Properties

Label 8.19.d.a
Level 88
Weight 1919
Character orbit 8.d
Self dual yes
Analytic conductor 16.43116.431
Analytic rank 00
Dimension 11
CM discriminant -8
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8,19,Mod(3,8)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 19, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8.3");
 
S:= CuspForms(chi, 19);
 
N := Newforms(S);
 
Level: N N == 8=23 8 = 2^{3}
Weight: k k == 19 19
Character orbit: [χ][\chi] == 8.d (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 16.430891016816.4308910168
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q512q23266q3+262144q4+1672192q6134217728q8376753733q9354349618q11856162304q12+68719476736q16+119842447106q17+192897911296q18+335013705758q19++13 ⁣ ⁣94q99+O(q100) q - 512 q^{2} - 3266 q^{3} + 262144 q^{4} + 1672192 q^{6} - 134217728 q^{8} - 376753733 q^{9} - 354349618 q^{11} - 856162304 q^{12} + 68719476736 q^{16} + 119842447106 q^{17} + 192897911296 q^{18} + 335013705758 q^{19}+ \cdots + 13\!\cdots\!94 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/8Z)×\left(\mathbb{Z}/8\mathbb{Z}\right)^\times.

nn 55 77
χ(n)\chi(n) 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
3.1
0
−512.000 −3266.00 262144. 0 1.67219e6 0 −1.34218e8 −3.76754e8 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by Q(2)\Q(\sqrt{-2})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8.19.d.a 1
3.b odd 2 1 72.19.b.a 1
4.b odd 2 1 32.19.d.a 1
8.b even 2 1 32.19.d.a 1
8.d odd 2 1 CM 8.19.d.a 1
24.f even 2 1 72.19.b.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8.19.d.a 1 1.a even 1 1 trivial
8.19.d.a 1 8.d odd 2 1 CM
32.19.d.a 1 4.b odd 2 1
32.19.d.a 1 8.b even 2 1
72.19.b.a 1 3.b odd 2 1
72.19.b.a 1 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T3+3266 T_{3} + 3266 acting on S19new(8,[χ])S_{19}^{\mathrm{new}}(8, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+512 T + 512 Copy content Toggle raw display
33 T+3266 T + 3266 Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T+354349618 T + 354349618 Copy content Toggle raw display
1313 T T Copy content Toggle raw display
1717 T119842447106 T - 119842447106 Copy content Toggle raw display
1919 T335013705758 T - 335013705758 Copy content Toggle raw display
2323 T T Copy content Toggle raw display
2929 T T Copy content Toggle raw display
3131 T T Copy content Toggle raw display
3737 T T Copy content Toggle raw display
4141 T522162604887122 T - 522162604887122 Copy content Toggle raw display
4343 T1000250360894414 T - 1000250360894414 Copy content Toggle raw display
4747 T T Copy content Toggle raw display
5353 T T Copy content Toggle raw display
5959 T+10 ⁣ ⁣22 T + 10\!\cdots\!22 Copy content Toggle raw display
6161 T T Copy content Toggle raw display
6767 T+50 ⁣ ⁣94 T + 50\!\cdots\!94 Copy content Toggle raw display
7171 T T Copy content Toggle raw display
7373 T60 ⁣ ⁣74 T - 60\!\cdots\!74 Copy content Toggle raw display
7979 T T Copy content Toggle raw display
8383 T+35 ⁣ ⁣06 T + 35\!\cdots\!06 Copy content Toggle raw display
8989 T48 ⁣ ⁣18 T - 48\!\cdots\!18 Copy content Toggle raw display
9797 T15 ⁣ ⁣66 T - 15\!\cdots\!66 Copy content Toggle raw display
show more
show less