Properties

Label 7942.2.a.w.1.2
Level $7942$
Weight $2$
Character 7942.1
Self dual yes
Analytic conductor $63.417$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7942,2,Mod(1,7942)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7942, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7942.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7942 = 2 \cdot 11 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7942.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.4171892853\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{21}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 418)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.79129\) of defining polynomial
Character \(\chi\) \(=\) 7942.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +2.79129 q^{3} +1.00000 q^{4} -0.791288 q^{5} -2.79129 q^{6} -0.208712 q^{7} -1.00000 q^{8} +4.79129 q^{9} +0.791288 q^{10} +1.00000 q^{11} +2.79129 q^{12} -5.79129 q^{13} +0.208712 q^{14} -2.20871 q^{15} +1.00000 q^{16} +1.58258 q^{17} -4.79129 q^{18} -0.791288 q^{20} -0.582576 q^{21} -1.00000 q^{22} +7.58258 q^{23} -2.79129 q^{24} -4.37386 q^{25} +5.79129 q^{26} +5.00000 q^{27} -0.208712 q^{28} -6.79129 q^{29} +2.20871 q^{30} +6.20871 q^{31} -1.00000 q^{32} +2.79129 q^{33} -1.58258 q^{34} +0.165151 q^{35} +4.79129 q^{36} -8.00000 q^{37} -16.1652 q^{39} +0.791288 q^{40} -3.79129 q^{41} +0.582576 q^{42} -6.37386 q^{43} +1.00000 q^{44} -3.79129 q^{45} -7.58258 q^{46} -9.16515 q^{47} +2.79129 q^{48} -6.95644 q^{49} +4.37386 q^{50} +4.41742 q^{51} -5.79129 q^{52} -7.58258 q^{53} -5.00000 q^{54} -0.791288 q^{55} +0.208712 q^{56} +6.79129 q^{58} -2.20871 q^{60} +2.00000 q^{61} -6.20871 q^{62} -1.00000 q^{63} +1.00000 q^{64} +4.58258 q^{65} -2.79129 q^{66} +0.208712 q^{67} +1.58258 q^{68} +21.1652 q^{69} -0.165151 q^{70} -2.37386 q^{71} -4.79129 q^{72} +0.417424 q^{73} +8.00000 q^{74} -12.2087 q^{75} -0.208712 q^{77} +16.1652 q^{78} -3.58258 q^{79} -0.791288 q^{80} -0.417424 q^{81} +3.79129 q^{82} +0.791288 q^{83} -0.582576 q^{84} -1.25227 q^{85} +6.37386 q^{86} -18.9564 q^{87} -1.00000 q^{88} +13.5826 q^{89} +3.79129 q^{90} +1.20871 q^{91} +7.58258 q^{92} +17.3303 q^{93} +9.16515 q^{94} -2.79129 q^{96} -8.00000 q^{97} +6.95644 q^{98} +4.79129 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + q^{3} + 2 q^{4} + 3 q^{5} - q^{6} - 5 q^{7} - 2 q^{8} + 5 q^{9} - 3 q^{10} + 2 q^{11} + q^{12} - 7 q^{13} + 5 q^{14} - 9 q^{15} + 2 q^{16} - 6 q^{17} - 5 q^{18} + 3 q^{20} + 8 q^{21}+ \cdots + 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 2.79129 1.61155 0.805775 0.592221i \(-0.201749\pi\)
0.805775 + 0.592221i \(0.201749\pi\)
\(4\) 1.00000 0.500000
\(5\) −0.791288 −0.353875 −0.176937 0.984222i \(-0.556619\pi\)
−0.176937 + 0.984222i \(0.556619\pi\)
\(6\) −2.79129 −1.13954
\(7\) −0.208712 −0.0788858 −0.0394429 0.999222i \(-0.512558\pi\)
−0.0394429 + 0.999222i \(0.512558\pi\)
\(8\) −1.00000 −0.353553
\(9\) 4.79129 1.59710
\(10\) 0.791288 0.250227
\(11\) 1.00000 0.301511
\(12\) 2.79129 0.805775
\(13\) −5.79129 −1.60621 −0.803107 0.595835i \(-0.796821\pi\)
−0.803107 + 0.595835i \(0.796821\pi\)
\(14\) 0.208712 0.0557807
\(15\) −2.20871 −0.570287
\(16\) 1.00000 0.250000
\(17\) 1.58258 0.383831 0.191915 0.981411i \(-0.438530\pi\)
0.191915 + 0.981411i \(0.438530\pi\)
\(18\) −4.79129 −1.12932
\(19\) 0 0
\(20\) −0.791288 −0.176937
\(21\) −0.582576 −0.127128
\(22\) −1.00000 −0.213201
\(23\) 7.58258 1.58108 0.790538 0.612413i \(-0.209801\pi\)
0.790538 + 0.612413i \(0.209801\pi\)
\(24\) −2.79129 −0.569769
\(25\) −4.37386 −0.874773
\(26\) 5.79129 1.13576
\(27\) 5.00000 0.962250
\(28\) −0.208712 −0.0394429
\(29\) −6.79129 −1.26111 −0.630555 0.776144i \(-0.717173\pi\)
−0.630555 + 0.776144i \(0.717173\pi\)
\(30\) 2.20871 0.403254
\(31\) 6.20871 1.11512 0.557559 0.830137i \(-0.311738\pi\)
0.557559 + 0.830137i \(0.311738\pi\)
\(32\) −1.00000 −0.176777
\(33\) 2.79129 0.485901
\(34\) −1.58258 −0.271409
\(35\) 0.165151 0.0279157
\(36\) 4.79129 0.798548
\(37\) −8.00000 −1.31519 −0.657596 0.753371i \(-0.728427\pi\)
−0.657596 + 0.753371i \(0.728427\pi\)
\(38\) 0 0
\(39\) −16.1652 −2.58850
\(40\) 0.791288 0.125114
\(41\) −3.79129 −0.592100 −0.296050 0.955172i \(-0.595669\pi\)
−0.296050 + 0.955172i \(0.595669\pi\)
\(42\) 0.582576 0.0898934
\(43\) −6.37386 −0.972005 −0.486003 0.873957i \(-0.661545\pi\)
−0.486003 + 0.873957i \(0.661545\pi\)
\(44\) 1.00000 0.150756
\(45\) −3.79129 −0.565172
\(46\) −7.58258 −1.11799
\(47\) −9.16515 −1.33687 −0.668437 0.743768i \(-0.733037\pi\)
−0.668437 + 0.743768i \(0.733037\pi\)
\(48\) 2.79129 0.402888
\(49\) −6.95644 −0.993777
\(50\) 4.37386 0.618558
\(51\) 4.41742 0.618563
\(52\) −5.79129 −0.803107
\(53\) −7.58258 −1.04155 −0.520773 0.853695i \(-0.674356\pi\)
−0.520773 + 0.853695i \(0.674356\pi\)
\(54\) −5.00000 −0.680414
\(55\) −0.791288 −0.106697
\(56\) 0.208712 0.0278903
\(57\) 0 0
\(58\) 6.79129 0.891740
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) −2.20871 −0.285144
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) −6.20871 −0.788507
