Properties

Label 799.1.e.b.140.3
Level 799799
Weight 11
Character 799.140
Analytic conductor 0.3990.399
Analytic rank 00
Dimension 88
Projective image D20D_{20}
CM discriminant -47
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [799,1,Mod(140,799)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(799, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([3, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("799.140");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 799=1747 799 = 17 \cdot 47
Weight: k k == 1 1
Character orbit: [χ][\chi] == 799.e (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.3987529450940.398752945094
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(i)\Q(i)
Coefficient field: Q(ζ20)\Q(\zeta_{20})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x6+x4x2+1 x^{8} - x^{6} + x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a17]\Z[a_1, \ldots, a_{17}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D20D_{20}
Projective field: Galois closure of Q[x]/(x20)\mathbb{Q}[x]/(x^{20} - \cdots)

Embedding invariants

Embedding label 140.3
Root 0.951057+0.309017i0.951057 + 0.309017i of defining polynomial
Character χ\chi == 799.140
Dual form 799.1.e.b.234.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.61803iq2+(0.642040+0.642040i)q31.61803q4+(1.038841.03884i)q6+(1.39680+1.39680i)q71.00000iq8+0.175571iq9+(1.038841.03884i)q12+(2.26007+2.26007i)q14+(0.3090170.951057i)q170.284079q181.79360q21+(0.642040+0.642040i)q241.00000iq25+(0.7547630.754763i)q27+(2.260072.26007i)q281.00000iq32+(1.53884+0.500000i)q340.284079iq36+(0.6420400.642040i)q372.90211iq421.00000q47+2.90211iq49+1.61803q50+(0.412215+0.809017i)q511.17557iq53+(1.221231.22123i)q54+(1.396801.39680i)q56+1.61803iq59+(0.2212320.221232i)q61+(0.245237+0.245237i)q63+1.61803q64+(0.500000+1.53884i)q68+(1.260071.26007i)q71+0.175571q72+(1.03884+1.03884i)q74+(0.642040+0.642040i)q75+(1.26007+1.26007i)q79+0.793604q81+2.90211q841.61803q891.61803iq94+(0.642040+0.642040i)q96+(0.2212320.221232i)q974.69572q98+O(q100)q+1.61803i q^{2} +(-0.642040 + 0.642040i) q^{3} -1.61803 q^{4} +(-1.03884 - 1.03884i) q^{6} +(1.39680 + 1.39680i) q^{7} -1.00000i q^{8} +0.175571i q^{9} +(1.03884 - 1.03884i) q^{12} +(-2.26007 + 2.26007i) q^{14} +(0.309017 - 0.951057i) q^{17} -0.284079 q^{18} -1.79360 q^{21} +(0.642040 + 0.642040i) q^{24} -1.00000i q^{25} +(-0.754763 - 0.754763i) q^{27} +(-2.26007 - 2.26007i) q^{28} -1.00000i q^{32} +(1.53884 + 0.500000i) q^{34} -0.284079i q^{36} +(0.642040 - 0.642040i) q^{37} -2.90211i q^{42} -1.00000 q^{47} +2.90211i q^{49} +1.61803 q^{50} +(0.412215 + 0.809017i) q^{51} -1.17557i q^{53} +(1.22123 - 1.22123i) q^{54} +(1.39680 - 1.39680i) q^{56} +1.61803i q^{59} +(-0.221232 - 0.221232i) q^{61} +(-0.245237 + 0.245237i) q^{63} +1.61803 q^{64} +(-0.500000 + 1.53884i) q^{68} +(1.26007 - 1.26007i) q^{71} +0.175571 q^{72} +(1.03884 + 1.03884i) q^{74} +(0.642040 + 0.642040i) q^{75} +(1.26007 + 1.26007i) q^{79} +0.793604 q^{81} +2.90211 q^{84} -1.61803 q^{89} -1.61803i q^{94} +(0.642040 + 0.642040i) q^{96} +(0.221232 - 0.221232i) q^{97} -4.69572 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q2q34q4+4q6+2q74q126q142q17+4q18+4q21+2q246q28+2q378q47+4q50+8q51+10q54+2q562q618q63+4q98+O(q100) 8 q - 2 q^{3} - 4 q^{4} + 4 q^{6} + 2 q^{7} - 4 q^{12} - 6 q^{14} - 2 q^{17} + 4 q^{18} + 4 q^{21} + 2 q^{24} - 6 q^{28} + 2 q^{37} - 8 q^{47} + 4 q^{50} + 8 q^{51} + 10 q^{54} + 2 q^{56} - 2 q^{61} - 8 q^{63}+ \cdots - 4 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/799Z)×\left(\mathbb{Z}/799\mathbb{Z}\right)^\times.

