\) 0 0
\(229\) −9.14706 −0.604454 −0.302227 0.953236i \(-0.597730\pi\)
−0.302227 + 0.953236i \(0.597730\pi\)
\(230\) −6.79372 −0.447964
\(231\) −4.77018 −0.313855
\(232\) −4.44333 −0.291719
\(233\) −6.02154 −0.394484 −0.197242 0.980355i \(-0.563199\pi\)
−0.197242 + 0.980355i \(0.563199\pi\)
\(234\) −2.25888 −0.147667
\(235\) 9.41760 0.614337
\(236\) 1.81150 0.117919
\(237\) 8.05943 0.523516
\(238\) 17.8047 1.15411
\(239\) 23.8647 1.54368 0.771840 0.635817i \(-0.219337\pi\)
0.771840 + 0.635817i \(0.219337\pi\)
\(240\) 1.46503 0.0945675
\(241\) 20.3440 1.31047 0.655236 0.755425i \(-0.272569\pi\)
0.655236 + 0.755425i \(0.272569\pi\)
\(242\) 1.00000 0.0642824
\(243\) 15.1843 0.974075
\(244\) −5.39823 −0.345586
\(245\) 14.7970 0.945347
\(246\) 1.59608 0.101763
\(247\) 0 0
\(248\) 1.41424 0.0898042
\(249\) 13.1742 0.834880
\(250\) −10.8655 −0.687191
\(251\) −1.96033 −0.123735 −0.0618676 0.998084i \(-0.519706\pi\)
−0.0618676 + 0.998084i \(0.519706\pi\)
\(252\) −7.50015 −0.472465
\(253\) 5.17499 0.325349
\(254\) −9.97947 −0.626168
\(255\) 6.10235 0.382144
\(256\) 1.00000 0.0625000
\(257\) 0.599255 0.0373805 0.0186903 0.999825i \(-0.494050\pi\)
0.0186903 + 0.999825i \(0.494050\pi\)
\(258\) 8.71830 0.542778
\(259\) 42.5185 2.64197
\(260\) 1.69007 0.104814
\(261\) 7.79639 0.482584
\(262\) 14.6673 0.906151
\(263\) 15.8684 0.978485 0.489242 0.872148i \(-0.337273\pi\)
0.489242 + 0.872148i \(0.337273\pi\)
\(264\) −1.11596 −0.0686828
\(265\) 9.24163 0.567709
\(266\) 0 0
\(267\) −2.32873 −0.142516
\(268\) 3.85733 0.235624
\(269\) 10.3445 0.630714 0.315357 0.948973i \(-0.397876\pi\)
0.315357 + 0.948973i \(0.397876\pi\)
\(270\) −6.96569 −0.423918
\(271\) −16.3659 −0.994159 −0.497080 0.867705i \(-0.665594\pi\)
−0.497080 + 0.867705i \(0.665594\pi\)
\(272\) 4.16533 0.252560
\(273\) 6.14106 0.371674
\(274\) −12.2599 −0.740645
\(275\) 3.27656 0.197584
\(276\) −5.77510 −0.347620
\(277\) −0.767289 −0.0461019 −0.0230510 0.999734i \(-0.507338\pi\)
−0.0230510 + 0.999734i \(0.507338\pi\)
\(278\) −6.46785 −0.387916
\(279\) −2.48146 −0.148561
\(280\) 5.61155 0.335355
\(281\) −26.5207 −1.58209 −0.791047 0.611755i \(-0.790464\pi\)
−0.791047 + 0.611755i \(0.790464\pi\)
\(282\) 8.00557 0.476725
\(283\) −6.65638 −0.395681 −0.197840 0.980234i \(-0.563393\pi\)
−0.197840 + 0.980234i \(0.563393\pi\)
\(284\) −4.84903 −0.287737
\(285\) 0 0
\(286\) −1.28738 −0.0761246
\(287\) 6.11352 0.360870
\(288\) −1.75463 −0.103392
\(289\) 0.349959 0.0205858
\(290\) −5.83319 −0.342537
\(291\) −10.5202 −0.616703
\(292\) 10.5626 0.618128
\(293\) −4.18747 −0.244635 −0.122317 0.992491i \(-0.539033\pi\)
−0.122317 + 0.992491i \(0.539033\pi\)
\(294\) 12.5784 0.733588
\(295\) 2.37814 0.138461
\(296\) 9.94702 0.578159
\(297\) 5.30599 0.307885
\(298\) 18.1637 1.05219
\(299\) −6.66220 −0.385285
\(300\) −3.65652 −0.211109
\(301\) 33.3939 1.92479
\(302\) −3.66729 −0.211029
\(303\) 21.3024 1.22379
\(304\) 0 0
\(305\) −7.08679 −0.405788
\(306\) −7.30860 −0.417805
\(307\) 10.0213 0.571944 0.285972 0.958238i \(-0.407684\pi\)
0.285972 + 0.958238i \(0.407684\pi\)
\(308\) −4.27450 −0.243562
\(309\) −10.2003 −0.580278
\(310\) 1.85661 0.105448
\(311\) −11.1459 −0.632026 −0.316013 0.948755i \(-0.602344\pi\)
−0.316013 + 0.948755i \(0.602344\pi\)
\(312\) 1.43667 0.0813356
\(313\) −2.43390 −0.137572 −0.0687860 0.997631i \(-0.521913\pi\)
−0.0687860 + 0.997631i \(0.521913\pi\)
\(314\) −9.47377 −0.534636
\(315\) −9.84618 −0.554770
\(316\) 7.22195 0.406266
\(317\) −11.3922 −0.639851 −0.319926 0.947443i \(-0.603658\pi\)
−0.319926 + 0.947443i \(0.603658\pi\)
\(318\) 7.85598 0.440542
\(319\) 4.44333 0.248779
