Properties

Label 80.16.a.b.1.1
Level $80$
Weight $16$
Character 80.1
Self dual yes
Analytic conductor $114.155$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [80,16,Mod(1,80)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(80, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 16, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("80.1");
 
S:= CuspForms(chi, 16);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 16 \)
Character orbit: \([\chi]\) \(=\) 80.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(114.154804080\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 10)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 80.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1302.00 q^{3} -78125.0 q^{5} +90706.0 q^{7} -1.26537e7 q^{9} +6.94116e7 q^{11} -3.70575e7 q^{13} -1.01719e8 q^{15} -1.37203e9 q^{17} +5.06876e9 q^{19} +1.18099e8 q^{21} +1.23426e10 q^{23} +6.10352e9 q^{25} -3.51574e10 q^{27} +5.78257e10 q^{29} -2.33728e11 q^{31} +9.03740e10 q^{33} -7.08641e9 q^{35} +7.42248e11 q^{37} -4.82488e10 q^{39} -7.72700e11 q^{41} +4.05994e11 q^{43} +9.88571e11 q^{45} -1.62301e12 q^{47} -4.73933e12 q^{49} -1.78638e12 q^{51} -5.36560e12 q^{53} -5.42278e12 q^{55} +6.59953e12 q^{57} -9.24016e12 q^{59} +9.44308e11 q^{61} -1.14777e12 q^{63} +2.89511e12 q^{65} +7.05676e13 q^{67} +1.60701e13 q^{69} +8.25347e13 q^{71} -1.78432e14 q^{73} +7.94678e12 q^{75} +6.29605e12 q^{77} -3.07261e14 q^{79} +1.35792e14 q^{81} -4.31597e13 q^{83} +1.07190e14 q^{85} +7.52891e13 q^{87} +6.81678e14 q^{89} -3.36133e12 q^{91} -3.04314e14 q^{93} -3.95997e14 q^{95} -2.36520e14 q^{97} -8.78314e14 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1302.00 0.343717 0.171859 0.985122i \(-0.445023\pi\)
0.171859 + 0.985122i \(0.445023\pi\)
\(4\) 0 0
\(5\) −78125.0 −0.447214
\(6\) 0 0
\(7\) 90706.0 0.0416295 0.0208147 0.999783i \(-0.493374\pi\)
0.0208147 + 0.999783i \(0.493374\pi\)
\(8\) 0 0
\(9\) −1.26537e7 −0.881858
\(10\) 0 0
\(11\) 6.94116e7 1.07396 0.536979 0.843596i \(-0.319565\pi\)
0.536979 + 0.843596i \(0.319565\pi\)
\(12\) 0 0
\(13\) −3.70575e7 −0.163795 −0.0818975 0.996641i \(-0.526098\pi\)
−0.0818975 + 0.996641i \(0.526098\pi\)
\(14\) 0 0
\(15\) −1.01719e8 −0.153715
\(16\) 0 0
\(17\) −1.37203e9 −0.810954 −0.405477 0.914105i \(-0.632894\pi\)
−0.405477 + 0.914105i \(0.632894\pi\)
\(18\) 0 0
\(19\) 5.06876e9 1.30092 0.650459 0.759542i \(-0.274577\pi\)
0.650459 + 0.759542i \(0.274577\pi\)
\(20\) 0 0
\(21\) 1.18099e8 0.0143088
\(22\) 0 0
\(23\) 1.23426e10 0.755873 0.377937 0.925831i \(-0.376634\pi\)
0.377937 + 0.925831i \(0.376634\pi\)
\(24\) 0 0
\(25\) 6.10352e9 0.200000
\(26\) 0 0
\(27\) −3.51574e10 −0.646828
\(28\) 0 0
\(29\) 5.78257e10 0.622495 0.311248 0.950329i \(-0.399253\pi\)
0.311248 + 0.950329i \(0.399253\pi\)
\(30\) 0 0
\(31\) −2.33728e11 −1.52580 −0.762901 0.646516i \(-0.776225\pi\)
−0.762901 + 0.646516i \(0.776225\pi\)
\(32\) 0 0
\(33\) 9.03740e10 0.369138
\(34\) 0 0
\(35\) −7.08641e9 −0.0186173
\(36\) 0 0
\(37\) 7.42248e11 1.28539 0.642696 0.766121i \(-0.277816\pi\)
0.642696 + 0.766121i \(0.277816\pi\)
\(38\) 0 0
\(39\) −4.82488e10 −0.0562992
\(40\) 0 0
\(41\) −7.72700e11 −0.619629 −0.309815 0.950797i \(-0.600267\pi\)
−0.309815 + 0.950797i \(0.600267\pi\)
\(42\) 0 0
\(43\) 4.05994e11 0.227775 0.113888 0.993494i \(-0.463670\pi\)