nn 5252 377377
χ(n)\chi(n) 1-1 e(34)e\left(\frac{3}{4}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.61803i 1.61803i 0.587785 + 0.809017i 0.300000π0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
33 −0.642040 + 0.642040i −0.642040 + 0.642040i −0.951057 0.309017i 0.900000π-0.900000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
44 −1.61803 −1.61803
55 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
66 −1.03884 1.03884i −1.03884 1.03884i
77 1.39680 + 1.39680i 1.39680 + 1.39680i 0.809017 + 0.587785i 0.200000π0.200000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
88 1.00000i 1.00000i
99 0.175571i 0.175571i
1010 0 0
1111 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
1212 1.03884 1.03884i 1.03884 1.03884i
1313 0 0 1.00000 00
−1.00000 π\pi
1414 −2.26007 + 2.26007i −2.26007 + 2.26007i
1515 0 0
1616 0 0
1717 0.309017 0.951057i 0.309017 0.951057i
1818 −0.284079 −0.284079
1919 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2020 0 0
2121 −1.79360 −1.79360
2222 0 0
2323 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
2424 0.642040 + 0.642040i 0.642040 + 0.642040i
2525 1.00000i 1.00000i
2626 0 0
2727 −0.754763 0.754763i −0.754763 0.754763i
2828 −2.26007 2.26007i −2.26007 2.26007i
2929 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
3030 0 0
3131 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
3232 1.00000i 1.00000i
3333 0 0
3434 1.53884 + 0.500000i 1.53884 + 0.500000i
3535 0 0
3636 0.284079i 0.284079i
3737 0.642040 0.642040i 0.642040 0.642040i −0.309017 0.951057i 0.600000π-0.600000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
4242 2.90211i 2.90211i
4343 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4444 0 0
4545 0 0
4646 0 0
4747 −1.00000 −1.00000
4848 0 0
4949 2.90211i 2.90211i
5050 1.61803 1.61803
5151 0.412215 + 0.809017i 0.412215 + 0.809017i
5252 0 0
5353 1.17557i 1.17557i −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
5454 1.22123 1.22123i 1.22123 1.22123i
5555 0 0
5656 1.39680 1.39680i 1.39680 1.39680i
5757 0 0
5858 0 0
5959 1.61803i 1.61803i 0.587785 + 0.809017i 0.300000π0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
6060 0 0
6161 −0.221232 0.221232i −0.221232 0.221232i 0.587785 0.809017i 0.300000π-0.300000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
6262 0 0
6363 −0.245237 + 0.245237i −0.245237 + 0.245237i
6464 1.61803 1.61803
6565 0 0
6666 0 0
6767 0 0 1.00000 00
−1.00000 π\pi
6868 −0.500000 + 1.53884i −0.500000 + 1.53884i
6969 0 0
7070 0 0
7171 1.26007 1.26007i 1.26007 1.26007i 0.309017 0.951057i 0.400000π-0.400000\pi
0.951057 0.309017i 0.100000π-0.100000\pi
7272 0.175571 0.175571
7373 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
7474 1.03884 + 1.03884i 1.03884 + 1.03884i
7575 0.642040 + 0.642040i 0.642040 + 0.642040i
7676 0 0
7777 0 0
7878 0 0
7979 1.26007 + 1.26007i 1.26007 + 1.26007i 0.951057 + 0.309017i 0.100000π0.100000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
8080 0 0
8181 0.793604 0.793604
8282 0 0
8383 0 0 1.00000 00
−1.00000 π\pi
8484 2.90211 2.90211
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 1.61803i 1.61803i
9595 0 0
9696 0.642040 + 0.642040i 0.642040 + 0.642040i
9797 0.221232 0.221232i 0.221232 0.221232i −0.587785 0.809017i 0.700000π-0.700000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
9898 −4.69572 −4.69572
9999 0 0
100100 1.61803i 1.61803i
101101 −1.90211 −1.90211 −0.951057 0.309017i 0.900000π-0.900000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
102102 −1.30902 + 0.666977i −1.30902 + 0.666977i
103103 1.90211 1.90211 0.951057 0.309017i 0.100000π-0.100000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
104104 0 0
105105 0 0
106106 1.90211 1.90211
107107 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
108108 1.22123 + 1.22123i 1.22123 + 1.22123i
109109 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
110110 0 0
111111 0.824429i 0.824429i
112112 0 0
113113 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 −2.61803 −2.61803