\(63\) −1.00000 −0.125988
\(64\) 1.00000 0.125000
\(65\) 4.58258 0.568399
\(66\) −2.79129 −0.343584
\(67\) 0.208712 0.0254982 0.0127491 0.999919i \(-0.495942\pi\)
0.0127491 + 0.999919i \(0.495942\pi\)
\(68\) 1.58258 0.191915
\(69\) 21.1652 2.54798
\(70\) −0.165151 −0.0197394
\(71\) −2.37386 −0.281726 −0.140863 0.990029i \(-0.544988\pi\)
−0.140863 + 0.990029i \(0.544988\pi\)
\(72\) −4.79129 −0.564659
\(73\) 0.417424 0.0488558 0.0244279 0.999702i \(-0.492224\pi\)
0.0244279 + 0.999702i \(0.492224\pi\)
\(74\) 8.00000 0.929981
\(75\) −12.2087 −1.40974
\(76\) 0 0
\(77\) −0.208712 −0.0237850
\(78\) 16.1652 1.83034
\(79\) −3.58258 −0.403071 −0.201536 0.979481i \(-0.564593\pi\)
−0.201536 + 0.979481i \(0.564593\pi\)
\(80\) −0.791288 −0.0884687
\(81\) −0.417424 −0.0463805
\(82\) 3.79129 0.418678
\(83\) 0.791288 0.0868551 0.0434276 0.999057i \(-0.486172\pi\)
0.0434276 + 0.999057i \(0.486172\pi\)
\(84\) −0.582576 −0.0635642
\(85\) −1.25227 −0.135828
\(86\) 6.37386 0.687311
\(87\) −18.9564 −2.03234
\(88\) −1.00000 −0.106600
\(89\) 13.5826 1.43975 0.719875 0.694104i \(-0.244199\pi\)
0.719875 + 0.694104i \(0.244199\pi\)
\(90\) 3.79129 0.399637
\(91\) 1.20871 0.126707
\(92\) 7.58258 0.790538
\(93\) 17.3303 1.79707
\(94\) 9.16515 0.945313
\(95\) 0 0
\(96\) −2.79129 −0.284885
\(97\) −8.00000 −0.812277 −0.406138 0.913812i \(-0.633125\pi\)
−0.406138 + 0.913812i \(0.633125\pi\)
\(98\) 6.95644 0.702706
\(99\) 4.79129 0.481543
\(100\) −4.37386 −0.437386
\(101\) −4.41742 −0.439550 −0.219775 0.975551i \(-0.570532\pi\)
−0.219775 + 0.975551i \(0.570532\pi\)
\(102\) −4.41742 −0.437390
\(103\) 19.9564 1.96637 0.983183 0.182622i \(-0.0584585\pi\)
0.983183 + 0.182622i \(0.0584585\pi\)
\(104\) 5.79129 0.567882
\(105\) 0.460985 0.0449875
\(106\) 7.58258 0.736485
\(107\) −18.0000 −1.74013 −0.870063 0.492941i \(-0.835922\pi\)
−0.870063 + 0.492941i \(0.835922\pi\)
\(108\) 5.00000 0.481125
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0.791288 0.0754463
\(111\) −22.3303 −2.11950
\(112\) −0.208712 −0.0197214
\(113\) 3.16515 0.297752 0.148876 0.988856i \(-0.452434\pi\)
0.148876 + 0.988856i \(0.452434\pi\)
\(114\) 0 0
\(115\) −6.00000 −0.559503
\(116\) −6.79129 −0.630555
\(117\) −27.7477 −2.56528
\(118\) 0 0
\(119\) −0.330303 −0.0302788
\(120\) 2.20871 0.201627
\(121\) 1.00000 0.0909091
\(122\) −2.00000 −0.181071
\(123\) −10.5826 −0.954199
\(124\) 6.20871 0.557559
\(125\) 7.41742 0.663435
\(126\) 1.00000 0.0890871
\(127\) −18.7477 −1.66359 −0.831796 0.555082i \(-0.812687\pi\)
−0.831796 + 0.555082i \(0.812687\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −17.7913 −1.56644
\(130\) −4.58258 −0.401918
\(131\) 17.3739 1.51796 0.758981 0.651113i \(-0.225698\pi\)
0.758981 + 0.651113i \(0.225698\pi\)
\(132\) 2.79129 0.242950
\(133\) 0 0
\(134\) −0.208712 −0.0180300
\(135\) −3.95644 −0.340516
\(136\) −1.58258 −0.135705
\(137\) 9.79129 0.836526 0.418263 0.908326i \(-0.362639\pi\)
0.418263 + 0.908326i \(0.362639\pi\)
\(138\) −21.1652 −1.80170
\(139\) −16.7913 −1.42422 −0.712109 0.702069i \(-0.752260\pi\)
−0.712109 + 0.702069i \(0.752260\pi\)
\(140\) 0.165151 0.0139578
\(141\) −25.5826 −2.15444
\(142\) 2.37386 0.199210
\(143\) −5.79129 −0.484292
\(144\) 4.79129 0.399274
\(145\) 5.37386 0.446275
\(146\) −0.417424 −0.0345463
\(147\) −19.4174 −1.60152
\(148\) −8.00000 −0.657596
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 12.2087 0.996837
\(151\) −2.00000 −0.162758 −0.0813788 0.996683i \(-0.525932\pi\)
−0.0813788 + 0.996683i \(0.525932\pi\)
\(152\) 0 0
\(153\) 7.58258 0.613015
\(154\) 0.208712 0.0168185
\(155\) −4.91288 −0.394612
\(156\) −16.1652 −1.29425
\(157\) 11.9564 0.954228 0.477114 0.878841i \(-0.341683\pi\)
0.477114 + 0.878841i \(0.341683\pi\)
\(158\) 3.58258 0.285014
\(159\) −21.1652 −1.67851
\(160\) 0.791288 0.0625568
\(161\) −1.58258 −0.124724
\(162\) 0.417424 0.0327960
\(163\) −2.41742 −0.189347 −0.0946736 0.995508i \(-0.530181\pi\)
−0.0946736 + 0.995508i \(0.530181\pi\)
\(164\) −3.79129 −0.296050
\(165\) −2.20871 −0.171948
\(166\) −0.791288 −0.0614158
\(167\) −18.0000 −1.39288 −0.696441 0.717614i \(-0.745234\pi\)
−0.696441 + 0.717614i \(0.745234\pi\)
\(168\) 0.582576 0.0449467
\(169\) 20.5390 1.57992
\(170\) 1.25227 0.0960449
\(171\) 0 0
\(172\) −6.37386 −0.486003
\(173\) 9.95644 0.756974 0.378487 0.925607i \(-0.376444\pi\)
0.378487 + 0.925607i \(0.376444\pi\)
\(174\) 18.9564 1.43708
\(175\) 0.912878 0.0690071
\(176\) 1.00000 0.0753778
\(177\) 0 0
\(178\) −13.5826 −1.01806
\(179\) 18.9564 1.41687 0.708435 0.705776i \(-0.249401\pi\)
0.708435 + 0.705776i \(0.249401\pi\)
\(180\) −3.79129 −0.282586
\(181\) 8.74773 0.650213 0.325107 0.945677i \(-0.394600\pi\)
0.325107 + 0.945677i \(0.394600\pi\)
\(182\) −1.20871 −0.0895957
\(183\) 5.58258 0.412676
\(184\) −7.58258 −0.558995
\(185\) 6.33030 0.465413
\(186\) −17.3303 −1.27072
\(187\) 1.58258 0.115729
\(188\) −9.16515 −0.668437
\(189\) −1.04356 −0.0759079
\(190\) 0 0
\(191\) −18.0000 −1.30243 −0.651217 0.758891i \(-0.725741\pi\)