0.113888 + 0.993494i \(0.463670\pi\)
\(44\) 0 0
\(45\) 9.88571e11 0.394379
\(46\) 0 0
\(47\) −1.62301e12 −0.467291 −0.233646 0.972322i \(-0.575066\pi\)
−0.233646 + 0.972322i \(0.575066\pi\)
\(48\) 0 0
\(49\) −4.73933e12 −0.998267
\(50\) 0 0
\(51\) −1.78638e12 −0.278739
\(52\) 0 0
\(53\) −5.36560e12 −0.627407 −0.313703 0.949521i \(-0.601570\pi\)
−0.313703 + 0.949521i \(0.601570\pi\)
\(54\) 0 0
\(55\) −5.42278e12 −0.480289
\(56\) 0 0
\(57\) 6.59953e12 0.447148
\(58\) 0 0
\(59\) −9.24016e12 −0.483381 −0.241690 0.970353i \(-0.577702\pi\)
−0.241690 + 0.970353i \(0.577702\pi\)
\(60\) 0 0
\(61\) 9.44308e11 0.0384716 0.0192358 0.999815i \(-0.493877\pi\)
0.0192358 + 0.999815i \(0.493877\pi\)
\(62\) 0 0
\(63\) −1.14777e12 −0.0367113
\(64\) 0 0
\(65\) 2.89511e12 0.0732513
\(66\) 0 0
\(67\) 7.05676e13 1.42247 0.711237 0.702953i \(-0.248135\pi\)
0.711237 + 0.702953i \(0.248135\pi\)
\(68\) 0 0
\(69\) 1.60701e13 0.259807
\(70\) 0 0
\(71\) 8.25347e13 1.07696 0.538479 0.842639i \(-0.318999\pi\)
0.538479 + 0.842639i \(0.318999\pi\)
\(72\) 0 0
\(73\) −1.78432e14 −1.89039 −0.945197 0.326502i \(-0.894130\pi\)
−0.945197 + 0.326502i \(0.894130\pi\)
\(74\) 0 0
\(75\) 7.94678e12 0.0687435
\(76\) 0 0
\(77\) 6.29605e12 0.0447083
\(78\) 0 0
\(79\) −3.07261e14 −1.80013 −0.900067 0.435752i \(-0.856482\pi\)
−0.900067 + 0.435752i \(0.856482\pi\)
\(80\) 0 0
\(81\) 1.35792e14 0.659532
\(82\) 0 0
\(83\) −4.31597e13 −0.174579 −0.0872897 0.996183i \(-0.527821\pi\)
−0.0872897 + 0.996183i \(0.527821\pi\)
\(84\) 0 0
\(85\) 1.07190e14 0.362669
\(86\) 0 0
\(87\) 7.52891e13 0.213962
\(88\) 0 0
\(89\) 6.81678e14 1.63363 0.816816 0.576899i \(-0.195737\pi\)
0.816816 + 0.576899i \(0.195737\pi\)
\(90\) 0 0
\(91\) −3.36133e12 −0.00681869
\(92\) 0 0
\(93\) −3.04314e14 −0.524445
\(94\) 0 0
\(95\) −3.95997e14 −0.581788
\(96\) 0 0
\(97\) −2.36520e14 −0.297222 −0.148611 0.988896i \(-0.547480\pi\)
−0.148611 + 0.988896i \(0.547480\pi\)
\(98\) 0 0
\(99\) −8.78314e14 −0.947079
\(100\) 0 0
\(101\) −1.39643e15 −1.29601 −0.648005 0.761636i \(-0.724397\pi\)
−0.648005 + 0.761636i \(0.724397\pi\)
\(102\) 0 0
\(103\) 1.46886e15 1.17680 0.588398 0.808572i \(-0.299759\pi\)
0.588398 + 0.808572i \(0.299759\pi\)
\(104\) 0 0
\(105\) −9.22650e12 −0.00639908
\(106\) 0 0
\(107\) −1.19960e15 −0.722203 −0.361102 0.932526i \(-0.617599\pi\)
−0.361102 + 0.932526i \(0.617599\pi\)
\(108\) 0 0
\(109\) 2.63914e14 0.138281 0.0691407 0.997607i \(-0.477974\pi\)
0.0691407 + 0.997607i \(0.477974\pi\)
\(110\) 0 0
\(111\) 9.66406e14 0.441812
\(112\) 0 0
\(113\) −4.67332e15 −1.86869 −0.934346 0.356368i \(-0.884015\pi\)
−0.934346 + 0.356368i \(0.884015\pi\)
\(114\) 0 0
\(115\) −9.64268e14 −0.338037
\(116\) 0 0
\(117\) 4.68914e14 0.144444
\(118\) 0 0
\(119\) −1.24451e14 −0.0337596
\(120\) 0 0
\(121\) 6.40729e14 0.153385
\(122\) 0 0
\(123\) −1.00606e15 −0.212977
\(124\) 0 0
\(125\) −4.76837e14 −0.0894427
\(126\) 0 0
\(127\) −5.53712e15 −0.922053 −0.461027 0.887386i \(-0.652519\pi\)
−0.461027 + 0.887386i \(0.652519\pi\)
\(128\) 0 0
\(129\) 5.28605e14 0.0782903
\(130\) 0 0
\(131\) −7.83095e15 −1.03343 −0.516714 0.856158i \(-0.672845\pi\)
−0.516714 + 0.856158i \(0.672845\pi\)
\(132\) 0 0
\(133\) 4.59767e14 0.0541565
\(134\) 0 0
\(135\) 2.74667e15 0.289270
\(136\) 0 0
\(137\) −1.88872e16 −1.78140 −0.890702 0.454587i \(-0.849787\pi\)
