Properties

Label 8.7.d.b
Level $8$
Weight $7$
Character orbit 8.d
Analytic conductor $1.840$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8,7,Mod(3,8)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 7, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8.3");
 
S:= CuspForms(chi, 7);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8 = 2^{3} \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 8.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.84043266896\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.0.3803625.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 6x^{2} - 16x + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} + 2 \beta_1 - 13) q^{3} + (\beta_{3} + \beta_{2} + \beta_1 - 12) q^{4} + ( - 2 \beta_{3} - 4 \beta_{2} + \cdots - 2) q^{5} + (2 \beta_{3} + 2 \beta_{2} + \cdots + 104) q^{6}+ \cdots + ( - 15261 \beta_{2} - 30522 \beta_1 - 599559) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 48 q^{3} - 44 q^{4} + 396 q^{6} + 248 q^{8} - 660 q^{9} - 1920 q^{10} + 976 q^{11} + 1368 q^{12} + 5760 q^{14} - 14576 q^{16} + 4168 q^{17} - 10410 q^{18} - 1456 q^{19} + 31680 q^{20} + 24428 q^{22}+ \cdots - 2459280 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} + 6x^{2} - 16x + 256 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} + \nu^{2} - 6\nu + 12 ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} + 15\nu^{2} - 2\nu + 36 ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + \beta_{2} + \beta _1 - 12 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{3} - 15\beta_{2} - 11\beta _1 + 36 ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/8\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(7\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3.1
−2.31174 3.26433i
−2.31174 + 3.26433i
2.81174 2.84502i
2.81174 + 2.84502i
−4.62348 6.52867i −32.4939 −21.2470 + 60.3702i 199.084i 150.235 + 212.142i 19.6656i 492.372 140.406i 326.854 −1299.76 + 920.462i
3.2 −4.62348 + 6.52867i −32.4939 −21.2470 60.3702i 199.084i 150.235 212.142i 19.6656i 492.372 + 140.406i 326.854 −1299.76 920.462i
3.3 5.62348 5.69004i 8.49390 −0.753049 63.9956i 59.7107i 47.7652 48.3306i 483.584i −368.372 355.593i −656.854 339.756 + 335.782i
3.4 5.62348 + 5.69004i 8.49390 −0.753049 + 63.9956i 59.7107i 47.7652 + 48.3306i 483.584i −368.372 + 355.593i −656.854 339.756 335.782i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8.7.d.b 4
3.b odd 2 1 72.7.b.b 4
4.b odd 2 1 32.7.d.b 4
8.b even 2 1 32.7.d.b 4
8.d odd 2 1 inner 8.7.d.b 4
12.b even 2 1 288.7.b.b 4
16.e even 4 2 256.7.c.l 8
16.f odd 4 2 256.7.c.l 8
24.f even 2 1 72.7.b.b 4
24.h odd 2 1 288.7.b.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8.7.d.b 4 1.a even 1 1 trivial
8.7.d.b 4 8.d odd 2 1 inner
32.7.d.b 4 4.b odd 2 1
32.7.d.b 4 8.b even 2 1
72.7.b.b 4 3.b odd 2 1
72.7.b.b 4 24.f even 2 1
256.7.c.l 8 16.e even 4 2
256.7.c.l 8 16.f odd 4 2
288.7.b.b 4 12.b even 2 1
288.7.b.b 4 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 24T_{3} - 276 \) acting on \(S_{7}^{\mathrm{new}}(8, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 2 T^{3} + \cdots + 4096 \) Copy content Toggle raw display
$3$ \( (T^{2} + 24 T - 276)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} + 43200 T^{2} + 141312000 \) Copy content Toggle raw display
$7$ \( T^{4} + 234240 T^{2} + 90439680 \) Copy content Toggle raw display
$11$ \( (T^{2} - 488 T - 1305044)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 28641121812480 \) Copy content Toggle raw display
$17$ \( (T^{2} - 2084 T - 15714236)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 728 T - 1642004)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 40\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 19\!\cdots\!80 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 41\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 10\!\cdots\!80 \) Copy content Toggle raw display
$41$ \( (T^{2} + 58972 T + 357521476)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 98728 T + 547375276)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 10\!\cdots\!80 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 29\!\cdots\!80 \) Copy content Toggle raw display
$59$ \( (T^{2} - 271016 T + 18317507884)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 33\!\cdots\!80 \) Copy content Toggle raw display
$67$ \( (T^{2} + 395096 T + 24071074924)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 11\!\cdots\!80 \) Copy content Toggle raw display
$73$ \( (T^{2} - 221956 T - 18286467836)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 31\!\cdots\!80 \) Copy content Toggle raw display
$83$ \( (T^{2} + 1732504 T + 746384920684)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 380612 T - 23540043644)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 463388 T - 711956225084)^{2} \) Copy content Toggle raw display
show more
show less