119119 1.76007 0.896802i 1.76007 0.896802i
120120 0 0
121121 1.00000i 1.00000i
122122 0.357960 0.357960i 0.357960 0.357960i
123123 0 0
124124 0 0
125125 0 0
126126 −0.396802 0.396802i −0.396802 0.396802i
127127 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
128128 1.61803i 1.61803i
129129 0 0
130130 0 0
131131 0.221232 0.221232i 0.221232 0.221232i −0.587785 0.809017i 0.700000π-0.700000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 −0.951057 0.309017i −0.951057 0.309017i
137137 0 0 1.00000 00
−1.00000 π\pi
138138 0 0
139139 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
140140 0 0
141141 0.642040 0.642040i 0.642040 0.642040i
142142 2.03884 + 2.03884i 2.03884 + 2.03884i
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 −1.86327 1.86327i −1.86327 1.86327i
148148 −1.03884 + 1.03884i −1.03884 + 1.03884i
149149 −1.90211 −1.90211 −0.951057 0.309017i 0.900000π-0.900000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
150150 −1.03884 + 1.03884i −1.03884 + 1.03884i
151151 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
152152 0 0
153153 0.166977 + 0.0542543i 0.166977 + 0.0542543i
154154 0 0
155155 0 0
156156 0 0
157157 −1.17557 −1.17557 −0.587785 0.809017i 0.700000π-0.700000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
158158 −2.03884 + 2.03884i −2.03884 + 2.03884i
159159 0.754763 + 0.754763i 0.754763 + 0.754763i
160160 0 0
161161 0 0
162162 1.28408i 1.28408i
163163 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
168168 1.79360i 1.79360i
169169 1.00000 1.00000
170170 0 0
171171 0 0
172172 0 0
173173 1.39680 1.39680i 1.39680 1.39680i 0.587785 0.809017i 0.300000π-0.300000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
174174 0 0
175175 1.39680 1.39680i 1.39680 1.39680i
176176 0 0
177177 −1.03884 1.03884i −1.03884 1.03884i
178178 2.61803i 2.61803i
179179 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
180180 0 0
181181 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
182182 0 0
183183 0.284079 0.284079
184184 0 0
185185 0 0
186186 0 0
187187 0 0
188188 1.61803 1.61803
189189 2.10851i 2.10851i
190190 0 0
191191 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
192192 −1.03884 + 1.03884i −1.03884 + 1.03884i
193193 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
194194 0.357960 + 0.357960i 0.357960 + 0.357960i
195195 0 0
196196 4.69572i 4.69572i
197197 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
198198 0 0
199199 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
200200 −1.00000 −1.00000
201201 0 0
202202 3.07768i 3.07768i
203203 0 0
204204 −0.666977 1.30902i −0.666977 1.30902i
205205 0 0
206206 3.07768i 3.07768i
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
212212 1.90211i 1.90211i
213213 1.61803i 1.61803i
214214 0 0
215215 0 0
216216 −0.754763 + 0.754763i −0.754763 + 0.754763i
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 −1.33395 −1.33395
223223 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
224224 1.39680 1.39680i 1.39680 1.39680i
225225 0.175571 0.175571
226226 0 0
227227 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
228228 0 0
229229 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
230230 0 0
231231 0 0
232232 0 0
233233 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
234234 0 0
235235 0 0
236236 2.61803i 2.61803i
237237 −1.61803 −1.61803
238238 1.45106 + 2.84786i 1.45106 + 2.84786i
239239 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
240240 0 0
241241 0.642040 0.642040i 0.642040 0.642040i −0.309017 0.951057i 0.600000π-0.600000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
242242 −1.61803 −1.61803
243243 0.245237 0.245237i 0.245237 0.245237i
244244 0.357960 + 0.357960i 0.357960 + 0.357960i
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 1.90211 1.90211 0.951057 0.309017i 0.100000π-0.100000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
252252 0.396802 0.396802i 0.396802 0.396802i
253253 0 0
254254 0 0
255255 0 0
256256 −1.00000 −1.00000
257257 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