\(320\) 1.31280 0.0733876
\(321\) 12.1778 0.679698
\(322\) −22.1205 −1.23273
\(323\) 0 0
\(324\) −0.657405 −0.0365225
\(325\) −4.21819 −0.233983
\(326\) 11.4020 0.631501
\(327\) −22.5233 −1.24554
\(328\) 1.43023 0.0789712
\(329\) 30.6639 1.69056
\(330\) −1.46503 −0.0806474
\(331\) 5.72063 0.314434 0.157217 0.987564i \(-0.449748\pi\)
0.157217 + 0.987564i \(0.449748\pi\)
\(332\) 11.8052 0.647896
\(333\) −17.4533 −0.956435
\(334\) −6.70943 −0.367124
\(335\) 5.06390 0.276670
\(336\) 4.77018 0.260235
\(337\) 21.1662 1.15300 0.576499 0.817098i \(-0.304418\pi\)
0.576499 + 0.817098i \(0.304418\pi\)
\(338\) −11.3426 −0.616958
\(339\) −1.28306 −0.0696865
\(340\) 5.46823 0.296557
\(341\) −1.41424 −0.0765853
\(342\) 0 0
\(343\) 18.2579 0.985835
\(344\) 7.81236 0.421214
\(345\) −7.58153 −0.408176
\(346\) 14.7854 0.794866
\(347\) −30.3317 −1.62829 −0.814144 0.580663i \(-0.802793\pi\)
−0.814144 + 0.580663i \(0.802793\pi\)
\(348\) −4.95859 −0.265808
\(349\) 7.30224 0.390880 0.195440 0.980716i \(-0.437386\pi\)
0.195440 + 0.980716i \(0.437386\pi\)
\(350\) −14.0057 −0.748634
\(351\) −6.83084 −0.364603
\(352\) −1.00000 −0.0533002
\(353\) −0.674177 −0.0358828 −0.0179414 0.999839i \(-0.505711\pi\)
−0.0179414 + 0.999839i \(0.505711\pi\)
\(354\) 2.02157 0.107445
\(355\) −6.36579 −0.337861
\(356\) −2.08674 −0.110597
\(357\) 19.8694 1.05160
\(358\) −12.5066 −0.660995
\(359\) 26.7789 1.41334 0.706668 0.707545i \(-0.250197\pi\)
0.706668 + 0.707545i \(0.250197\pi\)
\(360\) −2.30347 −0.121404
\(361\) 0 0
\(362\) −17.5886 −0.924438
\(363\) 1.11596 0.0585729
\(364\) 5.50292 0.288432
\(365\) 13.8665 0.725807
\(366\) −6.02423 −0.314891
\(367\) −23.5890 −1.23134 −0.615669 0.788005i \(-0.711114\pi\)
−0.615669 + 0.788005i \(0.711114\pi\)
\(368\) −5.17499 −0.269765
\(369\) −2.50952 −0.130640
\(370\) 13.0584 0.678875
\(371\) 30.0910 1.56225
\(372\) 1.57824 0.0818278
\(373\) −26.4394 −1.36898 −0.684491 0.729021i \(-0.739976\pi\)
−0.684491 + 0.729021i \(0.739976\pi\)
\(374\) −4.16533 −0.215384
\(375\) −12.1254 −0.626155
\(376\) 7.17369 0.369955
\(377\) −5.72027 −0.294609
\(378\) −22.6804 −1.16656
\(379\) −5.38458 −0.276587 −0.138294 0.990391i \(-0.544162\pi\)
−0.138294 + 0.990391i \(0.544162\pi\)
\(380\) 0 0
\(381\) −11.1367 −0.570551
\(382\) −19.7063 −1.00826
\(383\) 6.57402 0.335917 0.167958 0.985794i \(-0.446283\pi\)
0.167958 + 0.985794i \(0.446283\pi\)
\(384\) 1.11596 0.0569487
\(385\) −5.61155 −0.285991
\(386\) −12.6093 −0.641795
\(387\) −13.7078 −0.696805
\(388\) −9.42699 −0.478583
\(389\) 29.5322 1.49734 0.748670 0.662943i \(-0.230693\pi\)
0.748670 + 0.662943i \(0.230693\pi\)
\(390\) 1.88606 0.0955044
\(391\) −21.5555 −1.09011
\(392\) 11.2714 0.569290
\(393\) 16.3682 0.825667
\(394\) 11.4923 0.578976
\(395\) 9.48096 0.477039
\(396\) 1.75463 0.0881733
\(397\) −33.3685 −1.67472 −0.837359 0.546653i \(-0.815902\pi\)
−0.837359 + 0.546653i \(0.815902\pi\)
\(398\) −22.2171 −1.11364
\(399\) 0 0
\(400\) −3.27656 −0.163828
\(401\) 16.0156 0.799780 0.399890 0.916563i \(-0.369048\pi\)
0.399890 + 0.916563i \(0.369048\pi\)
\(402\) 4.30464 0.214696
\(403\) 1.82067 0.0906939
\(404\) 19.0888 0.949703
\(405\) −0.863039 −0.0428848
\(406\) −18.9930 −0.942608
\(407\) −9.94702 −0.493055
\(408\) 4.64835 0.230128
\(409\) 19.4042 0.959476 0.479738 0.877412i \(-0.340732\pi\)
0.479738 + 0.877412i \(0.340732\pi\)
\(410\) 1.87760 0.0927282
\(411\) −13.6815 −0.674861
\(412\) −9.14040 −0.450315
\(413\) 7.74327 0.381022
\(414\) 9.08018 0.446266
\(415\) 15.4979 0.760760
\(416\) 1.28738 0.0631192
\(417\) −7.21788 −0.353461
\(418\) 0 0
\(419\) 8.09863 0.395644 0.197822 0.980238i \(-0.436613\pi\)