−0.651217 + 0.758891i \(0.725741\pi\)
\(192\) 2.79129 0.201444
\(193\) 6.37386 0.458801 0.229400 0.973332i \(-0.426323\pi\)
0.229400 + 0.973332i \(0.426323\pi\)
\(194\) 8.00000 0.574367
\(195\) 12.7913 0.916003
\(196\) −6.95644 −0.496889
\(197\) −9.16515 −0.652990 −0.326495 0.945199i \(-0.605868\pi\)
−0.326495 + 0.945199i \(0.605868\pi\)
\(198\) −4.79129 −0.340502
\(199\) −20.7477 −1.47077 −0.735384 0.677651i \(-0.762998\pi\)
−0.735384 + 0.677651i \(0.762998\pi\)
\(200\) 4.37386 0.309279
\(201\) 0.582576 0.0410917
\(202\) 4.41742 0.310809
\(203\) 1.41742 0.0994837
\(204\) 4.41742 0.309282
\(205\) 3.00000 0.209529
\(206\) −19.9564 −1.39043
\(207\) 36.3303 2.52513
\(208\) −5.79129 −0.401554
\(209\) 0 0
\(210\) −0.460985 −0.0318110
\(211\) 8.74773 0.602218 0.301109 0.953590i \(-0.402643\pi\)
0.301109 + 0.953590i \(0.402643\pi\)
\(212\) −7.58258 −0.520773
\(213\) −6.62614 −0.454015
\(214\) 18.0000 1.23045
\(215\) 5.04356 0.343968
\(216\) −5.00000 −0.340207
\(217\) −1.29583 −0.0879669
\(218\) −10.0000 −0.677285
\(219\) 1.16515 0.0787336
\(220\) −0.791288 −0.0533486
\(221\) −9.16515 −0.616515
\(222\) 22.3303 1.49871
\(223\) −11.1652 −0.747674 −0.373837 0.927494i \(-0.621958\pi\)
−0.373837 + 0.927494i \(0.621958\pi\)
\(224\) 0.208712 0.0139452
\(225\) −20.9564 −1.39710
\(226\) −3.16515 −0.210543
\(227\) −1.58258 −0.105039 −0.0525196 0.998620i \(-0.516725\pi\)
−0.0525196 + 0.998620i \(0.516725\pi\)
\(228\) 0 0
\(229\) −4.62614 −0.305704 −0.152852 0.988249i \(-0.548846\pi\)
−0.152852 + 0.988249i \(0.548846\pi\)
\(230\) 6.00000 0.395628
\(231\) −0.582576 −0.0383307
\(232\) 6.79129 0.445870
\(233\) −3.16515 −0.207356 −0.103678 0.994611i \(-0.533061\pi\)
−0.103678 + 0.994611i \(0.533061\pi\)
\(234\) 27.7477 1.81393
\(235\) 7.25227 0.473086
\(236\) 0 0
\(237\) −10.0000 −0.649570
\(238\) 0.330303 0.0214103
\(239\) −6.79129 −0.439292 −0.219646 0.975580i \(-0.570490\pi\)
−0.219646 + 0.975580i \(0.570490\pi\)
\(240\) −2.20871 −0.142572
\(241\) 4.79129 0.308634 0.154317 0.988021i \(-0.450682\pi\)
0.154317 + 0.988021i \(0.450682\pi\)
\(242\) −1.00000 −0.0642824
\(243\) −16.1652 −1.03699
\(244\) 2.00000 0.128037
\(245\) 5.50455 0.351673
\(246\) 10.5826 0.674720
\(247\) 0 0
\(248\) −6.20871 −0.394254
\(249\) 2.20871 0.139971
\(250\) −7.41742 −0.469119
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) −1.00000 −0.0629941
\(253\) 7.58258 0.476712
\(254\) 18.7477 1.17634
\(255\) −3.49545 −0.218894
\(256\) 1.00000 0.0625000
\(257\) −1.58258 −0.0987184 −0.0493592 0.998781i \(-0.515718\pi\)
−0.0493592 + 0.998781i \(0.515718\pi\)
\(258\) 17.7913 1.10764
\(259\) 1.66970 0.103750
\(260\) 4.58258 0.284199
\(261\) −32.5390 −2.01411
\(262\) −17.3739 −1.07336
\(263\) −9.95644 −0.613940 −0.306970 0.951719i \(-0.599315\pi\)
−0.306970 + 0.951719i \(0.599315\pi\)
\(264\) −2.79129 −0.171792
\(265\) 6.00000 0.368577
\(266\) 0 0
\(267\) 37.9129 2.32023
\(268\) 0.208712 0.0127491
\(269\) −10.7477 −0.655300 −0.327650 0.944799i \(-0.606257\pi\)
−0.327650 + 0.944799i \(0.606257\pi\)
\(270\) 3.95644 0.240781
\(271\) 7.37386 0.447930 0.223965 0.974597i \(-0.428100\pi\)
0.223965 + 0.974597i \(0.428100\pi\)
\(272\) 1.58258 0.0959577
\(273\) 3.37386 0.204196
\(274\) −9.79129 −0.591513
\(275\) −4.37386 −0.263754
\(276\) 21.1652 1.27399
\(277\) −22.0000 −1.32185 −0.660926 0.750451i \(-0.729836\pi\)
−0.660926 + 0.750451i \(0.729836\pi\)
\(278\) 16.7913 1.00707
\(279\) 29.7477 1.78095
\(280\) −0.165151 −0.00986968
\(281\) 19.1216 1.14070 0.570349 0.821402i \(-0.306808\pi\)
0.570349 + 0.821402i \(0.306808\pi\)
\(282\) 25.5826 1.52342
\(283\) −32.1216 −1.90943 −0.954715 0.297521i \(-0.903840\pi\)
−0.954715 + 0.297521i \(0.903840\pi\)
\(284\) −2.37386 −0.140863
\(285\) 0 0
\(286\) 5.79129 0.342446
\(287\) 0.791288 0.0467082
\(288\) −4.79129 −0.282329
\(289\) −14.4955 −0.852674
\(290\) −5.37386 −0.315564
\(291\) −22.3303 −1.30903
\(292\) 0.417424 0.0244279
\(293\) −2.20871 −0.129034 −0.0645172 0.997917i \(-0.520551\pi\)
−0.0645172 + 0.997917i \(0.520551\pi\)
\(294\) 19.4174 1.13245
\(295\) 0 0
\(296\) 8.00000 0.464991
\(297\) 5.00000 0.290129
\(298\) 0 0
\(299\) −43.9129 −2.53955
\(300\) −12.2087 −0.704870
\(301\) 1.33030 0.0766774
\(302\) 2.00000 0.115087
\(303\) −12.3303 −0.708357
\(304\) 0 0
\(305\) −1.58258 −0.0906180
\(306\) −7.58258 −0.433467
\(307\) 32.7477 1.86901 0.934506 0.355948i \(-0.115842\pi\)
0.934506 + 0.355948i \(0.115842\pi\)
\(308\) −0.208712 −0.0118925
\(309\) 55.7042 3.16890
\(310\) 4.91288 0.279033
\(311\) 19.9129 1.12916 0.564578 0.825380i \(-0.309039\pi\)
0.564578 + 0.825380i \(0.309039\pi\)
\(312\) 16.1652 0.915171
\(313\) 4.37386 0.247225 0.123613 0.992331i \(-0.460552\pi\)
0.123613 + 0.992331i \(0.460552\pi\)
\(314\) −11.9564 −0.674741
\(315\) 0.791288 0.0445840
\(316\) −3.58258 −0.201536
\(317\) −28.7477 −1.61463 −0.807317 0.590119i \(-0.799081\pi\)
−0.807317 + 0.590119i \(0.799081\pi\)
\(318\) 21.1652 1.18688
\(319\) −6.79129 −0.380239
\(320\) −0.791288 −0.0442343
\(321\) −50.2432 −2.80430
\(322\) 1.58258 0.0881935