258258 0 0
259259 1.79360 1.79360
260260 0 0
261261 0 0
262262 0.357960 + 0.357960i 0.357960 + 0.357960i
263263 1.61803i 1.61803i 0.587785 + 0.809017i 0.300000π0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
264264 0 0
265265 0 0
266266 0 0
267267 1.03884 1.03884i 1.03884 1.03884i
268268 0 0
269269 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
270270 0 0
271271 −1.90211 −1.90211 −0.951057 0.309017i 0.900000π-0.900000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 −1.26007 + 1.26007i −1.26007 + 1.26007i −0.309017 + 0.951057i 0.600000π0.600000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
278278 0 0
279279 0 0
280280 0 0
281281 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
282282 1.03884 + 1.03884i 1.03884 + 1.03884i
283283 −1.39680 1.39680i −1.39680 1.39680i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.587785 0.809017i 0.700000π-0.700000\pi
284284 −2.03884 + 2.03884i −2.03884 + 2.03884i
285285 0 0
286286 0 0
287287 0 0
288288 0.175571 0.175571
289289 −0.809017 0.587785i −0.809017 0.587785i
290290 0 0
291291 0.284079i 0.284079i
292292 0 0
293293 0 0 1.00000 00
−1.00000 π\pi
294294 3.01484 3.01484i 3.01484 3.01484i
295295 0 0
296296 −0.642040 0.642040i −0.642040 0.642040i
297297 0 0
298298 3.07768i 3.07768i
299299 0 0
300300 −1.03884 1.03884i −1.03884 1.03884i
301301 0 0
302302 0 0
303303 1.22123 1.22123i 1.22123 1.22123i
304304 0 0
305305 0 0
306306 −0.0877853 + 0.270175i −0.0877853 + 0.270175i
307307 −1.90211 −1.90211 −0.951057 0.309017i 0.900000π-0.900000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
308308 0 0
309309 −1.22123 + 1.22123i −1.22123 + 1.22123i
310310 0 0
311311 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
312312 0 0
313313 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
314314 1.90211i 1.90211i
315315 0 0
316316 −2.03884 2.03884i −2.03884 2.03884i
317317 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
318318 −1.22123 + 1.22123i −1.22123 + 1.22123i
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 −1.28408 −1.28408
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 −1.39680 1.39680i −1.39680 1.39680i
330330 0 0
331331 1.61803i 1.61803i −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 0.809017i 0.300000π-0.300000\pi
332332 0 0
333333 0.112723 + 0.112723i 0.112723 + 0.112723i
334334 0 0
335335 0 0
336336 0 0
337337 1.39680 1.39680i 1.39680 1.39680i 0.587785 0.809017i 0.300000π-0.300000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
338338 1.61803i 1.61803i
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 −2.65688 + 2.65688i −2.65688 + 2.65688i
344344 0 0
345345 0 0
346346 2.26007 + 2.26007i 2.26007 + 2.26007i
347347 0.642040 + 0.642040i 0.642040 + 0.642040i 0.951057 0.309017i 0.100000π-0.100000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
348348 0 0
349349 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
350350 2.26007 + 2.26007i 2.26007 + 2.26007i
351351 0 0
352352 0 0
353353 −1.17557 −1.17557 −0.587785 0.809017i 0.700000π-0.700000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
354354 1.68088 1.68088i 1.68088 1.68088i
355355 0 0
356356 2.61803 2.61803
357357 −0.554254 + 1.70582i −0.554254 + 1.70582i
358358 0 0
359359 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
360360 0 0
361361 −1.00000 −1.00000
362362 0 0
363363 −0.642040 0.642040i −0.642040 0.642040i
364364 0 0
365365 0 0
366366 0.459650i 0.459650i
367367 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
368368 0 0
369369 0 0
370370 0 0
371371 1.64204 1.64204i 1.64204 1.64204i
372372 0 0
373373 0 0 1.00000 00
−1.00000 π\pi
374374 0 0
375375 0 0
376376 1.00000i 1.00000i
377377 0 0
378378 3.41164 3.41164
379379 −1.39680 + 1.39680i −1.39680 + 1.39680i −0.587785 + 0.809017i 0.700000π0.700000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
380380 0 0
381381 0 0
382382 0 0
383383 1.90211i 1.90211i −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
384384 −1.03884 1.03884i −1.03884 1.03884i