0.197822 + 0.980238i \(0.436613\pi\)
\(420\) 6.26229 0.305568
\(421\) −28.8307 −1.40512 −0.702560 0.711625i \(-0.747960\pi\)
−0.702560 + 0.711625i \(0.747960\pi\)
\(422\) −25.9989 −1.26561
\(423\) −12.5871 −0.612008
\(424\) 7.03965 0.341875
\(425\) −13.6480 −0.662023
\(426\) −5.41134 −0.262180
\(427\) −23.0747 −1.11667
\(428\) 10.9124 0.527469
\(429\) −1.43667 −0.0693632
\(430\) 10.2560 0.494590
\(431\) 6.21324 0.299281 0.149641 0.988740i \(-0.452188\pi\)
0.149641 + 0.988740i \(0.452188\pi\)
\(432\) −5.30599 −0.255284
\(433\) 0.769196 0.0369652 0.0184826 0.999829i \(-0.494116\pi\)
0.0184826 + 0.999829i \(0.494116\pi\)
\(434\) 6.04516 0.290177
\(435\) −6.50963 −0.312113
\(436\) −20.1828 −0.966582
\(437\) 0 0
\(438\) 11.7874 0.563226
\(439\) 1.96983 0.0940151 0.0470075 0.998895i \(-0.485032\pi\)
0.0470075 + 0.998895i \(0.485032\pi\)
\(440\) −1.31280 −0.0625852
\(441\) −19.7770 −0.941763
\(442\) 5.36238 0.255062
\(443\) 23.4896 1.11602 0.558012 0.829833i \(-0.311564\pi\)
0.558012 + 0.829833i \(0.311564\pi\)
\(444\) 11.1005 0.526806
\(445\) −2.73947 −0.129863
\(446\) 9.44727 0.447341
\(447\) 20.2700 0.958737
\(448\) 4.27450 0.201951
\(449\) −33.5468 −1.58317 −0.791587 0.611057i \(-0.790745\pi\)
−0.791587 + 0.611057i \(0.790745\pi\)
\(450\) 5.74914 0.271017
\(451\) −1.43023 −0.0673469
\(452\) −1.14974 −0.0540791
\(453\) −4.09256 −0.192285
\(454\) −27.4851 −1.28994
\(455\) 7.22422 0.338677
\(456\) 0 0
\(457\) −25.9818 −1.21538 −0.607688 0.794176i \(-0.707903\pi\)
−0.607688 + 0.794176i \(0.707903\pi\)
\(458\) −9.14706 −0.427414
\(459\) −22.1012 −1.03159
\(460\) −6.79372 −0.316759
\(461\) 17.9883 0.837797 0.418898 0.908033i \(-0.362416\pi\)
0.418898 + 0.908033i \(0.362416\pi\)
\(462\) −4.77018 −0.221929
\(463\) 33.2333 1.54448 0.772241 0.635330i \(-0.219136\pi\)
0.772241 + 0.635330i \(0.219136\pi\)
\(464\) −4.44333 −0.206276
\(465\) 2.07191 0.0960824
\(466\) −6.02154 −0.278943
\(467\) −29.5798 −1.36879 −0.684394 0.729112i \(-0.739933\pi\)
−0.684394 + 0.729112i \(0.739933\pi\)
\(468\) −2.25888 −0.104417
\(469\) 16.4882 0.761353
\(470\) 9.41760 0.434402
\(471\) −10.5724 −0.487150
\(472\) 1.81150 0.0833812
\(473\) −7.81236 −0.359212
\(474\) 8.05943 0.370182
\(475\) 0 0
\(476\) 17.8047 0.816077
\(477\) −12.3520 −0.565557
\(478\) 23.8647 1.09155
\(479\) −4.73485 −0.216341 −0.108170 0.994132i \(-0.534499\pi\)
−0.108170 + 0.994132i \(0.534499\pi\)
\(480\) 1.46503 0.0668693
\(481\) 12.8056 0.583886
\(482\) 20.3440 0.926643
\(483\) −24.6857 −1.12324
\(484\) 1.00000 0.0454545
\(485\) −12.3757 −0.561953
\(486\) 15.1843 0.688775
\(487\) −40.9597 −1.85606 −0.928031 0.372503i \(-0.878500\pi\)
−0.928031 + 0.372503i \(0.878500\pi\)
\(488\) −5.39823 −0.244366
\(489\) 12.7243 0.575411
\(490\) 14.7970 0.668461
\(491\) −22.1902 −1.00143 −0.500716 0.865612i \(-0.666930\pi\)
−0.500716 + 0.865612i \(0.666930\pi\)
\(492\) 1.59608 0.0719570
\(493\) −18.5079 −0.833555
\(494\) 0 0
\(495\) 2.30347 0.103533
\(496\) 1.41424 0.0635012
\(497\) −20.7272 −0.929741
\(498\) 13.1742 0.590350
\(499\) −8.03146 −0.359538 −0.179769 0.983709i \(-0.557535\pi\)
−0.179769 + 0.983709i \(0.557535\pi\)
\(500\) −10.8655 −0.485918
\(501\) −7.48747 −0.334516
\(502\) −1.96033 −0.0874940
\(503\) 10.5087 0.468561 0.234280 0.972169i \(-0.424727\pi\)
0.234280 + 0.972169i \(0.424727\pi\)
\(504\) −7.50015 −0.334083
\(505\) 25.0597 1.11514
\(506\) 5.17499 0.230056
\(507\) −12.6580 −0.562160
\(508\) −9.97947 −0.442767
\(509\) −17.6769 −0.783515 −0.391757 0.920069i \(-0.628133\pi\)
−0.391757 + 0.920069i \(0.628133\pi\)
\(510\) 6.10235 0.270216
\(511\) 45.1498 1.99731