\(323\) 0 0
\(324\) −0.417424 −0.0231902
\(325\) 25.3303 1.40507
\(326\) 2.41742 0.133889
\(327\) 27.9129 1.54359
\(328\) 3.79129 0.209339
\(329\) 1.91288 0.105460
\(330\) 2.20871 0.121586
\(331\) −25.2087 −1.38560 −0.692798 0.721132i \(-0.743622\pi\)
−0.692798 + 0.721132i \(0.743622\pi\)
\(332\) 0.791288 0.0434276
\(333\) −38.3303 −2.10049
\(334\) 18.0000 0.984916
\(335\) −0.165151 −0.00902318
\(336\) −0.582576 −0.0317821
\(337\) 27.3739 1.49115 0.745575 0.666422i \(-0.232175\pi\)
0.745575 + 0.666422i \(0.232175\pi\)
\(338\) −20.5390 −1.11718
\(339\) 8.83485 0.479843
\(340\) −1.25227 −0.0679140
\(341\) 6.20871 0.336221
\(342\) 0 0
\(343\) 2.91288 0.157281
\(344\) 6.37386 0.343656
\(345\) −16.7477 −0.901667
\(346\) −9.95644 −0.535261
\(347\) 15.1652 0.814108 0.407054 0.913404i \(-0.366556\pi\)
0.407054 + 0.913404i \(0.366556\pi\)
\(348\) −18.9564 −1.01617
\(349\) −31.4955 −1.68591 −0.842957 0.537982i \(-0.819187\pi\)
−0.842957 + 0.537982i \(0.819187\pi\)
\(350\) −0.912878 −0.0487954
\(351\) −28.9564 −1.54558
\(352\) −1.00000 −0.0533002
\(353\) −33.1652 −1.76520 −0.882601 0.470122i \(-0.844210\pi\)
−0.882601 + 0.470122i \(0.844210\pi\)
\(354\) 0 0
\(355\) 1.87841 0.0996956
\(356\) 13.5826 0.719875
\(357\) −0.921970 −0.0487958
\(358\) −18.9564 −1.00188
\(359\) −29.7042 −1.56773 −0.783863 0.620934i \(-0.786754\pi\)
−0.783863 + 0.620934i \(0.786754\pi\)
\(360\) 3.79129 0.199818
\(361\) 0 0
\(362\) −8.74773 −0.459770
\(363\) 2.79129 0.146505
\(364\) 1.20871 0.0633537
\(365\) −0.330303 −0.0172888
\(366\) −5.58258 −0.291806
\(367\) −16.3303 −0.852435 −0.426217 0.904621i \(-0.640154\pi\)
−0.426217 + 0.904621i \(0.640154\pi\)
\(368\) 7.58258 0.395269
\(369\) −18.1652 −0.945640
\(370\) −6.33030 −0.329097
\(371\) 1.58258 0.0821632
\(372\) 17.3303 0.898534
\(373\) −4.37386 −0.226470 −0.113235 0.993568i \(-0.536121\pi\)
−0.113235 + 0.993568i \(0.536121\pi\)
\(374\) −1.58258 −0.0818330
\(375\) 20.7042 1.06916
\(376\) 9.16515 0.472657
\(377\) 39.3303 2.02561
\(378\) 1.04356 0.0536750
\(379\) −28.2087 −1.44898 −0.724492 0.689283i \(-0.757926\pi\)
−0.724492 + 0.689283i \(0.757926\pi\)
\(380\) 0 0
\(381\) −52.3303 −2.68096
\(382\) 18.0000 0.920960
\(383\) −12.9564 −0.662043 −0.331022 0.943623i \(-0.607393\pi\)
−0.331022 + 0.943623i \(0.607393\pi\)
\(384\) −2.79129 −0.142442
\(385\) 0.165151 0.00841689
\(386\) −6.37386 −0.324421
\(387\) −30.5390 −1.55239
\(388\) −8.00000 −0.406138
\(389\) −31.1216 −1.57793 −0.788964 0.614440i \(-0.789382\pi\)
−0.788964 + 0.614440i \(0.789382\pi\)
\(390\) −12.7913 −0.647712
\(391\) 12.0000 0.606866
\(392\) 6.95644 0.351353
\(393\) 48.4955 2.44627
\(394\) 9.16515 0.461734
\(395\) 2.83485 0.142637
\(396\) 4.79129 0.240771
\(397\) 26.9564 1.35290 0.676452 0.736486i \(-0.263516\pi\)
0.676452 + 0.736486i \(0.263516\pi\)
\(398\) 20.7477 1.03999
\(399\) 0 0
\(400\) −4.37386 −0.218693
\(401\) 4.41742 0.220596 0.110298 0.993899i \(-0.464820\pi\)
0.110298 + 0.993899i \(0.464820\pi\)
\(402\) −0.582576 −0.0290562
\(403\) −35.9564 −1.79112
\(404\) −4.41742 −0.219775
\(405\) 0.330303 0.0164129
\(406\) −1.41742 −0.0703456
\(407\) −8.00000 −0.396545
\(408\) −4.41742 −0.218695
\(409\) −10.3739 −0.512955 −0.256477 0.966550i \(-0.582562\pi\)
−0.256477 + 0.966550i \(0.582562\pi\)
\(410\) −3.00000 −0.148159
\(411\) 27.3303 1.34810
\(412\) 19.9564 0.983183
\(413\) 0 0
\(414\) −36.3303 −1.78554
\(415\) −0.626136 −0.0307358
\(416\) 5.79129 0.283941
\(417\) −46.8693 −2.29520
\(418\) 0 0
\(419\) −24.3303 −1.18861 −0.594307 0.804239i \(-0.702573\pi\)
−0.594307 + 0.804239i \(0.702573\pi\)
\(420\) 0.460985 0.0224938
\(421\) 38.7477 1.88845 0.944224 0.329303i \(-0.106814\pi\)
0.944224 + 0.329303i \(0.106814\pi\)
\(422\) −8.74773 −0.425833
\(423\) −43.9129 −2.13512
\(424\) 7.58258 0.368242
\(425\) −6.92197 −0.335765
\(426\) 6.62614 0.321037
\(427\) −0.417424 −0.0202006
\(428\) −18.0000 −0.870063
\(429\) −16.1652 −0.780461
\(430\) −5.04356 −0.243222
\(431\) −33.4955 −1.61342 −0.806710 0.590948i \(-0.798754\pi\)
−0.806710 + 0.590948i \(0.798754\pi\)
\(432\) 5.00000 0.240563
\(433\) 2.41742 0.116174 0.0580870 0.998312i \(-0.481500\pi\)
0.0580870 + 0.998312i \(0.481500\pi\)
\(434\) 1.29583 0.0622020
\(435\) 15.0000 0.719195
\(436\) 10.0000 0.478913
\(437\) 0 0
\(438\) −1.16515 −0.0556731
\(439\) 12.8348 0.612574 0.306287 0.951939i \(-0.400913\pi\)
0.306287 + 0.951939i \(0.400913\pi\)
\(440\) 0.791288 0.0377232
\(441\) −33.3303 −1.58716
\(442\) 9.16515 0.435942
\(443\) 18.3303 0.870899 0.435449 0.900213i \(-0.356589\pi\)
0.435449 + 0.900213i \(0.356589\pi\)
\(444\) −22.3303 −1.05975
\(445\) −10.7477 −0.509491
\(446\) 11.1652 0.528685
\(447\) 0 0
\(448\) −0.208712 −0.00986072
\(449\) 10.7477 0.507217 0.253608 0.967307i \(-0.418383\pi\)
0.253608 + 0.967307i \(0.418383\pi\)
\(450\) 20.9564 0.987896
\(451\) −3.79129 −0.178525
\(452\) 3.16515 0.148876
\(453\) −5.58258 −0.262292
\(454\) 1.58258 0.0742740
\(455\) −0.956439 −0.0448386
\(456\) 0 0
\(457\) −32.7477 −1.53187 −0.765937 0.642916i \(-0.777725\pi\)