385385 0 0
386386 0 0
387387 0 0
388388 −0.357960 + 0.357960i −0.357960 + 0.357960i
389389 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
390390 0 0
391391 0 0
392392 2.90211 2.90211
393393 0.284079i 0.284079i
394394 −1.61803 + 1.61803i −1.61803 + 1.61803i
395395 0 0
396396 0 0
397397 −1.26007 1.26007i −1.26007 1.26007i −0.951057 0.309017i 0.900000π-0.900000\pi
−0.309017 0.951057i 0.600000π-0.600000\pi
398398 0 0
399399 0 0
400400 0 0
401401 0.642040 + 0.642040i 0.642040 + 0.642040i 0.951057 0.309017i 0.100000π-0.100000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
402402 0 0
403403 0 0
404404 3.07768 3.07768
405405 0 0
406406 0 0
407407 0 0
408408 0.809017 0.412215i 0.809017 0.412215i
409409 0 0 1.00000 00
−1.00000 π\pi
410410 0 0
411411 0 0
412412 −3.07768 −3.07768
413413 −2.26007 + 2.26007i −2.26007 + 2.26007i
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
420420 0 0
421421 0 0 1.00000 00
−1.00000 π\pi
422422 0 0
423423 0.175571i 0.175571i
424424 −1.17557 −1.17557
425425 −0.951057 0.309017i −0.951057 0.309017i
426426 −2.61803 −2.61803
427427 0.618034i 0.618034i
428428 0 0
429429 0 0
430430 0 0
431431 −0.221232 0.221232i −0.221232 0.221232i 0.587785 0.809017i 0.300000π-0.300000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
432432 0 0
433433 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
440440 0 0
441441 −0.509525 −0.509525
442442 0 0
443443 0 0 1.00000 00
−1.00000 π\pi
444444 1.33395i 1.33395i
445445 0 0
446446 0 0
447447 1.22123 1.22123i 1.22123 1.22123i
448448 2.26007 + 2.26007i 2.26007 + 2.26007i
449449 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
450450 0.284079i 0.284079i
451451 0 0
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 1.90211i 1.90211i −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
458458 0 0
459459 −0.951057 + 0.484587i −0.951057 + 0.484587i
460460 0 0
461461 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
462462 0 0
463463 0 0 1.00000 00
−1.00000 π\pi
464464 0 0
465465 0 0
466466 0 0
467467 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
468468 0 0
469469 0 0
470470 0 0
471471 0.754763 0.754763i 0.754763 0.754763i
472472 1.61803 1.61803
473473 0 0
474474 2.61803i 2.61803i
475475 0 0
476476 −2.84786 + 1.45106i −2.84786 + 1.45106i
477477 0.206396 0.206396
478478 1.00000i 1.00000i
479479 −1.39680 + 1.39680i −1.39680 + 1.39680i −0.587785 + 0.809017i 0.700000π0.700000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
480480 0 0
481481 0 0
482482 1.03884 + 1.03884i 1.03884 + 1.03884i
483483 0 0
484484 1.61803i 1.61803i
485485 0 0
486486 0.396802 + 0.396802i 0.396802 + 0.396802i
487487 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
488488 −0.221232 + 0.221232i −0.221232 + 0.221232i
489489 0 0
490490 0 0
491491 1.17557i 1.17557i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 3.52015 3.52015
498498 0 0
499499 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
500500 0 0
501501 0 0
502502 3.07768i 3.07768i
503503 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
504504 0.245237 + 0.245237i 0.245237 + 0.245237i
505505 0 0
506506 0 0
507507 −0.642040 + 0.642040i −0.642040 + 0.642040i
508508 0 0
509509 0 0 1.00000 00
−1.00000 π\pi
510510 0 0
511511 0 0
512512 0 0
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 2.90211i 2.90211i
519519 1.79360i 1.79360i
520520 0 0
521521 1.39680 + 1.39680i 1.39680 + 1.39680i 0.809017 + 0.587785i 0.200000π0.200000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
522522 0 0
523523 2.00000 2.00000 1.00000 00
1.00000 00
524524 −0.357960 + 0.357960i −0.357960 + 0.357960i
525525 1.79360i 1.79360i
526526 −2.61803 −2.61803
527527 0 0
528528 0 0
529529 1.00000i 1.00000i
530530 0 0
531531 −0.284079 −0.284079
532532 0 0
533533 0 0
534534 1.68088 + 1.68088i 1.68088 + 1.68088i
535535 0 0
536536 0 0
537537 0 0
538538 1.61803 + 1.61803i 1.61803 + 1.61803i
539539 0 0
540540 0 0
541541 1.39680 1.39680i 1.39680 1.39680i 0.587785 0.809017i 0.300000π-0.300000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