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 0.599255 0.0264320
\(515\) −11.9995 −0.528761
\(516\) 8.71830 0.383802
\(517\) −7.17369 −0.315498
\(518\) 42.5185 1.86816
\(519\) 16.4999 0.724266
\(520\) 1.69007 0.0741147
\(521\) −40.6341 −1.78021 −0.890106 0.455754i \(-0.849370\pi\)
−0.890106 + 0.455754i \(0.849370\pi\)
\(522\) 7.79639 0.341239
\(523\) −14.8612 −0.649834 −0.324917 0.945743i \(-0.605336\pi\)
−0.324917 + 0.945743i \(0.605336\pi\)
\(524\) 14.6673 0.640746
\(525\) −15.6298 −0.682141
\(526\) 15.8684 0.691893
\(527\) 5.89077 0.256606
\(528\) −1.11596 −0.0485661
\(529\) 3.78053 0.164371
\(530\) 9.24163 0.401431
\(531\) −3.17851 −0.137936
\(532\) 0 0
\(533\) 1.84125 0.0797536
\(534\) −2.32873 −0.100774
\(535\) 14.3257 0.619355
\(536\) 3.85733 0.166611
\(537\) −13.9569 −0.602285
\(538\) 10.3445 0.445982
\(539\) −11.2714 −0.485492
\(540\) −6.96569 −0.299755
\(541\) 36.0785 1.55113 0.775567 0.631265i \(-0.217464\pi\)
0.775567 + 0.631265i \(0.217464\pi\)
\(542\) −16.3659 −0.702977
\(543\) −19.6283 −0.842330
\(544\) 4.16533 0.178587
\(545\) −26.4960 −1.13496
\(546\) 6.14106 0.262813
\(547\) 41.1739 1.76047 0.880234 0.474541i \(-0.157386\pi\)
0.880234 + 0.474541i \(0.157386\pi\)
\(548\) −12.2599 −0.523715
\(549\) 9.47188 0.404250
\(550\) 3.27656 0.139713
\(551\) 0 0
\(552\) −5.77510 −0.245804
\(553\) 30.8702 1.31274
\(554\) −0.767289 −0.0325990
\(555\) 14.5727 0.618577
\(556\) −6.46785 −0.274298
\(557\) 3.31512 0.140466 0.0702331 0.997531i \(-0.477626\pi\)
0.0702331 + 0.997531i \(0.477626\pi\)
\(558\) −2.48146 −0.105049
\(559\) 10.0575 0.425387
\(560\) 5.61155 0.237131
\(561\) −4.64835 −0.196254
\(562\) −26.5207 −1.11871
\(563\) −1.44663 −0.0609681 −0.0304841 0.999535i \(-0.509705\pi\)
−0.0304841 + 0.999535i \(0.509705\pi\)
\(564\) 8.00557 0.337095
\(565\) −1.50937 −0.0634998
\(566\) −6.65638 −0.279788
\(567\) −2.81008 −0.118012
\(568\) −4.84903 −0.203461
\(569\) −5.98659 −0.250971 −0.125486 0.992095i \(-0.540049\pi\)
−0.125486 + 0.992095i \(0.540049\pi\)
\(570\) 0 0
\(571\) 12.2104 0.510990 0.255495 0.966810i \(-0.417762\pi\)
0.255495 + 0.966810i \(0.417762\pi\)
\(572\) −1.28738 −0.0538282
\(573\) −21.9915 −0.918709
\(574\) 6.11352 0.255173
\(575\) 16.9562 0.707122
\(576\) −1.75463 −0.0731094
\(577\) 16.2507 0.676524 0.338262 0.941052i \(-0.390161\pi\)
0.338262 + 0.941052i \(0.390161\pi\)
\(578\) 0.349959 0.0145564
\(579\) −14.0715 −0.584791
\(580\) −5.83319 −0.242210
\(581\) 50.4614 2.09349
\(582\) −10.5202 −0.436075
\(583\) −7.03965 −0.291552
\(584\) 10.5626 0.437083
\(585\) −2.96545 −0.122606
\(586\) −4.18747 −0.172983
\(587\) −26.8913 −1.10992 −0.554962 0.831876i \(-0.687267\pi\)
−0.554962 + 0.831876i \(0.687267\pi\)
\(588\) 12.5784 0.518725
\(589\) 0 0
\(590\) 2.37814 0.0979064
\(591\) 12.8250 0.527551
\(592\) 9.94702 0.408820
\(593\) 22.3850 0.919243 0.459621 0.888115i \(-0.347985\pi\)
0.459621 + 0.888115i \(0.347985\pi\)
\(594\) 5.30599 0.217707
\(595\) 23.3740 0.958239
\(596\) 18.1637 0.744013
\(597\) −24.7935 −1.01473
\(598\) −6.66220 −0.272438
\(599\) −24.9416 −1.01909 −0.509543 0.860445i \(-0.670185\pi\)
−0.509543 + 0.860445i \(0.670185\pi\)
\(600\) −3.65652 −0.149277
\(601\) −13.4718 −0.549526 −0.274763 0.961512i \(-0.588599\pi\)
−0.274763 + 0.961512i \(0.588599\pi\)
\(602\) 33.3939 1.36103
\(603\) −6.76818 −0.275622
\(604\) −3.66729 −0.149220
\(605\) 1.31280 0.0533728
\(606\) 21.3024 0.865350
\(607\) −45.8015 −1.85902 −0.929512 0.368792i \(-0.879772\pi\)
−0.929512 + 0.368792i \(0.879772\pi\)
\(608\) 0 0
\(609\) −21.1955 −0.858885
\(610\) −7.08679 −0.286936
\(611\) 9.23529 0.373620
\(612\) −7.30860 −0.295432