−0.890702 + 0.454587i \(0.849787\pi\)
\(138\) 0 0
\(139\) −6.08888e15 −0.515142 −0.257571 0.966259i \(-0.582922\pi\)
−0.257571 + 0.966259i \(0.582922\pi\)
\(140\) 0 0
\(141\) −2.11316e15 −0.160616
\(142\) 0 0
\(143\) −2.57222e15 −0.175909
\(144\) 0 0
\(145\) −4.51763e15 −0.278388
\(146\) 0 0
\(147\) −6.17061e15 −0.343122
\(148\) 0 0
\(149\) −2.97847e16 −1.49657 −0.748285 0.663378i \(-0.769122\pi\)
−0.748285 + 0.663378i \(0.769122\pi\)
\(150\) 0 0
\(151\) −3.43750e16 −1.56284 −0.781421 0.624004i \(-0.785505\pi\)
−0.781421 + 0.624004i \(0.785505\pi\)
\(152\) 0 0
\(153\) 1.73612e16 0.715146
\(154\) 0 0
\(155\) 1.82600e16 0.682359
\(156\) 0 0
\(157\) 3.24674e16 1.10205 0.551024 0.834490i \(-0.314237\pi\)
0.551024 + 0.834490i \(0.314237\pi\)
\(158\) 0 0
\(159\) −6.98601e15 −0.215651
\(160\) 0 0
\(161\) 1.11955e15 0.0314666
\(162\) 0 0
\(163\) −2.42386e16 −0.621013 −0.310506 0.950571i \(-0.600499\pi\)
−0.310506 + 0.950571i \(0.600499\pi\)
\(164\) 0 0
\(165\) −7.06047e15 −0.165084
\(166\) 0 0
\(167\) −3.26384e15 −0.0697196 −0.0348598 0.999392i \(-0.511098\pi\)
−0.0348598 + 0.999392i \(0.511098\pi\)
\(168\) 0 0
\(169\) −4.98126e16 −0.973171
\(170\) 0 0
\(171\) −6.41386e16 −1.14722
\(172\) 0 0
\(173\) −9.54205e16 −1.56421 −0.782106 0.623145i \(-0.785855\pi\)
−0.782106 + 0.623145i \(0.785855\pi\)
\(174\) 0 0
\(175\) 5.53625e14 0.00832589
\(176\) 0 0
\(177\) −1.20307e16 −0.166146
\(178\) 0 0
\(179\) 1.08211e17 1.37365 0.686823 0.726824i \(-0.259005\pi\)
0.686823 + 0.726824i \(0.259005\pi\)
\(180\) 0 0
\(181\) 2.21984e16 0.259258 0.129629 0.991563i \(-0.458621\pi\)
0.129629 + 0.991563i \(0.458621\pi\)
\(182\) 0 0
\(183\) 1.22949e15 0.0132234
\(184\) 0 0
\(185\) −5.79881e16 −0.574845
\(186\) 0 0
\(187\) −9.52347e16 −0.870930
\(188\) 0 0
\(189\) −3.18899e15 −0.0269271
\(190\) 0 0
\(191\) 3.42389e16 0.267159 0.133580 0.991038i \(-0.457353\pi\)
0.133580 + 0.991038i \(0.457353\pi\)
\(192\) 0 0
\(193\) −2.27131e17 −1.63907 −0.819533 0.573031i \(-0.805767\pi\)
−0.819533 + 0.573031i \(0.805767\pi\)
\(194\) 0 0
\(195\) 3.76944e15 0.0251778
\(196\) 0 0
\(197\) 2.63870e16 0.163265 0.0816325 0.996662i \(-0.473987\pi\)
0.0816325 + 0.996662i \(0.473987\pi\)
\(198\) 0 0
\(199\) −1.99493e17 −1.14427 −0.572137 0.820158i \(-0.693885\pi\)
−0.572137 + 0.820158i \(0.693885\pi\)
\(200\) 0 0
\(201\) 9.18790e16 0.488929
\(202\) 0 0
\(203\) 5.24514e15 0.0259141
\(204\) 0 0
\(205\) 6.03672e16 0.277107
\(206\) 0 0
\(207\) −1.56180e17 −0.666573
\(208\) 0 0
\(209\) 3.51831e17 1.39713
\(210\) 0 0
\(211\) −6.45604e16 −0.238697 −0.119349 0.992852i \(-0.538081\pi\)
−0.119349 + 0.992852i \(0.538081\pi\)
\(212\) 0 0
\(213\) 1.07460e17 0.370170
\(214\) 0 0
\(215\) −3.17183e16 −0.101864
\(216\) 0 0
\(217\) −2.12005e16 −0.0635183
\(218\) 0 0
\(219\) −2.32319e17 −0.649761
\(220\) 0 0
\(221\) 5.08439e16 0.132830
\(222\) 0 0
\(223\) 6.71970e17 1.64083 0.820415 0.571769i \(-0.193743\pi\)
0.820415 + 0.571769i \(0.193743\pi\)
\(224\) 0 0
\(225\) −7.72321e16 −0.176372
\(226\) 0 0
\(227\) 5.40955e17 1.15602 0.578012 0.816028i \(-0.303829\pi\)
0.578012 + 0.816028i \(0.303829\pi\)
\(228\) 0 0
\(229\) 7.52317e17 1.50534 0.752671 0.658397i \(-0.228765\pi\)
0.752671 + 0.658397i \(0.228765\pi\)
\(230\) 0 0
\(231\) 8.19746e15 0.0153670
\(232\) 0 0