−0.765937 + 0.642916i \(0.777725\pi\)
\(458\) 4.62614 0.216165
\(459\) 7.91288 0.369342
\(460\) −6.00000 −0.279751
\(461\) 6.33030 0.294832 0.147416 0.989075i \(-0.452904\pi\)
0.147416 + 0.989075i \(0.452904\pi\)
\(462\) 0.582576 0.0271039
\(463\) 32.6606 1.51787 0.758934 0.651168i \(-0.225721\pi\)
0.758934 + 0.651168i \(0.225721\pi\)
\(464\) −6.79129 −0.315278
\(465\) −13.7133 −0.635937
\(466\) 3.16515 0.146623
\(467\) 4.41742 0.204414 0.102207 0.994763i \(-0.467410\pi\)
0.102207 + 0.994763i \(0.467410\pi\)
\(468\) −27.7477 −1.28264
\(469\) −0.0435608 −0.00201145
\(470\) −7.25227 −0.334522
\(471\) 33.3739 1.53779
\(472\) 0 0
\(473\) −6.37386 −0.293071
\(474\) 10.0000 0.459315
\(475\) 0 0
\(476\) −0.330303 −0.0151394
\(477\) −36.3303 −1.66345
\(478\) 6.79129 0.310626
\(479\) −8.20871 −0.375066 −0.187533 0.982258i \(-0.560049\pi\)
−0.187533 + 0.982258i \(0.560049\pi\)
\(480\) 2.20871 0.100813
\(481\) 46.3303 2.11248
\(482\) −4.79129 −0.218237
\(483\) −4.41742 −0.201000
\(484\) 1.00000 0.0454545
\(485\) 6.33030 0.287444
\(486\) 16.1652 0.733266
\(487\) 23.1216 1.04774 0.523870 0.851798i \(-0.324488\pi\)
0.523870 + 0.851798i \(0.324488\pi\)
\(488\) −2.00000 −0.0905357
\(489\) −6.74773 −0.305143
\(490\) −5.50455 −0.248670
\(491\) 38.8693 1.75415 0.877074 0.480356i \(-0.159492\pi\)
0.877074 + 0.480356i \(0.159492\pi\)
\(492\) −10.5826 −0.477099
\(493\) −10.7477 −0.484053
\(494\) 0 0
\(495\) −3.79129 −0.170406
\(496\) 6.20871 0.278779
\(497\) 0.495454 0.0222242
\(498\) −2.20871 −0.0989748
\(499\) 17.1652 0.768418 0.384209 0.923246i \(-0.374474\pi\)
0.384209 + 0.923246i \(0.374474\pi\)
\(500\) 7.41742 0.331717
\(501\) −50.2432 −2.24470
\(502\) −12.0000 −0.535586
\(503\) −9.95644 −0.443936 −0.221968 0.975054i \(-0.571248\pi\)
−0.221968 + 0.975054i \(0.571248\pi\)
\(504\) 1.00000 0.0445435
\(505\) 3.49545 0.155546
\(506\) −7.58258 −0.337087
\(507\) 57.3303 2.54613
\(508\) −18.7477 −0.831796
\(509\) 27.1652 1.20407 0.602037 0.798468i \(-0.294356\pi\)
0.602037 + 0.798468i \(0.294356\pi\)
\(510\) 3.49545 0.154781
\(511\) −0.0871215 −0.00385403
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 1.58258 0.0698044
\(515\) −15.7913 −0.695847
\(516\) −17.7913 −0.783218
\(517\) −9.16515 −0.403083
\(518\) −1.66970 −0.0733623
\(519\) 27.7913 1.21990
\(520\) −4.58258 −0.200959
\(521\) −14.8348 −0.649927 −0.324963 0.945727i \(-0.605352\pi\)
−0.324963 + 0.945727i \(0.605352\pi\)
\(522\) 32.5390 1.42419
\(523\) −24.7477 −1.08214 −0.541071 0.840977i \(-0.681981\pi\)
−0.541071 + 0.840977i \(0.681981\pi\)
\(524\) 17.3739 0.758981
\(525\) 2.54811 0.111208
\(526\) 9.95644 0.434121
\(527\) 9.82576 0.428017
\(528\) 2.79129 0.121475
\(529\) 34.4955 1.49980
\(530\) −6.00000 −0.260623
\(531\) 0 0
\(532\) 0 0
\(533\) 21.9564 0.951039
\(534\) −37.9129 −1.64065
\(535\) 14.2432 0.615786
\(536\) −0.208712 −0.00901499
\(537\) 52.9129 2.28336
\(538\) 10.7477 0.463367
\(539\) −6.95644 −0.299635
\(540\) −3.95644 −0.170258
\(541\) 9.91288 0.426188 0.213094 0.977032i \(-0.431646\pi\)
0.213094 + 0.977032i \(0.431646\pi\)
\(542\) −7.37386 −0.316735
\(543\) 24.4174 1.04785
\(544\) −1.58258 −0.0678524
\(545\) −7.91288 −0.338950
\(546\) −3.37386 −0.144388
\(547\) 24.8348 1.06186 0.530931 0.847415i \(-0.321842\pi\)
0.530931 + 0.847415i \(0.321842\pi\)
\(548\) 9.79129 0.418263
\(549\) 9.58258 0.408974
\(550\) 4.37386 0.186502
\(551\) 0 0
\(552\) −21.1652 −0.900849
\(553\) 0.747727 0.0317966
\(554\) 22.0000 0.934690
\(555\) 17.6697 0.750037
\(556\) −16.7913 −0.712109
\(557\) −39.1652 −1.65948 −0.829740 0.558150i \(-0.811512\pi\)
−0.829740 + 0.558150i \(0.811512\pi\)
\(558\) −29.7477 −1.25932
\(559\) 36.9129 1.56125
\(560\) 0.165151 0.00697892
\(561\) 4.41742 0.186504
\(562\) −19.1216 −0.806596
\(563\) −42.6606 −1.79793 −0.898965 0.438020i \(-0.855680\pi\)
−0.898965 + 0.438020i \(0.855680\pi\)
\(564\) −25.5826 −1.07722
\(565\) −2.50455 −0.105367
\(566\) 32.1216 1.35017
\(567\) 0.0871215 0.00365876
\(568\) 2.37386 0.0996051
\(569\) −18.9564 −0.794695 −0.397348 0.917668i \(-0.630069\pi\)
−0.397348 + 0.917668i \(0.630069\pi\)
\(570\) 0 0
\(571\) 10.2087 0.427221 0.213611 0.976919i \(-0.431478\pi\)
0.213611 + 0.976919i \(0.431478\pi\)
\(572\) −5.79129 −0.242146
\(573\) −50.2432 −2.09894
\(574\) −0.791288 −0.0330277
\(575\) −33.1652 −1.38308
\(576\) 4.79129 0.199637
\(577\) 34.8693 1.45163 0.725814 0.687891i \(-0.241463\pi\)
0.725814 + 0.687891i \(0.241463\pi\)
\(578\) 14.4955 0.602931
\(579\) 17.7913 0.739381
\(580\) 5.37386 0.223138
\(581\) −0.165151 −0.00685163
\(582\) 22.3303 0.925621
\(583\) −7.58258 −0.314038
\(584\) −0.417424 −0.0172731
\(585\) 21.9564 0.907787
\(586\) 2.20871 0.0912411
\(587\) 15.1652 0.625933 0.312966 0.949764i \(-0.398677\pi\)
0.312966 + 0.949764i \(0.398677\pi\)
\(588\) −19.4174 −0.800761
\(589\) 0 0
\(590\) 0 0
\(591\) −25.5826 −1.05233
\(592\) −8.00000 −0.328798
\(593\) 21.1652 0.869149 0.434574 0.900636i \(-0.356899\pi\)
0.434574 + 0.900636i \(0.356899\pi\)
\(594\) −5.00000 −0.205152
\(595\) 0.261365 0.0107149