\(613\) −15.3049 −0.618158 −0.309079 0.951036i \(-0.600021\pi\)
−0.309079 + 0.951036i \(0.600021\pi\)
\(614\) 10.0213 0.404426
\(615\) 2.09533 0.0844920
\(616\) −4.27450 −0.172225
\(617\) 34.7798 1.40018 0.700091 0.714054i \(-0.253143\pi\)
0.700091 + 0.714054i \(0.253143\pi\)
\(618\) −10.2003 −0.410318
\(619\) −27.7967 −1.11724 −0.558621 0.829423i \(-0.688669\pi\)
−0.558621 + 0.829423i \(0.688669\pi\)
\(620\) 1.85661 0.0745632
\(621\) 27.4584 1.10187
\(622\) −11.1459 −0.446910
\(623\) −8.91978 −0.357363
\(624\) 1.43667 0.0575129
\(625\) 2.11867 0.0847469
\(626\) −2.43390 −0.0972781
\(627\) 0 0
\(628\) −9.47377 −0.378045
\(629\) 41.4326 1.65203
\(630\) −9.84618 −0.392281
\(631\) −47.1235 −1.87596 −0.937978 0.346694i \(-0.887304\pi\)
−0.937978 + 0.346694i \(0.887304\pi\)
\(632\) 7.22195 0.287274
\(633\) −29.0138 −1.15319
\(634\) −11.3922 −0.452443
\(635\) −13.1010 −0.519898
\(636\) 7.85598 0.311510
\(637\) 14.5106 0.574929
\(638\) 4.44333 0.175913
\(639\) 8.50824 0.336581
\(640\) 1.31280 0.0518929
\(641\) 3.90439 0.154214 0.0771071 0.997023i \(-0.475432\pi\)
0.0771071 + 0.997023i \(0.475432\pi\)
\(642\) 12.1778 0.480619
\(643\) 42.1642 1.66280 0.831398 0.555678i \(-0.187541\pi\)
0.831398 + 0.555678i \(0.187541\pi\)
\(644\) −22.1205 −0.871670
\(645\) 11.4454 0.450661
\(646\) 0 0
\(647\) −4.76139 −0.187190 −0.0935948 0.995610i \(-0.529836\pi\)
−0.0935948 + 0.995610i \(0.529836\pi\)
\(648\) −0.657405 −0.0258253
\(649\) −1.81150 −0.0711077
\(650\) −4.21819 −0.165451
\(651\) 6.74618 0.264404
\(652\) 11.4020 0.446539
\(653\) 26.2632 1.02776 0.513880 0.857862i \(-0.328208\pi\)
0.513880 + 0.857862i \(0.328208\pi\)
\(654\) −22.5233 −0.880730
\(655\) 19.2553 0.752365
\(656\) 1.43023 0.0558411
\(657\) −18.5334 −0.723056
\(658\) 30.6639 1.19540
\(659\) −25.0496 −0.975795 −0.487898 0.872901i \(-0.662236\pi\)
−0.487898 + 0.872901i \(0.662236\pi\)
\(660\) −1.46503 −0.0570264
\(661\) 11.8593 0.461273 0.230636 0.973040i \(-0.425919\pi\)
0.230636 + 0.973040i \(0.425919\pi\)
\(662\) 5.72063 0.222339
\(663\) 5.98421 0.232408
\(664\) 11.8052 0.458131
\(665\) 0 0
\(666\) −17.4533 −0.676302
\(667\) 22.9942 0.890339
\(668\) −6.70943 −0.259596
\(669\) 10.5428 0.407609
\(670\) 5.06390 0.195635
\(671\) 5.39823 0.208396
\(672\) 4.77018 0.184014
\(673\) 18.7492 0.722728 0.361364 0.932425i \(-0.382311\pi\)
0.361364 + 0.932425i \(0.382311\pi\)
\(674\) 21.1662 0.815293
\(675\) 17.3854 0.669164
\(676\) −11.3426 −0.436256
\(677\) 29.2640 1.12471 0.562354 0.826897i \(-0.309896\pi\)
0.562354 + 0.826897i \(0.309896\pi\)
\(678\) −1.28306 −0.0492758
\(679\) −40.2957 −1.54641
\(680\) 5.46823 0.209697
\(681\) −30.6723 −1.17537
\(682\) −1.41424 −0.0541540
\(683\) −4.78541 −0.183109 −0.0915544 0.995800i \(-0.529184\pi\)
−0.0915544 + 0.995800i \(0.529184\pi\)
\(684\) 0 0
\(685\) −16.0947 −0.614947
\(686\) 18.2579 0.697091
\(687\) −10.2078 −0.389451
\(688\) 7.81236 0.297843
\(689\) 9.06273 0.345262
\(690\) −7.58153 −0.288624
\(691\) −22.4180 −0.852822 −0.426411 0.904529i \(-0.640222\pi\)
−0.426411 + 0.904529i \(0.640222\pi\)
\(692\) 14.7854 0.562055
\(693\) 7.50015 0.284907
\(694\) −30.3317 −1.15137
\(695\) −8.49098 −0.322081
\(696\) −4.95859 −0.187955
\(697\) 5.95738 0.225652
\(698\) 7.30224 0.276394
\(699\) −6.71982 −0.254167
\(700\) −14.0057 −0.529365
\(701\) 1.85326 0.0699967 0.0349983 0.999387i \(-0.488857\pi\)
0.0349983 + 0.999387i \(0.488857\pi\)
\(702\) −6.83084 −0.257813
\(703\) 0 0
\(704\) −1.00000 −0.0376889
\(705\) 10.5097 0.395818
\(706\) −0.674177 −0.0253730
\(707\) 81.5950 3.06870
\(708\) 2.02157 0.0759753
\(709\) 15.7952 0.593200 0.296600 0.955002i \(-0.404147\pi\)