\(233\) −7.64780e17 −1.34390 −0.671951 0.740596i \(-0.734543\pi\)
−0.671951 + 0.740596i \(0.734543\pi\)
\(234\) 0 0
\(235\) 1.26798e17 0.208979
\(236\) 0 0
\(237\) −4.00054e17 −0.618737
\(238\) 0 0
\(239\) 6.74103e17 0.978908 0.489454 0.872029i \(-0.337196\pi\)
0.489454 + 0.872029i \(0.337196\pi\)
\(240\) 0 0
\(241\) 3.16938e17 0.432361 0.216180 0.976353i \(-0.430640\pi\)
0.216180 + 0.976353i \(0.430640\pi\)
\(242\) 0 0
\(243\) 6.81271e17 0.873520
\(244\) 0 0
\(245\) 3.70260e17 0.446439
\(246\) 0 0
\(247\) −1.87835e17 −0.213084
\(248\) 0 0
\(249\) −5.61940e16 −0.0600060
\(250\) 0 0
\(251\) 1.54964e17 0.155840 0.0779200 0.996960i \(-0.475172\pi\)
0.0779200 + 0.996960i \(0.475172\pi\)
\(252\) 0 0
\(253\) 8.56722e17 0.811776
\(254\) 0 0
\(255\) 1.39561e17 0.124656
\(256\) 0 0
\(257\) 2.25253e18 1.89746 0.948731 0.316086i \(-0.102369\pi\)
0.948731 + 0.316086i \(0.102369\pi\)
\(258\) 0 0
\(259\) 6.73263e16 0.0535102
\(260\) 0 0
\(261\) −7.31710e17 −0.548953
\(262\) 0 0
\(263\) −1.00925e18 −0.715044 −0.357522 0.933905i \(-0.616378\pi\)
−0.357522 + 0.933905i \(0.616378\pi\)
\(264\) 0 0
\(265\) 4.19187e17 0.280585
\(266\) 0 0
\(267\) 8.87544e17 0.561508
\(268\) 0 0
\(269\) −9.29818e17 −0.556232 −0.278116 0.960548i \(-0.589710\pi\)
−0.278116 + 0.960548i \(0.589710\pi\)
\(270\) 0 0
\(271\) 6.51376e16 0.0368606 0.0184303 0.999830i \(-0.494133\pi\)
0.0184303 + 0.999830i \(0.494133\pi\)
\(272\) 0 0
\(273\) −4.37646e15 −0.00234370
\(274\) 0 0
\(275\) 4.23655e17 0.214792
\(276\) 0 0
\(277\) −8.74228e16 −0.0419784 −0.0209892 0.999780i \(-0.506682\pi\)
−0.0209892 + 0.999780i \(0.506682\pi\)
\(278\) 0 0
\(279\) 2.95752e18 1.34554
\(280\) 0 0
\(281\) 1.10585e18 0.476867 0.238433 0.971159i \(-0.423366\pi\)
0.238433 + 0.971159i \(0.423366\pi\)
\(282\) 0 0
\(283\) −2.15159e18 −0.879756 −0.439878 0.898058i \(-0.644978\pi\)
−0.439878 + 0.898058i \(0.644978\pi\)
\(284\) 0 0
\(285\) −5.15588e17 −0.199971
\(286\) 0 0
\(287\) −7.00885e16 −0.0257948
\(288\) 0 0
\(289\) −9.79963e17 −0.342354
\(290\) 0 0
\(291\) −3.07949e17 −0.102160
\(292\) 0 0
\(293\) 5.52332e18 1.74058 0.870288 0.492543i \(-0.163933\pi\)
0.870288 + 0.492543i \(0.163933\pi\)
\(294\) 0 0
\(295\) 7.21887e17 0.216174
\(296\) 0 0
\(297\) −2.44033e18 −0.694665
\(298\) 0 0
\(299\) −4.57387e17 −0.123808
\(300\) 0 0
\(301\) 3.68261e16 0.00948216
\(302\) 0 0
\(303\) −1.81815e18 −0.445461
\(304\) 0 0
\(305\) −7.37741e16 −0.0172050
\(306\) 0 0
\(307\) −9.87586e17 −0.219299 −0.109650 0.993970i \(-0.534973\pi\)
−0.109650 + 0.993970i \(0.534973\pi\)
\(308\) 0 0
\(309\) 1.91245e18 0.404485
\(310\) 0 0
\(311\) 3.09644e18 0.623965 0.311982 0.950088i \(-0.399007\pi\)
0.311982 + 0.950088i \(0.399007\pi\)
\(312\) 0 0
\(313\) 1.19355e18 0.229224 0.114612 0.993410i \(-0.463438\pi\)
0.114612 + 0.993410i \(0.463438\pi\)
\(314\) 0 0
\(315\) 8.96693e16 0.0164178
\(316\) 0 0
\(317\) −2.70108e18 −0.471621 −0.235811 0.971799i \(-0.575774\pi\)
−0.235811 + 0.971799i \(0.575774\pi\)
\(318\) 0 0
\(319\) 4.01378e18 0.668534
\(320\) 0 0
\(321\) −1.56188e18 −0.248234
\(322\) 0 0
\(323\) −6.95448e18 −1.05498
\(324\) 0 0
\(325\) −2.26181e17 −0.0327590
\(326\) 0 0
\(327\) 3.43616e17 0.0475297
\(328\) 0 0
\(329\) −1.47217e17 −0.0194531
\(330\) 0 0
\(331\) 9.04958e17 0.114266 0.0571332 0.998367i \(-0.481804\pi\)
0.0571332 + 0.998367i \(0.481804\pi\)
\(332\) 0 0