\(596\) 0 0
\(597\) −57.9129 −2.37022
\(598\) 43.9129 1.79573
\(599\) −3.95644 −0.161656 −0.0808279 0.996728i \(-0.525756\pi\)
−0.0808279 + 0.996728i \(0.525756\pi\)
\(600\) 12.2087 0.498419
\(601\) 19.7913 0.807303 0.403652 0.914913i \(-0.367741\pi\)
0.403652 + 0.914913i \(0.367741\pi\)
\(602\) −1.33030 −0.0542191
\(603\) 1.00000 0.0407231
\(604\) −2.00000 −0.0813788
\(605\) −0.791288 −0.0321704
\(606\) 12.3303 0.500884
\(607\) 29.9129 1.21413 0.607063 0.794654i \(-0.292347\pi\)
0.607063 + 0.794654i \(0.292347\pi\)
\(608\) 0 0
\(609\) 3.95644 0.160323
\(610\) 1.58258 0.0640766
\(611\) 53.0780 2.14731
\(612\) 7.58258 0.306507
\(613\) 14.0000 0.565455 0.282727 0.959200i \(-0.408761\pi\)
0.282727 + 0.959200i \(0.408761\pi\)
\(614\) −32.7477 −1.32159
\(615\) 8.37386 0.337667
\(616\) 0.208712 0.00840925
\(617\) 9.79129 0.394182 0.197091 0.980385i \(-0.436850\pi\)
0.197091 + 0.980385i \(0.436850\pi\)
\(618\) −55.7042 −2.24075
\(619\) 17.1652 0.689926 0.344963 0.938616i \(-0.387892\pi\)
0.344963 + 0.938616i \(0.387892\pi\)
\(620\) −4.91288 −0.197306
\(621\) 37.9129 1.52139
\(622\) −19.9129 −0.798434
\(623\) −2.83485 −0.113576
\(624\) −16.1652 −0.647124
\(625\) 16.0000 0.640000
\(626\) −4.37386 −0.174815
\(627\) 0 0
\(628\) 11.9564 0.477114
\(629\) −12.6606 −0.504811
\(630\) −0.791288 −0.0315257
\(631\) 9.91288 0.394625 0.197313 0.980341i \(-0.436779\pi\)
0.197313 + 0.980341i \(0.436779\pi\)
\(632\) 3.58258 0.142507
\(633\) 24.4174 0.970505
\(634\) 28.7477 1.14172
\(635\) 14.8348 0.588703
\(636\) −21.1652 −0.839253
\(637\) 40.2867 1.59622
\(638\) 6.79129 0.268870
\(639\) −11.3739 −0.449943
\(640\) 0.791288 0.0312784
\(641\) −25.5826 −1.01045 −0.505225 0.862987i \(-0.668591\pi\)
−0.505225 + 0.862987i \(0.668591\pi\)
\(642\) 50.2432 1.98294
\(643\) −10.3303 −0.407387 −0.203694 0.979035i \(-0.565295\pi\)
−0.203694 + 0.979035i \(0.565295\pi\)
\(644\) −1.58258 −0.0623622
\(645\) 14.0780 0.554322
\(646\) 0 0
\(647\) −19.9129 −0.782856 −0.391428 0.920209i \(-0.628019\pi\)
−0.391428 + 0.920209i \(0.628019\pi\)
\(648\) 0.417424 0.0163980
\(649\) 0 0
\(650\) −25.3303 −0.993536
\(651\) −3.61704 −0.141763
\(652\) −2.41742 −0.0946736
\(653\) −49.2867 −1.92874 −0.964370 0.264559i \(-0.914774\pi\)
−0.964370 + 0.264559i \(0.914774\pi\)
\(654\) −27.9129 −1.09148
\(655\) −13.7477 −0.537168
\(656\) −3.79129 −0.148025
\(657\) 2.00000 0.0780274
\(658\) −1.91288 −0.0745718
\(659\) 37.9129 1.47688 0.738438 0.674321i \(-0.235564\pi\)
0.738438 + 0.674321i \(0.235564\pi\)
\(660\) −2.20871 −0.0859740
\(661\) −32.0000 −1.24466 −0.622328 0.782757i \(-0.713813\pi\)
−0.622328 + 0.782757i \(0.713813\pi\)
\(662\) 25.2087 0.979764
\(663\) −25.5826 −0.993545
\(664\) −0.791288 −0.0307079
\(665\) 0 0
\(666\) 38.3303 1.48527
\(667\) −51.4955 −1.99391
\(668\) −18.0000 −0.696441
\(669\) −31.1652 −1.20491
\(670\) 0.165151 0.00638035
\(671\) 2.00000 0.0772091
\(672\) 0.582576 0.0224733
\(673\) 34.9564 1.34747 0.673736 0.738972i \(-0.264689\pi\)
0.673736 + 0.738972i \(0.264689\pi\)
\(674\) −27.3739 −1.05440
\(675\) −21.8693 −0.841750
\(676\) 20.5390 0.789962
\(677\) −0.460985 −0.0177171 −0.00885855 0.999961i \(-0.502820\pi\)
−0.00885855 + 0.999961i \(0.502820\pi\)
\(678\) −8.83485 −0.339300
\(679\) 1.66970 0.0640771
\(680\) 1.25227 0.0480225
\(681\) −4.41742 −0.169276
\(682\) −6.20871 −0.237744
\(683\) 24.6606 0.943612 0.471806 0.881702i \(-0.343602\pi\)
0.471806 + 0.881702i \(0.343602\pi\)
\(684\) 0 0
\(685\) −7.74773 −0.296025
\(686\) −2.91288 −0.111214
\(687\) −12.9129 −0.492657
\(688\) −6.37386 −0.243001
\(689\) 43.9129 1.67295
\(690\) 16.7477 0.637575
\(691\) 23.4955 0.893809 0.446905 0.894582i \(-0.352526\pi\)
0.446905 + 0.894582i \(0.352526\pi\)
\(692\) 9.95644 0.378487
\(693\) −1.00000 −0.0379869
\(694\) −15.1652 −0.575661
\(695\) 13.2867 0.503995
\(696\) 18.9564 0.718542
\(697\) −6.00000 −0.227266
\(698\) 31.4955 1.19212
\(699\) −8.83485 −0.334165
\(700\) 0.912878 0.0345036
\(701\) −42.3303 −1.59879 −0.799397 0.600804i \(-0.794847\pi\)
−0.799397 + 0.600804i \(0.794847\pi\)
\(702\) 28.9564 1.09289
\(703\) 0 0
\(704\) 1.00000 0.0376889
\(705\) 20.2432 0.762402
\(706\) 33.1652 1.24819
\(707\) 0.921970 0.0346743
\(708\) 0 0
\(709\) 28.2087 1.05940 0.529700 0.848185i \(-0.322304\pi\)
0.529700 + 0.848185i \(0.322304\pi\)
\(710\) −1.87841 −0.0704954
\(711\) −17.1652 −0.643743
\(712\) −13.5826 −0.509029
\(713\) 47.0780 1.76309
\(714\) 0.921970 0.0345039
\(715\) 4.58258 0.171379
\(716\) 18.9564 0.708435
\(717\) −18.9564 −0.707941
\(718\) 29.7042 1.10855
\(719\) 35.0780 1.30819 0.654095 0.756413i \(-0.273050\pi\)
0.654095 + 0.756413i \(0.273050\pi\)
\(720\) −3.79129 −0.141293
\(721\) −4.16515 −0.155118
\(722\) 0 0
\(723\) 13.3739 0.497379
\(724\) 8.74773 0.325107
\(725\) 29.7042 1.10319
\(726\) −2.79129 −0.103594
\(727\) 29.4955 1.09393 0.546963 0.837157i \(-0.315784\pi\)
0.546963 + 0.837157i \(0.315784\pi\)
\(728\) −1.20871 −0.0447979
\(729\) −43.8693 −1.62479
\(730\) 0.330303 0.0122251
\(731\) −10.0871 −0.373086
\(732\) 5.58258 0.206338