542542 3.07768i 3.07768i
543543 0 0
544544 −0.951057 0.309017i −0.951057 0.309017i
545545 0 0
546546 0 0
547547 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
548548 0 0
549549 0.0388418 0.0388418i 0.0388418 0.0388418i
550550 0 0
551551 0 0
552552 0 0
553553 3.52015i 3.52015i
554554 −2.03884 2.03884i −2.03884 2.03884i
555555 0 0
556556 0 0
557557 0 0 1.00000 00
−1.00000 π\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
564564 −1.03884 + 1.03884i −1.03884 + 1.03884i
565565 0 0
566566 2.26007 2.26007i 2.26007 2.26007i
567567 1.10851 + 1.10851i 1.10851 + 1.10851i
568568 −1.26007 1.26007i −1.26007 1.26007i
569569 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
570570 0 0
571571 1.26007 + 1.26007i 1.26007 + 1.26007i 0.951057 + 0.309017i 0.100000π0.100000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0.284079i 0.284079i
577577 0 0 1.00000 00
−1.00000 π\pi
578578 0.951057 1.30902i 0.951057 1.30902i
579579 0 0
580580 0 0
581581 0 0
582582 −0.459650 −0.459650
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
588588 3.01484 + 3.01484i 3.01484 + 3.01484i
589589 0 0
590590 0 0
591591 −1.28408 −1.28408
592592 0 0
593593 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
594594 0 0
595595 0 0
596596 3.07768 3.07768
597597 0 0
598598 0 0
599599 0 0 1.00000 00
−1.00000 π\pi
600600 0.642040 0.642040i 0.642040 0.642040i
601601 0.221232 + 0.221232i 0.221232 + 0.221232i 0.809017 0.587785i 0.200000π-0.200000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
602602 0 0
603603 0 0
604604 0 0
605605 0 0
606606 1.97599 + 1.97599i 1.97599 + 1.97599i
607607 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 −0.270175 0.0877853i −0.270175 0.0877853i
613613 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
614614 3.07768i 3.07768i
615615 0 0
616616 0 0
617617 1.26007 1.26007i 1.26007 1.26007i 0.309017 0.951057i 0.400000π-0.400000\pi
0.951057 0.309017i 0.100000π-0.100000\pi
618618 −1.97599 1.97599i −1.97599 1.97599i
619619 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
620620 0 0
621621 0 0
622622 0 0
623623 −2.26007 2.26007i −2.26007 2.26007i
624624 0 0
625625 −1.00000 −1.00000
626626 0 0
627627 0 0
628628 1.90211 1.90211
629629 −0.412215 0.809017i −0.412215 0.809017i
630630 0 0
631631 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
632632 1.26007 1.26007i 1.26007 1.26007i
633633 0 0
634634 0 0
635635 0 0
636636 −1.22123 1.22123i −1.22123 1.22123i
637637 0 0
638638 0 0
639639 0.221232 + 0.221232i 0.221232 + 0.221232i
640640 0 0
641641 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
642642 0 0
643643 0.221232 0.221232i 0.221232 0.221232i −0.587785 0.809017i 0.700000π-0.700000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
644644 0 0
645645 0 0
646646 0 0
647647 1.17557 1.17557 0.587785 0.809017i 0.300000π-0.300000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
648648 0.793604i 0.793604i
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 −0.642040 0.642040i −0.642040 0.642040i 0.309017 0.951057i 0.400000π-0.400000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 2.26007 2.26007i 2.26007 2.26007i
659659 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
660660 0 0
661661 0.618034i 0.618034i −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 0.309017i 0.100000π-0.100000\pi
662662 2.61803 2.61803
663663 0 0
664664 0 0
665665 0 0
666666 −0.182390 + 0.182390i −0.182390 + 0.182390i
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 1.79360i 1.79360i
673673 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
674674 2.26007 + 2.26007i 2.26007 + 2.26007i
675675 −0.754763 + 0.754763i −0.754763 + 0.754763i
676676 −1.61803 −1.61803
677677 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
678678 0 0
679679 0.618034 0.618034
680680 0 0
681681 0 0
682682 0 0
683683 0.221232 0.221232i 0.221232 0.221232i −0.587785 0.809017i 0.700000π-0.700000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
684684 0 0
685685 0 0
686686 −4.29892 4.29892i −4.29892 4.29892i