0.296600 + 0.955002i \(0.404147\pi\)
\(710\) −6.36579 −0.238904
\(711\) −12.6718 −0.475231
\(712\) −2.08674 −0.0782040
\(713\) −7.31867 −0.274086
\(714\) 19.8694 0.743593
\(715\) −1.69007 −0.0632052
\(716\) −12.5066 −0.467394
\(717\) 26.6321 0.994595
\(718\) 26.7789 0.999380
\(719\) 14.7250 0.549151 0.274575 0.961566i \(-0.411463\pi\)
0.274575 + 0.961566i \(0.411463\pi\)
\(720\) −2.30347 −0.0858453
\(721\) −39.0707 −1.45507
\(722\) 0 0
\(723\) 22.7031 0.844339
\(724\) −17.5886 −0.653677
\(725\) 14.5588 0.540702
\(726\) 1.11596 0.0414173
\(727\) 5.85243 0.217055 0.108527 0.994093i \(-0.465387\pi\)
0.108527 + 0.994093i \(0.465387\pi\)
\(728\) 5.50292 0.203952
\(729\) 18.9174 0.700643
\(730\) 13.8665 0.513223
\(731\) 32.5410 1.20357
\(732\) −6.02423 −0.222662
\(733\) 22.3036 0.823801 0.411901 0.911229i \(-0.364865\pi\)
0.411901 + 0.911229i \(0.364865\pi\)
\(734\) −23.5890 −0.870687
\(735\) 16.5129 0.609088
\(736\) −5.17499 −0.190753
\(737\) −3.85733 −0.142087
\(738\) −2.50952 −0.0923767
\(739\) −9.16658 −0.337198 −0.168599 0.985685i \(-0.553924\pi\)
−0.168599 + 0.985685i \(0.553924\pi\)
\(740\) 13.0584 0.480037
\(741\) 0 0
\(742\) 30.0910 1.10467
\(743\) −12.9197 −0.473977 −0.236988 0.971512i \(-0.576160\pi\)
−0.236988 + 0.971512i \(0.576160\pi\)
\(744\) 1.57824 0.0578610
\(745\) 23.8452 0.873621
\(746\) −26.4394 −0.968017
\(747\) −20.7138 −0.757877
\(748\) −4.16533 −0.152299
\(749\) 46.6449 1.70437
\(750\) −12.1254 −0.442759
\(751\) 41.9107 1.52934 0.764671 0.644421i \(-0.222902\pi\)
0.764671 + 0.644421i \(0.222902\pi\)
\(752\) 7.17369 0.261597
\(753\) −2.18766 −0.0797228
\(754\) −5.72027 −0.208320
\(755\) −4.81441 −0.175214
\(756\) −22.6804 −0.824880
\(757\) 35.2762 1.28214 0.641068 0.767484i \(-0.278492\pi\)
0.641068 + 0.767484i \(0.278492\pi\)
\(758\) −5.38458 −0.195577
\(759\) 5.77510 0.209623
\(760\) 0 0
\(761\) 46.1674 1.67357 0.836784 0.547533i \(-0.184433\pi\)
0.836784 + 0.547533i \(0.184433\pi\)
\(762\) −11.1367 −0.403441
\(763\) −86.2715 −3.12324
\(764\) −19.7063 −0.712949
\(765\) −9.59471 −0.346897
\(766\) 6.57402 0.237529
\(767\) 2.33210 0.0842072
\(768\) 1.11596 0.0402688
\(769\) −36.4351 −1.31388 −0.656942 0.753941i \(-0.728150\pi\)
−0.656942 + 0.753941i \(0.728150\pi\)
\(770\) −5.61155 −0.202226
\(771\) 0.668747 0.0240843
\(772\) −12.6093 −0.453817
\(773\) −34.2165 −1.23068 −0.615342 0.788260i \(-0.710982\pi\)
−0.615342 + 0.788260i \(0.710982\pi\)
\(774\) −13.7078 −0.492716
\(775\) −4.63384 −0.166452
\(776\) −9.42699 −0.338409
\(777\) 47.4491 1.70223
\(778\) 29.5322 1.05878
\(779\) 0 0
\(780\) 1.88606 0.0675318
\(781\) 4.84903 0.173512
\(782\) −21.5555 −0.770824
\(783\) 23.5763 0.842547
\(784\) 11.2714 0.402549
\(785\) −12.4371 −0.443901
\(786\) 16.3682 0.583835
\(787\) −30.1433 −1.07449 −0.537246 0.843425i \(-0.680535\pi\)
−0.537246 + 0.843425i \(0.680535\pi\)
\(788\) 11.4923 0.409398
\(789\) 17.7085 0.630439
\(790\) 9.48096 0.337317
\(791\) −4.91455 −0.174741
\(792\) 1.75463 0.0623479
\(793\) −6.94960 −0.246787
\(794\) −33.3685 −1.18420
\(795\) 10.3133 0.365776
\(796\) −22.2171 −0.787465
\(797\) −28.4871 −1.00907 −0.504533 0.863392i \(-0.668335\pi\)
−0.504533 + 0.863392i \(0.668335\pi\)
\(798\) 0 0
\(799\) 29.8808 1.05711
\(800\) −3.27656 −0.115844
\(801\) 3.66145 0.129371
\(802\) 16.0156 0.565530
\(803\) −10.5626 −0.372745
\(804\) 4.30464 0.151813
\(805\) −29.0397 −1.02352
\(806\) 1.82067 0.0641303
\(807\) 11.5440 0.406370
\(808\) 19.0888 0.671541
\(809\) 29.7117 1.04461 0.522304 0.852759i \(-0.325072\pi\)
0.522304 + 0.852759i \(0.325072\pi\)
\(810\) −0.863039 −0.0303241
\(811\) −44.2541 −1.55397 −0.776985 0.629519i \(-0.783252\pi\)