\(333\) −9.39218e18 −1.13353
\(334\) 0 0
\(335\) −5.51309e18 −0.636150
\(336\) 0 0
\(337\) −6.84140e17 −0.0754955 −0.0377477 0.999287i \(-0.512018\pi\)
−0.0377477 + 0.999287i \(0.512018\pi\)
\(338\) 0 0
\(339\) −6.08467e18 −0.642302
\(340\) 0 0
\(341\) −1.62234e19 −1.63865
\(342\) 0 0
\(343\) −8.60518e17 −0.0831868
\(344\) 0 0
\(345\) −1.25548e18 −0.116189
\(346\) 0 0
\(347\) 1.18426e19 1.04948 0.524742 0.851261i \(-0.324162\pi\)
0.524742 + 0.851261i \(0.324162\pi\)
\(348\) 0 0
\(349\) −4.67865e18 −0.397127 −0.198564 0.980088i \(-0.563628\pi\)
−0.198564 + 0.980088i \(0.563628\pi\)
\(350\) 0 0
\(351\) 1.30284e18 0.105947
\(352\) 0 0
\(353\) −6.21571e18 −0.484374 −0.242187 0.970230i \(-0.577865\pi\)
−0.242187 + 0.970230i \(0.577865\pi\)
\(354\) 0 0
\(355\) −6.44803e18 −0.481631
\(356\) 0 0
\(357\) −1.62035e17 −0.0116037
\(358\) 0 0
\(359\) −8.67422e18 −0.595693 −0.297846 0.954614i \(-0.596268\pi\)
−0.297846 + 0.954614i \(0.596268\pi\)
\(360\) 0 0
\(361\) 1.05112e19 0.692386
\(362\) 0 0
\(363\) 8.34229e17 0.0527212
\(364\) 0 0
\(365\) 1.39400e19 0.845410
\(366\) 0 0
\(367\) −2.60076e19 −1.51393 −0.756964 0.653457i \(-0.773318\pi\)
−0.756964 + 0.653457i \(0.773318\pi\)
\(368\) 0 0
\(369\) 9.77751e18 0.546425
\(370\) 0 0
\(371\) −4.86692e17 −0.0261186
\(372\) 0 0
\(373\) 3.24522e18 0.167274 0.0836369 0.996496i \(-0.473346\pi\)
0.0836369 + 0.996496i \(0.473346\pi\)
\(374\) 0 0
\(375\) −6.20842e17 −0.0307430
\(376\) 0 0
\(377\) −2.14287e18 −0.101962
\(378\) 0 0
\(379\) −3.97275e19 −1.81676 −0.908379 0.418148i \(-0.862679\pi\)
−0.908379 + 0.418148i \(0.862679\pi\)
\(380\) 0 0
\(381\) −7.20933e18 −0.316926
\(382\) 0 0
\(383\) 1.39053e19 0.587747 0.293874 0.955844i \(-0.405056\pi\)
0.293874 + 0.955844i \(0.405056\pi\)
\(384\) 0 0
\(385\) −4.91879e17 −0.0199941
\(386\) 0 0
\(387\) −5.13733e18 −0.200866
\(388\) 0 0
\(389\) −2.40519e19 −0.904749 −0.452374 0.891828i \(-0.649423\pi\)
−0.452374 + 0.891828i \(0.649423\pi\)
\(390\) 0 0
\(391\) −1.69344e19 −0.612978
\(392\) 0 0
\(393\) −1.01959e19 −0.355207
\(394\) 0 0
\(395\) 2.40048e19 0.805044
\(396\) 0 0
\(397\) 4.68747e17 0.0151359 0.00756797 0.999971i \(-0.497591\pi\)
0.00756797 + 0.999971i \(0.497591\pi\)
\(398\) 0 0
\(399\) 5.98617e17 0.0186145
\(400\) 0 0
\(401\) −4.59281e19 −1.37561 −0.687806 0.725894i \(-0.741426\pi\)
−0.687806 + 0.725894i \(0.741426\pi\)
\(402\) 0 0
\(403\) 8.66137e18 0.249919
\(404\) 0 0
\(405\) −1.06087e19 −0.294952
\(406\) 0 0
\(407\) 5.15206e19 1.38046
\(408\) 0 0
\(409\) −2.87071e18 −0.0741421 −0.0370710 0.999313i \(-0.511803\pi\)
−0.0370710 + 0.999313i \(0.511803\pi\)
\(410\) 0 0
\(411\) −2.45911e19 −0.612300
\(412\) 0 0
\(413\) −8.38138e17 −0.0201229
\(414\) 0 0
\(415\) 3.37185e18 0.0780743
\(416\) 0 0
\(417\) −7.92773e18 −0.177063
\(418\) 0 0
\(419\) 1.95181e19 0.420563 0.210282 0.977641i \(-0.432562\pi\)
0.210282 + 0.977641i \(0.432562\pi\)
\(420\) 0 0
\(421\) 7.84258e19 1.63058 0.815292 0.579049i \(-0.196576\pi\)
0.815292 + 0.579049i \(0.196576\pi\)
\(422\) 0 0
\(423\) 2.05371e19 0.412084
\(424\) 0 0
\(425\) −8.37419e18 −0.162191
\(426\) 0 0
\(427\) 8.56544e16 0.00160155
\(428\) 0 0
\(429\) −3.34903e18 −0.0604629
\(430\) 0 0
\(431\) 5.24106e19 0.913776 0.456888 0.889524i \(-0.348964\pi\)
0.456888 + 0.889524i \(0.348964\pi\)
\(432\) 0 0
