Properties

Label 7942.2.a.x
Level $7942$
Weight $2$
Character orbit 7942.a
Self dual yes
Analytic conductor $63.417$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7942,2,Mod(1,7942)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7942, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7942.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7942 = 2 \cdot 11 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7942.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.4171892853\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 418)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} - \beta q^{3} + q^{4} + 2 q^{5} - \beta q^{6} + ( - \beta + 2) q^{7} + q^{8} + (\beta + 1) q^{9} + 2 q^{10} + q^{11} - \beta q^{12} + ( - \beta + 2) q^{13} + ( - \beta + 2) q^{14} - 2 \beta q^{15} + \cdots + (\beta + 1) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - q^{3} + 2 q^{4} + 4 q^{5} - q^{6} + 3 q^{7} + 2 q^{8} + 3 q^{9} + 4 q^{10} + 2 q^{11} - q^{12} + 3 q^{13} + 3 q^{14} - 2 q^{15} + 2 q^{16} + 3 q^{17} + 3 q^{18} + 4 q^{20} + 7 q^{21}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.56155
−1.56155
1.00000 −2.56155 1.00000 2.00000 −2.56155 −0.561553 1.00000 3.56155 2.00000
1.2 1.00000 1.56155 1.00000 2.00000 1.56155 3.56155 1.00000 −0.561553 2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(11\) \( -1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7942.2.a.x 2
19.b odd 2 1 418.2.a.e 2
57.d even 2 1 3762.2.a.y 2
76.d even 2 1 3344.2.a.k 2
209.d even 2 1 4598.2.a.bj 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
418.2.a.e 2 19.b odd 2 1
3344.2.a.k 2 76.d even 2 1
3762.2.a.y 2 57.d even 2 1
4598.2.a.bj 2 209.d even 2 1
7942.2.a.x 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7942))\):

\( T_{3}^{2} + T_{3} - 4 \) Copy content Toggle raw display
\( T_{5} - 2 \) Copy content Toggle raw display
\( T_{13}^{2} - 3T_{13} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + T - 4 \) Copy content Toggle raw display
$5$ \( (T - 2)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 3T - 2 \) Copy content Toggle raw display
$11$ \( (T - 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 3T - 2 \) Copy content Toggle raw display
$17$ \( T^{2} - 3T - 2 \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 7T + 8 \) Copy content Toggle raw display
$29$ \( T^{2} + T - 38 \) Copy content Toggle raw display
$31$ \( (T + 2)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} - 2T - 16 \) Copy content Toggle raw display
$41$ \( (T + 2)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( (T - 8)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 5T - 100 \) Copy content Toggle raw display
$59$ \( T^{2} - 3T - 36 \) Copy content Toggle raw display
$61$ \( T^{2} + 4T - 64 \) Copy content Toggle raw display
$67$ \( T^{2} - 3T - 36 \) Copy content Toggle raw display
$71$ \( (T + 6)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 7T - 26 \) Copy content Toggle raw display
$79$ \( (T - 4)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 12T - 32 \) Copy content Toggle raw display
$89$ \( T^{2} - 10T + 8 \) Copy content Toggle raw display
$97$ \( T^{2} - 6T - 8 \) Copy content Toggle raw display
show more
show less