−0.776985 + 0.629519i \(0.783252\pi\)
\(812\) −18.9930 −0.666524
\(813\) −18.2638 −0.640538
\(814\) −9.94702 −0.348643
\(815\) 14.9686 0.524326
\(816\) 4.64835 0.162725
\(817\) 0 0
\(818\) 19.4042 0.678452
\(819\) −9.65558 −0.337393
\(820\) 1.87760 0.0655687
\(821\) −25.6177 −0.894065 −0.447032 0.894518i \(-0.647519\pi\)
−0.447032 + 0.894518i \(0.647519\pi\)
\(822\) −13.6815 −0.477199
\(823\) 49.3509 1.72026 0.860132 0.510072i \(-0.170381\pi\)
0.860132 + 0.510072i \(0.170381\pi\)
\(824\) −9.14040 −0.318421
\(825\) 3.65652 0.127304
\(826\) 7.74327 0.269423
\(827\) 57.1250 1.98643 0.993216 0.116286i \(-0.0370990\pi\)
0.993216 + 0.116286i \(0.0370990\pi\)
\(828\) 9.08018 0.315558
\(829\) 47.8205 1.66087 0.830437 0.557112i \(-0.188091\pi\)
0.830437 + 0.557112i \(0.188091\pi\)
\(830\) 15.4979 0.537939
\(831\) −0.856266 −0.0297035
\(832\) 1.28738 0.0446320
\(833\) 46.9489 1.62668
\(834\) −7.21788 −0.249935
\(835\) −8.80812 −0.304818
\(836\) 0 0
\(837\) −7.50393 −0.259374
\(838\) 8.09863 0.279762
\(839\) 39.6840 1.37004 0.685022 0.728522i \(-0.259793\pi\)
0.685022 + 0.728522i \(0.259793\pi\)
\(840\) 6.26229 0.216069
\(841\) −9.25681 −0.319200
\(842\) −28.8307 −0.993570
\(843\) −29.5961 −1.01935
\(844\) −25.9989 −0.894918
\(845\) −14.8906 −0.512252
\(846\) −12.5871 −0.432755
\(847\) 4.27450 0.146874
\(848\) 7.03965 0.241742
\(849\) −7.42827 −0.254938
\(850\) −13.6480 −0.468121
\(851\) −51.4757 −1.76456
\(852\) −5.41134 −0.185389
\(853\) 4.37089 0.149656 0.0748282 0.997196i \(-0.476159\pi\)
0.0748282 + 0.997196i \(0.476159\pi\)
\(854\) −23.0747 −0.789602
\(855\) 0 0
\(856\) 10.9124 0.372977
\(857\) −46.3671 −1.58387 −0.791935 0.610605i \(-0.790926\pi\)
−0.791935 + 0.610605i \(0.790926\pi\)
\(858\) −1.43667 −0.0490472
\(859\) 2.99733 0.102268 0.0511338 0.998692i \(-0.483717\pi\)
0.0511338 + 0.998692i \(0.483717\pi\)
\(860\) 10.2560 0.349728
\(861\) 6.82246 0.232509
\(862\) 6.21324 0.211624
\(863\) 17.9885 0.612337 0.306168 0.951977i \(-0.400953\pi\)
0.306168 + 0.951977i \(0.400953\pi\)
\(864\) −5.30599 −0.180513
\(865\) 19.4102 0.659966
\(866\) 0.769196 0.0261383
\(867\) 0.390541 0.0132635
\(868\) 6.04516 0.205186
\(869\) −7.22195 −0.244988
\(870\) −6.50963 −0.220697
\(871\) 4.96587 0.168262
\(872\) −20.1828 −0.683477
\(873\) 16.5408 0.559823
\(874\) 0 0
\(875\) −46.4444 −1.57011
\(876\) 11.7874 0.398261
\(877\) −12.1006 −0.408607 −0.204303 0.978908i \(-0.565493\pi\)
−0.204303 + 0.978908i \(0.565493\pi\)
\(878\) 1.96983 0.0664787
\(879\) −4.67306 −0.157619
\(880\) −1.31280 −0.0442544
\(881\) 31.5643 1.06343 0.531713 0.846924i \(-0.321548\pi\)
0.531713 + 0.846924i \(0.321548\pi\)
\(882\) −19.7770 −0.665927
\(883\) 29.3224 0.986778 0.493389 0.869809i \(-0.335758\pi\)
0.493389 + 0.869809i \(0.335758\pi\)
\(884\) 5.36238 0.180356
\(885\) 2.65391 0.0892103
\(886\) 23.4896 0.789148
\(887\) −13.7873 −0.462934 −0.231467 0.972843i \(-0.574352\pi\)
−0.231467 + 0.972843i \(0.574352\pi\)
\(888\) 11.1005 0.372508
\(889\) −42.6573 −1.43068
\(890\) −2.73947 −0.0918272
\(891\) 0.657405 0.0220239
\(892\) 9.44727 0.316318
\(893\) 0 0
\(894\) 20.2700 0.677929
\(895\) −16.4187 −0.548815
\(896\) 4.27450 0.142801
\(897\) −7.43477 −0.248240
\(898\) −33.5468 −1.11947
\(899\) −6.28393 −0.209581
\(900\) 5.74914 0.191638
\(901\) 29.3224 0.976872
\(902\) −1.43023 −0.0476214
\(903\) 37.2664 1.24015
\(904\) −1.14974 −0.0382397
\(905\) −23.0903 −0.767548
\(906\) −4.09256 −0.135966
\(907\) −10.3386 −0.343286 −0.171643 0.985159i \(-0.554908\pi\)
−0.171643 + 0.985159i \(0.554908\pi\)
\(908\) −27.4851 −0.912124
\(909\) −33.4937 −1.11092