\(433\) 6.72089e19 1.13179 0.565897 0.824476i \(-0.308530\pi\)
0.565897 + 0.824476i \(0.308530\pi\)
\(434\) 0 0
\(435\) −5.88196e18 −0.0956869
\(436\) 0 0
\(437\) 6.25618e19 0.983329
\(438\) 0 0
\(439\) 6.41938e19 0.975010 0.487505 0.873120i \(-0.337907\pi\)
0.487505 + 0.873120i \(0.337907\pi\)
\(440\) 0 0
\(441\) 5.99701e19 0.880330
\(442\) 0 0
\(443\) −8.09420e19 −1.14854 −0.574270 0.818666i \(-0.694714\pi\)
−0.574270 + 0.818666i \(0.694714\pi\)
\(444\) 0 0
\(445\) −5.32561e19 −0.730582
\(446\) 0 0
\(447\) −3.87797e19 −0.514397
\(448\) 0 0
\(449\) −5.63441e19 −0.722771 −0.361386 0.932416i \(-0.617696\pi\)
−0.361386 + 0.932416i \(0.617696\pi\)
\(450\) 0 0
\(451\) −5.36344e19 −0.665456
\(452\) 0 0
\(453\) −4.47562e19 −0.537176
\(454\) 0 0
\(455\) 2.62604e17 0.00304941
\(456\) 0 0
\(457\) 8.12666e19 0.913147 0.456573 0.889686i \(-0.349077\pi\)
0.456573 + 0.889686i \(0.349077\pi\)
\(458\) 0 0
\(459\) 4.82369e19 0.524547
\(460\) 0 0
\(461\) 1.12727e20 1.18651 0.593255 0.805015i \(-0.297843\pi\)
0.593255 + 0.805015i \(0.297843\pi\)
\(462\) 0 0
\(463\) 1.79852e20 1.83256 0.916278 0.400542i \(-0.131178\pi\)
0.916278 + 0.400542i \(0.131178\pi\)
\(464\) 0 0
\(465\) 2.37745e19 0.234539
\(466\) 0 0
\(467\) −3.50796e19 −0.335103 −0.167552 0.985863i \(-0.553586\pi\)
−0.167552 + 0.985863i \(0.553586\pi\)
\(468\) 0 0
\(469\) 6.40090e18 0.0592168
\(470\) 0 0
\(471\) 4.22726e19 0.378793
\(472\) 0 0
\(473\) 2.81807e19 0.244621
\(474\) 0 0
\(475\) 3.09373e19 0.260184
\(476\) 0 0
\(477\) 6.78947e19 0.553284
\(478\) 0 0
\(479\) −1.32716e19 −0.104811 −0.0524053 0.998626i \(-0.516689\pi\)
−0.0524053 + 0.998626i \(0.516689\pi\)
\(480\) 0 0
\(481\) −2.75058e19 −0.210541
\(482\) 0 0
\(483\) 1.45766e18 0.0108156
\(484\) 0 0
\(485\) 1.84781e19 0.132922
\(486\) 0 0
\(487\) 2.27726e20 1.58835 0.794173 0.607692i \(-0.207904\pi\)
0.794173 + 0.607692i \(0.207904\pi\)
\(488\) 0 0
\(489\) −3.15587e19 −0.213453
\(490\) 0 0
\(491\) −2.06518e19 −0.135471 −0.0677356 0.997703i \(-0.521577\pi\)
−0.0677356 + 0.997703i \(0.521577\pi\)
\(492\) 0 0
\(493\) −7.93385e19 −0.504815
\(494\) 0 0
\(495\) 6.86183e19 0.423546
\(496\) 0 0
\(497\) 7.48639e18 0.0448332
\(498\) 0 0
\(499\) −2.08538e20 −1.21180 −0.605901 0.795540i \(-0.707187\pi\)
−0.605901 + 0.795540i \(0.707187\pi\)
\(500\) 0 0
\(501\) −4.24952e18 −0.0239638
\(502\) 0 0
\(503\) −1.61975e20 −0.886516 −0.443258 0.896394i \(-0.646178\pi\)
−0.443258 + 0.896394i \(0.646178\pi\)
\(504\) 0 0
\(505\) 1.09096e20 0.579594
\(506\) 0 0
\(507\) −6.48561e19 −0.334496
\(508\) 0 0
\(509\) 1.84945e20 0.926102 0.463051 0.886332i \(-0.346755\pi\)
0.463051 + 0.886332i \(0.346755\pi\)
\(510\) 0 0
\(511\) −1.61849e19 −0.0786960
\(512\) 0 0
\(513\) −1.78204e20 −0.841469
\(514\) 0 0
\(515\) −1.14755e20 −0.526279
\(516\) 0 0
\(517\) −1.12656e20 −0.501851
\(518\) 0 0
\(519\) −1.24237e20 −0.537647
\(520\) 0 0
\(521\) −1.19106e20 −0.500785 −0.250392 0.968144i \(-0.580560\pi\)
−0.250392 + 0.968144i \(0.580560\pi\)
\(522\) 0 0
\(523\) 2.07240e20 0.846663 0.423331 0.905975i \(-0.360861\pi\)
0.423331 + 0.905975i \(0.360861\pi\)
\(524\) 0 0
\(525\) 7.20820e17 0.00286175
\(526\) 0 0
\(527\) 3.20681e20 1.23735
\(528\) 0 0
\(529\) −1.14295e20 −0.428656
\(530\) 0 0
\(531\) 1.16922e20 0.426273
\(532\) 0 0
\(533\) 2.86343e19 0.101492
\(534\) 0 0
\(535\) 9.37190e19 0.322979