\(733\) 35.4955 1.31105 0.655527 0.755172i \(-0.272446\pi\)
0.655527 + 0.755172i \(0.272446\pi\)
\(734\) 16.3303 0.602762
\(735\) 15.3648 0.566738
\(736\) −7.58258 −0.279497
\(737\) 0.208712 0.00768801
\(738\) 18.1652 0.668668
\(739\) 16.0436 0.590172 0.295086 0.955471i \(-0.404652\pi\)
0.295086 + 0.955471i \(0.404652\pi\)
\(740\) 6.33030 0.232707
\(741\) 0 0
\(742\) −1.58258 −0.0580982
\(743\) −26.8348 −0.984475 −0.492238 0.870461i \(-0.663821\pi\)
−0.492238 + 0.870461i \(0.663821\pi\)
\(744\) −17.3303 −0.635360
\(745\) 0 0
\(746\) 4.37386 0.160139
\(747\) 3.79129 0.138716
\(748\) 1.58258 0.0578647
\(749\) 3.75682 0.137271
\(750\) −20.7042 −0.756009
\(751\) −26.3303 −0.960806 −0.480403 0.877048i \(-0.659510\pi\)
−0.480403 + 0.877048i \(0.659510\pi\)
\(752\) −9.16515 −0.334219
\(753\) 33.4955 1.22064
\(754\) −39.3303 −1.43233
\(755\) 1.58258 0.0575958
\(756\) −1.04356 −0.0379539
\(757\) −28.7913 −1.04644 −0.523219 0.852199i \(-0.675269\pi\)
−0.523219 + 0.852199i \(0.675269\pi\)
\(758\) 28.2087 1.02459
\(759\) 21.1652 0.768246
\(760\) 0 0
\(761\) 4.08712 0.148158 0.0740790 0.997252i \(-0.476398\pi\)
0.0740790 + 0.997252i \(0.476398\pi\)
\(762\) 52.3303 1.89573
\(763\) −2.08712 −0.0755589
\(764\) −18.0000 −0.651217
\(765\) −6.00000 −0.216930
\(766\) 12.9564 0.468135
\(767\) 0 0
\(768\) 2.79129 0.100722
\(769\) 44.3303 1.59859 0.799296 0.600938i \(-0.205206\pi\)
0.799296 + 0.600938i \(0.205206\pi\)
\(770\) −0.165151 −0.00595164
\(771\) −4.41742 −0.159090
\(772\) 6.37386 0.229400
\(773\) −15.4955 −0.557333 −0.278666 0.960388i \(-0.589892\pi\)
−0.278666 + 0.960388i \(0.589892\pi\)
\(774\) 30.5390 1.09770
\(775\) −27.1561 −0.975474
\(776\) 8.00000 0.287183
\(777\) 4.66061 0.167198
\(778\) 31.1216 1.11576
\(779\) 0 0
\(780\) 12.7913 0.458002
\(781\) −2.37386 −0.0849435
\(782\) −12.0000 −0.429119
\(783\) −33.9564 −1.21350
\(784\) −6.95644 −0.248444
\(785\) −9.46099 −0.337677
\(786\) −48.4955 −1.72978
\(787\) 5.58258 0.198997 0.0994987 0.995038i \(-0.468276\pi\)
0.0994987 + 0.995038i \(0.468276\pi\)
\(788\) −9.16515 −0.326495
\(789\) −27.7913 −0.989396
\(790\) −2.83485 −0.100859
\(791\) −0.660606 −0.0234884
\(792\) −4.79129 −0.170251
\(793\) −11.5826 −0.411309
\(794\) −26.9564 −0.956648
\(795\) 16.7477 0.593981
\(796\) −20.7477 −0.735384
\(797\) −50.2432 −1.77970 −0.889852 0.456249i \(-0.849193\pi\)
−0.889852 + 0.456249i \(0.849193\pi\)
\(798\) 0 0
\(799\) −14.5045 −0.513134
\(800\) 4.37386 0.154639
\(801\) 65.0780 2.29942
\(802\) −4.41742 −0.155985
\(803\) 0.417424 0.0147306
\(804\) 0.582576 0.0205459
\(805\) 1.25227 0.0441368
\(806\) 35.9564 1.26651
\(807\) −30.0000 −1.05605
\(808\) 4.41742 0.155404
\(809\) −5.66970 −0.199336 −0.0996680 0.995021i \(-0.531778\pi\)
−0.0996680 + 0.995021i \(0.531778\pi\)
\(810\) −0.330303 −0.0116057
\(811\) −23.4955 −0.825037 −0.412518 0.910949i \(-0.635351\pi\)
−0.412518 + 0.910949i \(0.635351\pi\)
\(812\) 1.41742 0.0497418
\(813\) 20.5826 0.721862
\(814\) 8.00000 0.280400
\(815\) 1.91288 0.0670052
\(816\) 4.41742 0.154641
\(817\) 0 0
\(818\) 10.3739 0.362714
\(819\) 5.79129 0.202364
\(820\) 3.00000 0.104765
\(821\) 17.0780 0.596027 0.298014 0.954562i \(-0.403676\pi\)
0.298014 + 0.954562i \(0.403676\pi\)
\(822\) −27.3303 −0.953254
\(823\) −37.4955 −1.30701 −0.653505 0.756922i \(-0.726702\pi\)
−0.653505 + 0.756922i \(0.726702\pi\)
\(824\) −19.9564 −0.695216
\(825\) −12.2087 −0.425053
\(826\) 0 0
\(827\) −48.0000 −1.66912 −0.834562 0.550914i \(-0.814279\pi\)
−0.834562 + 0.550914i \(0.814279\pi\)
\(828\) 36.3303 1.26257
\(829\) 10.0000 0.347314 0.173657 0.984806i \(-0.444442\pi\)
0.173657 + 0.984806i \(0.444442\pi\)
\(830\) 0.626136 0.0217335
\(831\) −61.4083 −2.13023
\(832\) −5.79129 −0.200777
\(833\) −11.0091 −0.381442
\(834\) 46.8693 1.62295
\(835\) 14.2432 0.492906
\(836\) 0 0
\(837\) 31.0436 1.07302
\(838\) 24.3303 0.840476
\(839\) 3.95644 0.136591 0.0682957 0.997665i \(-0.478244\pi\)
0.0682957 + 0.997665i \(0.478244\pi\)
\(840\) −0.460985 −0.0159055
\(841\) 17.1216 0.590400
\(842\) −38.7477 −1.33533
\(843\) 53.3739 1.83829
\(844\) 8.74773 0.301109
\(845\) −16.2523 −0.559095
\(846\) 43.9129 1.50976
\(847\) −0.208712 −0.00717143
\(848\) −7.58258 −0.260387
\(849\) −89.6606 −3.07714
\(850\) 6.92197 0.237422
\(851\) −60.6606 −2.07942
\(852\) −6.62614 −0.227008
\(853\) 11.1652 0.382288 0.191144 0.981562i \(-0.438780\pi\)
0.191144 + 0.981562i \(0.438780\pi\)
\(854\) 0.417424 0.0142840
\(855\) 0 0
\(856\) 18.0000 0.615227
\(857\) 25.2867 0.863779 0.431889 0.901927i \(-0.357847\pi\)
0.431889 + 0.901927i \(0.357847\pi\)
\(858\) 16.1652 0.551869
\(859\) 41.4955 1.41581 0.707903 0.706309i \(-0.249641\pi\)
0.707903 + 0.706309i \(0.249641\pi\)
\(860\) 5.04356 0.171984
\(861\) 2.20871 0.0752727
\(862\) 33.4955 1.14086
\(863\) 8.53901 0.290671 0.145336 0.989382i \(-0.453574\pi\)
0.145336 + 0.989382i \(0.453574\pi\)
\(864\) −5.00000 −0.170103
\(865\) −7.87841 −0.267874
\(866\) −2.41742 −0.0821474
\(867\) −40.4610 −1.37413
\(868\) −1.29583 −0.0439835
\(869\) −3.58258 −0.121531
