Properties

Label 80.12.a.a
Level $80$
Weight $12$
Character orbit 80.a
Self dual yes
Analytic conductor $61.467$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [80,12,Mod(1,80)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(80, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("80.1");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 80.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(61.4674544448\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 10)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 738 q^{3} - 3125 q^{5} - 25574 q^{7} + 367497 q^{9} - 769152 q^{11} - 918982 q^{13} + 2306250 q^{15} + 10312794 q^{17} + 5521660 q^{19} + 18873612 q^{21} + 39973422 q^{23} + 9765625 q^{25} - 140478300 q^{27}+ \cdots - 282661052544 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −738.000 0 −3125.00 0 −25574.0 0 367497. 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 80.12.a.a 1
4.b odd 2 1 10.12.a.b 1
12.b even 2 1 90.12.a.k 1
20.d odd 2 1 50.12.a.c 1
20.e even 4 2 50.12.b.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.12.a.b 1 4.b odd 2 1
50.12.a.c 1 20.d odd 2 1
50.12.b.a 2 20.e even 4 2
80.12.a.a 1 1.a even 1 1 trivial
90.12.a.k 1 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} + 738 \) acting on \(S_{12}^{\mathrm{new}}(\Gamma_0(80))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 738 \) Copy content Toggle raw display
$5$ \( T + 3125 \) Copy content Toggle raw display
$7$ \( T + 25574 \) Copy content Toggle raw display
$11$ \( T + 769152 \) Copy content Toggle raw display
$13$ \( T + 918982 \) Copy content Toggle raw display
$17$ \( T - 10312794 \) Copy content Toggle raw display
$19$ \( T - 5521660 \) Copy content Toggle raw display
$23$ \( T - 39973422 \) Copy content Toggle raw display
$29$ \( T + 15269010 \) Copy content Toggle raw display
$31$ \( T - 241583788 \) Copy content Toggle raw display
$37$ \( T + 25751446 \) Copy content Toggle raw display
$41$ \( T + 1217700138 \) Copy content Toggle raw display
$43$ \( T - 683436262 \) Copy content Toggle raw display
$47$ \( T + 1537395294 \) Copy content Toggle raw display
$53$ \( T - 3572891298 \) Copy content Toggle raw display
$59$ \( T - 1069039020 \) Copy content Toggle raw display
$61$ \( T + 2091535078 \) Copy content Toggle raw display
$67$ \( T - 1462369186 \) Copy content Toggle raw display
$71$ \( T + 9660178332 \) Copy content Toggle raw display
$73$ \( T + 5603447662 \) Copy content Toggle raw display
$79$ \( T + 5026936280 \) Copy content Toggle raw display
$83$ \( T - 38405955462 \) Copy content Toggle raw display
$89$ \( T - 35558583210 \) Copy content Toggle raw display
$97$ \( T - 10572232514 \) Copy content Toggle raw display
show more
show less