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
692692 −2.26007 + 2.26007i −2.26007 + 2.26007i
693693 0 0
694694 −1.03884 + 1.03884i −1.03884 + 1.03884i
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 −2.26007 + 2.26007i −2.26007 + 2.26007i
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 1.90211i 1.90211i
707707 −2.65688 2.65688i −2.65688 2.65688i
708708 1.68088 + 1.68088i 1.68088 + 1.68088i
709709 1.39680 1.39680i 1.39680 1.39680i 0.587785 0.809017i 0.300000π-0.300000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
710710 0 0
711711 −0.221232 + 0.221232i −0.221232 + 0.221232i
712712 1.61803i 1.61803i
713713 0 0
714714 −2.76007 0.896802i −2.76007 0.896802i
715715 0 0
716716 0 0
717717 0.396802 0.396802i 0.396802 0.396802i
718718 0 0
719719 −0.221232 + 0.221232i −0.221232 + 0.221232i −0.809017 0.587785i 0.800000π-0.800000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
720720 0 0
721721 2.65688 + 2.65688i 2.65688 + 2.65688i
722722 1.61803i 1.61803i
723723 0.824429i 0.824429i
724724 0 0
725725 0 0
726726 1.03884 1.03884i 1.03884 1.03884i
727727 0 0 1.00000 00
−1.00000 π\pi
728728 0 0
729729 1.10851i 1.10851i
730730 0 0
731731 0 0
732732 −0.459650 −0.459650
733733 0.618034i 0.618034i −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 0.309017i 0.100000π-0.100000\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 1.17557i 1.17557i −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
740740 0 0
741741 0 0
742742 2.65688 + 2.65688i 2.65688 + 2.65688i
743743 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
752752 0 0
753753 −1.22123 + 1.22123i −1.22123 + 1.22123i
754754 0 0
755755 0 0
756756 3.41164i 3.41164i
757757 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
758758 −2.26007 2.26007i −2.26007 2.26007i
759759 0 0
760760 0 0
761761 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 3.07768 3.07768
767767 0 0
768768 0.642040 0.642040i 0.642040 0.642040i
769769 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
770770 0 0
771771 0 0
772772 0 0
773773 0.618034i 0.618034i 0.951057 + 0.309017i 0.100000π0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
774774 0 0
775775 0 0
776776 −0.221232 0.221232i −0.221232 0.221232i
777777 −1.15156 + 1.15156i −1.15156 + 1.15156i
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 0 0
786786 −0.459650 −0.459650
787787 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
788788 −1.61803 1.61803i −1.61803 1.61803i
789789 −1.03884 1.03884i −1.03884 1.03884i
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 2.03884 2.03884i 2.03884 2.03884i
795795 0 0
796796 0 0
797797 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
798798 0 0
799799 −0.309017 + 0.951057i −0.309017 + 0.951057i
800800 −1.00000 −1.00000
801801 0.284079i 0.284079i
802802 −1.03884 + 1.03884i −1.03884 + 1.03884i
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 1.28408i 1.28408i
808808 1.90211i 1.90211i
809809 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
810810 0 0
811811 −1.26007 + 1.26007i −1.26007 + 1.26007i −0.309017 + 0.951057i 0.600000π0.600000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
812812 0 0
813813 1.22123 1.22123i 1.22123 1.22123i
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
822822 0 0
823823 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
824824 1.90211i 1.90211i
825825 0 0
826826 −3.65688 3.65688i −3.65688 3.65688i
827827 0.221232 + 0.221232i 0.221232 + 0.221232i 0.809017 0.587785i 0.200000π-0.200000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
828828 0 0
829829 0 0 1.00000 00
−1.00000 π\pi
830830 0 0
831831 1.61803i 1.61803i
832832 0 0
833833 2.76007 + 0.896802i 2.76007 + 0.896802i
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
840840 0 0
841841 1.00000i 1.00000i
842842 0 0
843843 0 0
844844 0 0
845845 0 0
846846 0.284079 0.284079
847847 −1.39680 + 1.39680i −1.39680 + 1.39680i
848848 0 0
849849 1.79360 1.79360
850850 0.500000 1.53884i 0.500000 1.53884i
851851 0 0