\(910\) 7.22422 0.239481
\(911\) 25.5187 0.845473 0.422736 0.906253i \(-0.361070\pi\)
0.422736 + 0.906253i \(0.361070\pi\)
\(912\) 0 0
\(913\) −11.8052 −0.390696
\(914\) −25.9818 −0.859401
\(915\) −7.90859 −0.261450
\(916\) −9.14706 −0.302227
\(917\) 62.6956 2.07039
\(918\) −22.1012 −0.729448
\(919\) 2.90082 0.0956892 0.0478446 0.998855i \(-0.484765\pi\)
0.0478446 + 0.998855i \(0.484765\pi\)
\(920\) −6.79372 −0.223982
\(921\) 11.1834 0.368505
\(922\) 17.9883 0.592412
\(923\) −6.24256 −0.205476
\(924\) −4.77018 −0.156928
\(925\) −32.5920 −1.07162
\(926\) 33.2333 1.09211
\(927\) 16.0380 0.526757
\(928\) −4.44333 −0.145859
\(929\) −8.91763 −0.292578 −0.146289 0.989242i \(-0.546733\pi\)
−0.146289 + 0.989242i \(0.546733\pi\)
\(930\) 2.07191 0.0679405
\(931\) 0 0
\(932\) −6.02154 −0.197242
\(933\) −12.4384 −0.407215
\(934\) −29.5798 −0.967879
\(935\) −5.46823 −0.178830
\(936\) −2.25888 −0.0738337
\(937\) −48.6800 −1.59031 −0.795154 0.606408i \(-0.792610\pi\)
−0.795154 + 0.606408i \(0.792610\pi\)
\(938\) 16.4882 0.538358
\(939\) −2.71614 −0.0886379
\(940\) 9.41760 0.307168
\(941\) −47.0318 −1.53319 −0.766596 0.642130i \(-0.778051\pi\)
−0.766596 + 0.642130i \(0.778051\pi\)
\(942\) −10.5724 −0.344467
\(943\) −7.40142 −0.241024
\(944\) 1.81150 0.0589594
\(945\) −29.7748 −0.968576
\(946\) −7.81236 −0.254002
\(947\) −15.3933 −0.500217 −0.250108 0.968218i \(-0.580466\pi\)
−0.250108 + 0.968218i \(0.580466\pi\)
\(948\) 8.05943 0.261758
\(949\) 13.5981 0.441413
\(950\) 0 0
\(951\) −12.7133 −0.412257
\(952\) 17.8047 0.577054
\(953\) −11.4276 −0.370177 −0.185088 0.982722i \(-0.559257\pi\)
−0.185088 + 0.982722i \(0.559257\pi\)
\(954\) −12.3520 −0.399909
\(955\) −25.8704 −0.837146
\(956\) 23.8647 0.771840
\(957\) 4.95859 0.160289
\(958\) −4.73485 −0.152976
\(959\) −52.4048 −1.69224
\(960\) 1.46503 0.0472838
\(961\) −28.9999 −0.935482
\(962\) 12.8056 0.412870
\(963\) −19.1471 −0.617007
\(964\) 20.3440 0.655236
\(965\) −16.5534 −0.532873
\(966\) −24.6857 −0.794248
\(967\) −33.1958 −1.06750 −0.533752 0.845641i \(-0.679219\pi\)
−0.533752 + 0.845641i \(0.679219\pi\)
\(968\) 1.00000 0.0321412
\(969\) 0 0
\(970\) −12.3757 −0.397361
\(971\) −15.9611 −0.512215 −0.256108 0.966648i \(-0.582440\pi\)
−0.256108 + 0.966648i \(0.582440\pi\)
\(972\) 15.1843 0.487037
\(973\) −27.6468 −0.886317
\(974\) −40.9597 −1.31243
\(975\) −4.70735 −0.150756
\(976\) −5.39823 −0.172793
\(977\) 34.6293 1.10789 0.553944 0.832554i \(-0.313122\pi\)
0.553944 + 0.832554i \(0.313122\pi\)
\(978\) 12.7243 0.406877
\(979\) 2.08674 0.0666926
\(980\) 14.7970 0.472673
\(981\) 35.4133 1.13066
\(982\) −22.1902 −0.708119
\(983\) 30.5391 0.974047 0.487023 0.873389i \(-0.338083\pi\)
0.487023 + 0.873389i \(0.338083\pi\)
\(984\) 1.59608 0.0508813
\(985\) 15.0871 0.480716
\(986\) −18.5079 −0.589413
\(987\) 34.2198 1.08923
\(988\) 0 0
\(989\) −40.4289 −1.28556
\(990\) 2.30347 0.0732091
\(991\) 46.7100 1.48379 0.741896 0.670515i \(-0.233927\pi\)
0.741896 + 0.670515i \(0.233927\pi\)
\(992\) 1.41424 0.0449021
\(993\) 6.38401 0.202590
\(994\) −20.7272 −0.657426
\(995\) −29.1666 −0.924643
\(996\) 13.1742 0.417440
\(997\) 3.24383 0.102733 0.0513666 0.998680i \(-0.483642\pi\)
0.0513666 + 0.998680i \(0.483642\pi\)
\(998\) −8.03146 −0.254232
\(999\) −52.7787 −1.66985
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7942.2.a.ca.1.9 15
19.6 even 9 418.2.j.d.397.3 yes 30
19.16 even 9 418.2.j.d.199.3 30
19.18 odd 2 7942.2.a.by.1.7 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
418.2.j.d.199.3 30 19.16 even 9
418.2.j.d.397.3 yes 30 19.6 even 9
7942.2.a.by.1.7 15 19.18 odd 2
7942.2.a.ca.1.9 15 1.1 even 1 trivial