\(536\) 0 0
\(537\) 1.40891e20 0.472146
\(538\) 0 0
\(539\) −3.28965e20 −1.07210
\(540\) 0 0
\(541\) −4.26438e20 −1.35169 −0.675844 0.737045i \(-0.736221\pi\)
−0.675844 + 0.737045i \(0.736221\pi\)
\(542\) 0 0
\(543\) 2.89023e19 0.0891114
\(544\) 0 0
\(545\) −2.06183e19 −0.0618413
\(546\) 0 0
\(547\) 1.46134e20 0.426427 0.213214 0.977006i \(-0.431607\pi\)
0.213214 + 0.977006i \(0.431607\pi\)
\(548\) 0 0
\(549\) −1.19490e19 −0.0339265
\(550\) 0 0
\(551\) 2.93105e20 0.809815
\(552\) 0 0
\(553\) −2.78704e19 −0.0749386
\(554\) 0 0
\(555\) −7.55005e19 −0.197584
\(556\) 0 0
\(557\) 3.01056e20 0.766891 0.383445 0.923564i \(-0.374737\pi\)
0.383445 + 0.923564i \(0.374737\pi\)
\(558\) 0 0
\(559\) −1.50451e19 −0.0373084
\(560\) 0 0
\(561\) −1.23996e20 −0.299354
\(562\) 0 0
\(563\) −5.43653e20 −1.27793 −0.638967 0.769234i \(-0.720638\pi\)
−0.638967 + 0.769234i \(0.720638\pi\)
\(564\) 0 0
\(565\) 3.65103e20 0.835704
\(566\) 0 0
\(567\) 1.23171e19 0.0274560
\(568\) 0 0
\(569\) 2.77606e19 0.0602681 0.0301340 0.999546i \(-0.490407\pi\)
0.0301340 + 0.999546i \(0.490407\pi\)
\(570\) 0 0
\(571\) −7.86073e20 −1.66223 −0.831116 0.556098i \(-0.812298\pi\)
−0.831116 + 0.556098i \(0.812298\pi\)
\(572\) 0 0
\(573\) 4.45791e19 0.0918272
\(574\) 0 0
\(575\) 7.53334e19 0.151175
\(576\) 0 0
\(577\) −9.30552e19 −0.181937 −0.0909687 0.995854i \(-0.528996\pi\)
−0.0909687 + 0.995854i \(0.528996\pi\)
\(578\) 0 0
\(579\) −2.95725e20 −0.563376
\(580\) 0 0
\(581\) −3.91485e18 −0.00726765
\(582\) 0 0
\(583\) −3.72435e20 −0.673808
\(584\) 0 0
\(585\) −3.66339e19 −0.0645973
\(586\) 0 0
\(587\) −9.75604e20 −1.67682 −0.838412 0.545036i \(-0.816516\pi\)
−0.838412 + 0.545036i \(0.816516\pi\)
\(588\) 0 0
\(589\) −1.18471e21 −1.98494
\(590\) 0 0
\(591\) 3.43559e19 0.0561171
\(592\) 0 0
\(593\) 1.11954e20 0.178292 0.0891459 0.996019i \(-0.471586\pi\)
0.0891459 + 0.996019i \(0.471586\pi\)
\(594\) 0 0
\(595\) 9.72275e18 0.0150977
\(596\) 0 0
\(597\) −2.59740e20 −0.393307
\(598\) 0 0
\(599\) 7.49099e20 1.10621 0.553106 0.833111i \(-0.313442\pi\)
0.553106 + 0.833111i \(0.313442\pi\)
\(600\) 0 0
\(601\) −1.59205e20 −0.229297 −0.114649 0.993406i \(-0.536574\pi\)
−0.114649 + 0.993406i \(0.536574\pi\)
\(602\) 0 0
\(603\) −8.92941e20 −1.25442
\(604\) 0 0
\(605\) −5.00569e19 −0.0685960
\(606\) 0 0
\(607\) 8.11583e20 1.08497 0.542485 0.840065i \(-0.317483\pi\)
0.542485 + 0.840065i \(0.317483\pi\)
\(608\) 0 0
\(609\) 6.82917e18 0.00890714
\(610\) 0 0
\(611\) 6.01447e19 0.0765399
\(612\) 0 0
\(613\) 5.55939e19 0.0690357 0.0345179 0.999404i \(-0.489010\pi\)
0.0345179 + 0.999404i \(0.489010\pi\)
\(614\) 0 0
\(615\) 7.85981e19 0.0952464
\(616\) 0 0
\(617\) −6.97947e19 −0.0825437 −0.0412718 0.999148i \(-0.513141\pi\)
−0.0412718 + 0.999148i \(0.513141\pi\)
\(618\) 0 0
\(619\) 6.03520e20 0.696646 0.348323 0.937375i \(-0.386751\pi\)
0.348323 + 0.937375i \(0.386751\pi\)
\(620\) 0 0
\(621\) −4.33935e20 −0.488920
\(622\) 0 0
\(623\) 6.18323e19 0.0680072
\(624\) 0 0
\(625\) 3.72529e19 0.0400000
\(626\) 0 0
\(627\) 4.58084e20 0.480218
\(628\) 0 0
\(629\) −1.01838e21 −1.04239
\(630\) 0 0
\(631\) 3.64878e20 0.364693 0.182346 0.983234i \(-0.441631\pi\)
0.182346 + 0.983234i \(0.441631\pi\)
\(632\) 0 0
\(633\) −8.40576e19 −0.0820445
\(634\) 0 0
\(635\) 4.32587e20 0.412355
\(636\) 0 0
\(637\) 1.75628e20 0.163511