\(870\) −15.0000 −0.508548
\(871\) −1.20871 −0.0409556
\(872\) −10.0000 −0.338643
\(873\) −38.3303 −1.29728
\(874\) 0 0
\(875\) −1.54811 −0.0523356
\(876\) 1.16515 0.0393668
\(877\) 53.1216 1.79379 0.896894 0.442245i \(-0.145818\pi\)
0.896894 + 0.442245i \(0.145818\pi\)
\(878\) −12.8348 −0.433155
\(879\) −6.16515 −0.207945
\(880\) −0.791288 −0.0266743
\(881\) 28.1216 0.947440 0.473720 0.880675i \(-0.342911\pi\)
0.473720 + 0.880675i \(0.342911\pi\)
\(882\) 33.3303 1.12229
\(883\) −23.9129 −0.804732 −0.402366 0.915479i \(-0.631812\pi\)
−0.402366 + 0.915479i \(0.631812\pi\)
\(884\) −9.16515 −0.308257
\(885\) 0 0
\(886\) −18.3303 −0.615819
\(887\) 33.4955 1.12467 0.562334 0.826910i \(-0.309904\pi\)
0.562334 + 0.826910i \(0.309904\pi\)
\(888\) 22.3303 0.749356
\(889\) 3.91288 0.131234
\(890\) 10.7477 0.360265
\(891\) −0.417424 −0.0139842
\(892\) −11.1652 −0.373837
\(893\) 0 0
\(894\) 0 0
\(895\) −15.0000 −0.501395
\(896\) 0.208712 0.00697258
\(897\) −122.573 −4.09261
\(898\) −10.7477 −0.358656
\(899\) −42.1652 −1.40629
\(900\) −20.9564 −0.698548
\(901\) −12.0000 −0.399778
\(902\) 3.79129 0.126236
\(903\) 3.71326 0.123569
\(904\) −3.16515 −0.105271
\(905\) −6.92197 −0.230094
\(906\) 5.58258 0.185469
\(907\) −8.00000 −0.265636 −0.132818 0.991140i \(-0.542403\pi\)
−0.132818 + 0.991140i \(0.542403\pi\)
\(908\) −1.58258 −0.0525196
\(909\) −21.1652 −0.702004
\(910\) 0.956439 0.0317057
\(911\) 20.8348 0.690289 0.345145 0.938549i \(-0.387830\pi\)
0.345145 + 0.938549i \(0.387830\pi\)
\(912\) 0 0
\(913\) 0.791288 0.0261878
\(914\) 32.7477 1.08320
\(915\) −4.41742 −0.146036
\(916\) −4.62614 −0.152852
\(917\) −3.62614 −0.119746
\(918\) −7.91288 −0.261164
\(919\) −8.28674 −0.273354 −0.136677 0.990616i \(-0.543642\pi\)
−0.136677 + 0.990616i \(0.543642\pi\)
\(920\) 6.00000 0.197814
\(921\) 91.4083 3.01201
\(922\) −6.33030 −0.208477
\(923\) 13.7477 0.452512
\(924\) −0.582576 −0.0191653
\(925\) 34.9909 1.15049
\(926\) −32.6606 −1.07329
\(927\) 95.6170 3.14048
\(928\) 6.79129 0.222935
\(929\) −21.7913 −0.714949 −0.357474 0.933923i \(-0.616362\pi\)
−0.357474 + 0.933923i \(0.616362\pi\)
\(930\) 13.7133 0.449675
\(931\) 0 0
\(932\) −3.16515 −0.103678
\(933\) 55.5826 1.81969
\(934\) −4.41742 −0.144543
\(935\) −1.25227 −0.0409537
\(936\) 27.7477 0.906963
\(937\) 53.8258 1.75841 0.879205 0.476443i \(-0.158074\pi\)
0.879205 + 0.476443i \(0.158074\pi\)
\(938\) 0.0435608 0.00142231
\(939\) 12.2087 0.398416
\(940\) 7.25227 0.236543
\(941\) 45.1652 1.47234 0.736171 0.676796i \(-0.236632\pi\)
0.736171 + 0.676796i \(0.236632\pi\)
\(942\) −33.3739 −1.08738
\(943\) −28.7477 −0.936155
\(944\) 0 0
\(945\) 0.825757 0.0268619
\(946\) 6.37386 0.207232
\(947\) −47.0780 −1.52983 −0.764915 0.644131i \(-0.777219\pi\)
−0.764915 + 0.644131i \(0.777219\pi\)
\(948\) −10.0000 −0.324785
\(949\) −2.41742 −0.0784729
\(950\) 0 0
\(951\) −80.2432 −2.60206
\(952\) 0.330303 0.0107052
\(953\) 33.1652 1.07432 0.537162 0.843479i \(-0.319496\pi\)
0.537162 + 0.843479i \(0.319496\pi\)
\(954\) 36.3303 1.17624
\(955\) 14.2432 0.460899
\(956\) −6.79129 −0.219646
\(957\) −18.9564 −0.612775
\(958\) 8.20871 0.265211
\(959\) −2.04356 −0.0659900
\(960\) −2.20871 −0.0712859
\(961\) 7.54811 0.243487
\(962\) −46.3303 −1.49375
\(963\) −86.2432 −2.77915
\(964\) 4.79129 0.154317
\(965\) −5.04356 −0.162358
\(966\) 4.41742 0.142128
\(967\) −13.4955 −0.433985 −0.216992 0.976173i \(-0.569625\pi\)
−0.216992 + 0.976173i \(0.569625\pi\)
\(968\) −1.00000 −0.0321412
\(969\) 0 0
\(970\) −6.33030 −0.203254
\(971\) −40.2867 −1.29286 −0.646432 0.762972i \(-0.723739\pi\)
−0.646432 + 0.762972i \(0.723739\pi\)
\(972\) −16.1652 −0.518497
\(973\) 3.50455 0.112351
\(974\) −23.1216 −0.740864
\(975\) 70.7042 2.26435
\(976\) 2.00000 0.0640184
\(977\) 39.1652 1.25300 0.626502 0.779420i \(-0.284486\pi\)
0.626502 + 0.779420i \(0.284486\pi\)
\(978\) 6.74773 0.215769
\(979\) 13.5826 0.434101
\(980\) 5.50455 0.175836
\(981\) 47.9129 1.52974
\(982\) −38.8693 −1.24037
\(983\) −2.20871 −0.0704470 −0.0352235 0.999379i \(-0.511214\pi\)
−0.0352235 + 0.999379i \(0.511214\pi\)
\(984\) 10.5826 0.337360
\(985\) 7.25227 0.231077
\(986\) 10.7477 0.342277
\(987\) 5.33939 0.169955
\(988\) 0 0
\(989\) −48.3303 −1.53681
\(990\) 3.79129 0.120495
\(991\) 16.9564 0.538639 0.269320 0.963051i \(-0.413201\pi\)
0.269320 + 0.963051i \(0.413201\pi\)
\(992\) −6.20871 −0.197127
\(993\) −70.3648 −2.23296
\(994\) −0.495454 −0.0157149
\(995\) 16.4174 0.520467
\(996\) 2.20871 0.0699857
\(997\) −14.0871 −0.446144 −0.223072 0.974802i \(-0.571608\pi\)
−0.223072 + 0.974802i \(0.571608\pi\)
\(998\) −17.1652 −0.543353
\(999\) −40.0000 −1.26554
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7942.2.a.w.1.2 2
19.18 odd 2 418.2.a.f.1.1 2
57.56 even 2 3762.2.a.s.1.2 2
76.75 even 2 3344.2.a.l.1.2 2
209.208 even 2 4598.2.a.y.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
418.2.a.f.1.1 2 19.18 odd 2
3344.2.a.l.1.2 2 76.75 even 2
3762.2.a.s.1.2 2 57.56 even 2
4598.2.a.y.1.1 2 209.208 even 2
7942.2.a.w.1.2 2 1.1 even 1 trivial