852852 2.61803i 2.61803i
853853 −1.26007 + 1.26007i −1.26007 + 1.26007i −0.309017 + 0.951057i 0.600000π0.600000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
854854 1.00000 1.00000
855855 0 0
856856 0 0
857857 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
858858 0 0
859859 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
860860 0 0
861861 0 0
862862 0.357960 0.357960i 0.357960 0.357960i
863863 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
864864 −0.754763 + 0.754763i −0.754763 + 0.754763i
865865 0 0
866866 0 0
867867 0.896802 0.142040i 0.896802 0.142040i
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0.0388418 + 0.0388418i 0.0388418 + 0.0388418i
874874 0 0
875875 0 0
876876 0 0
877877 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
878878 −1.61803 1.61803i −1.61803 1.61803i
879879 0 0
880880 0 0
881881 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
882882 0.824429i 0.824429i
883883 1.17557 1.17557 0.587785 0.809017i 0.300000π-0.300000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
888888 0.824429 0.824429
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 1.97599 + 1.97599i 1.97599 + 1.97599i
895895 0 0
896896 −2.26007 + 2.26007i −2.26007 + 2.26007i
897897 0 0
898898 0 0
899899 0 0
900900 −0.284079 −0.284079
901901 −1.11803 0.363271i −1.11803 0.363271i
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
908908 0 0
909909 0.333955i 0.333955i
910910 0 0
911911 −0.221232 0.221232i −0.221232 0.221232i 0.587785 0.809017i 0.300000π-0.300000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
912912 0 0
913913 0 0
914914 3.07768 3.07768
915915 0 0
916916 0 0
917917 0.618034 0.618034
918918 −0.784079 1.53884i −0.784079 1.53884i
919919 0 0 1.00000 00
−1.00000 π\pi
920920 0 0
921921 1.22123 1.22123i 1.22123 1.22123i
922922 0 0
923923 0 0
924924 0 0
925925 −0.642040 0.642040i −0.642040 0.642040i
926926 0 0
927927 0.333955i 0.333955i
928928 0 0
929929 0.642040 + 0.642040i 0.642040 + 0.642040i 0.951057 0.309017i 0.100000π-0.100000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
938938 0 0
939939 0 0
940940 0 0
941941 −0.221232 0.221232i −0.221232 0.221232i 0.587785 0.809017i 0.300000π-0.300000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
942942 1.22123 + 1.22123i 1.22123 + 1.22123i
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
948948 2.61803 2.61803
949949 0 0
950950 0 0
951951 0 0
952952 −0.896802 1.76007i −0.896802 1.76007i
953953 0 0 1.00000 00
−1.00000 π\pi
954954 0.333955i 0.333955i
955955 0 0
956956 1.00000 1.00000
957957 0 0
958958 −2.26007 2.26007i −2.26007 2.26007i
959959 0 0
960960 0 0
961961 1.00000i 1.00000i
962962 0 0
963963 0 0
964964 −1.03884 + 1.03884i −1.03884 + 1.03884i
965965 0 0
966966 0 0
967967 1.17557i 1.17557i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
968968 1.00000 1.00000
969969 0 0
970970 0 0
971971 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
972972 −0.396802 + 0.396802i −0.396802 + 0.396802i
973973 0 0
974974 1.61803 1.61803i 1.61803 1.61803i
975975 0 0
976976 0 0
977977 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 −1.90211 −1.90211
983983 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
984984 0 0
985985 0 0
986986 0 0
987987 1.79360 1.79360
988988 0 0
989989 0 0
990990 0 0
991991 −0.221232 + 0.221232i −0.221232 + 0.221232i −0.809017 0.587785i 0.800000π-0.800000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
992992 0 0
993993 1.03884 + 1.03884i 1.03884 + 1.03884i
994994 5.69572i 5.69572i
995995 0 0
996996 0 0
997997 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
998998 0 0
999999 −0.969175 −0.969175
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 799.1.e.b.140.3 8
17.13 even 4 inner 799.1.e.b.234.1 yes 8
47.46 odd 2 CM 799.1.e.b.140.3 8
799.234 odd 4 inner 799.1.e.b.234.1 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
799.1.e.b.140.3 8 1.1 even 1 trivial
799.1.e.b.140.3 8 47.46 odd 2 CM
799.1.e.b.234.1 yes 8 17.13 even 4 inner
799.1.e.b.234.1 yes 8 799.234 odd 4 inner