\(638\) 0 0
\(639\) −1.04437e21 −0.949725
\(640\) 0 0
\(641\) 2.06269e20 0.183231 0.0916156 0.995794i \(-0.470797\pi\)
0.0916156 + 0.995794i \(0.470797\pi\)
\(642\) 0 0
\(643\) −2.11836e21 −1.83830 −0.919152 0.393903i \(-0.871125\pi\)
−0.919152 + 0.393903i \(0.871125\pi\)
\(644\) 0 0
\(645\) −4.12972e19 −0.0350125
\(646\) 0 0
\(647\) 2.29485e21 1.90096 0.950480 0.310787i \(-0.100593\pi\)
0.950480 + 0.310787i \(0.100593\pi\)
\(648\) 0 0
\(649\) −6.41375e20 −0.519130
\(650\) 0 0
\(651\) −2.76031e19 −0.0218323
\(652\) 0 0
\(653\) −5.84612e20 −0.451876 −0.225938 0.974142i \(-0.572545\pi\)
−0.225938 + 0.974142i \(0.572545\pi\)
\(654\) 0 0
\(655\) 6.11793e20 0.462163
\(656\) 0 0
\(657\) 2.25783e21 1.66706
\(658\) 0 0
\(659\) −1.79922e21 −1.29850 −0.649252 0.760573i \(-0.724918\pi\)
−0.649252 + 0.760573i \(0.724918\pi\)
\(660\) 0 0
\(661\) 1.48620e21 1.04849 0.524247 0.851566i \(-0.324347\pi\)
0.524247 + 0.851566i \(0.324347\pi\)
\(662\) 0 0
\(663\) 6.61987e19 0.0456560
\(664\) 0 0
\(665\) −3.59193e19 −0.0242195
\(666\) 0 0
\(667\) 7.13722e20 0.470528
\(668\) 0 0
\(669\) 8.74905e20 0.563982
\(670\) 0 0
\(671\) 6.55460e19 0.0413168
\(672\) 0 0
\(673\) −1.01586e21 −0.626214 −0.313107 0.949718i \(-0.601370\pi\)
−0.313107 + 0.949718i \(0.601370\pi\)
\(674\) 0 0
\(675\) −2.14584e20 −0.129366
\(676\) 0 0
\(677\) 2.64661e21 1.56054 0.780269 0.625445i \(-0.215082\pi\)
0.780269 + 0.625445i \(0.215082\pi\)
\(678\) 0 0
\(679\) −2.14538e19 −0.0123732
\(680\) 0 0
\(681\) 7.04323e20 0.397346
\(682\) 0 0
\(683\) 1.97807e21 1.09166 0.545830 0.837896i \(-0.316214\pi\)
0.545830 + 0.837896i \(0.316214\pi\)
\(684\) 0 0
\(685\) 1.47556e21 0.796668
\(686\) 0 0
\(687\) 9.79517e20 0.517412
\(688\) 0 0
\(689\) 1.98835e20 0.102766
\(690\) 0 0
\(691\) −2.52634e21 −1.27763 −0.638817 0.769359i \(-0.720576\pi\)
−0.638817 + 0.769359i \(0.720576\pi\)
\(692\) 0 0
\(693\) −7.96684e19 −0.0394264
\(694\) 0 0
\(695\) 4.75694e20 0.230378
\(696\) 0 0
\(697\) 1.06017e21 0.502491
\(698\) 0 0
\(699\) −9.95744e20 −0.461922
\(700\) 0 0
\(701\) −2.18514e21 −0.992190 −0.496095 0.868268i \(-0.665233\pi\)
−0.496095 + 0.868268i \(0.665233\pi\)
\(702\) 0 0
\(703\) 3.76228e21 1.67219
\(704\) 0 0
\(705\) 1.65091e20 0.0718297
\(706\) 0 0
\(707\) −1.26664e20 −0.0539522
\(708\) 0 0
\(709\) −2.66228e19 −0.0111021 −0.00555107 0.999985i \(-0.501767\pi\)
−0.00555107 + 0.999985i \(0.501767\pi\)
\(710\) 0 0
\(711\) 3.88799e21 1.58746
\(712\) 0 0
\(713\) −2.88482e21 −1.15331
\(714\) 0 0
\(715\) 2.00955e20 0.0786688
\(716\) 0 0
\(717\) 8.77682e20 0.336468
\(718\) 0 0
\(719\) −9.86146e20 −0.370233 −0.185116 0.982717i \(-0.559266\pi\)
−0.185116 + 0.982717i \(0.559266\pi\)
\(720\) 0 0
\(721\) 1.33234e20 0.0489894
\(722\) 0 0
\(723\) 4.12653e20 0.148610
\(724\) 0 0
\(725\) 3.52940e20 0.124499
\(726\) 0 0
\(727\) 2.40230e21 0.830078 0.415039 0.909804i \(-0.363768\pi\)
0.415039 + 0.909804i \(0.363768\pi\)
\(728\) 0 0
\(729\) −1.06145e21 −0.359288
\(730\) 0 0
\(731\) −5.57036e20 −0.184715
\(732\) 0 0
\(733\) 1.87874e21 0.610361 0.305181 0.952295i \(-0.401283\pi\)
0.305181 + 0.952295i \(0.401283\pi\)
\(734\) 0 0
\(735\) 4.82079e20 0.153449
\(736\) 0 0
\(737\) 4.89821e21 1.52768
\(738\) 0 0
\(739\) −5.37988e21 −1.64414 −0.822072 0.569384i \(-0.807182\pi\)
−0.822072 + 0.569384i \(0.807182\pi\)
\(740\) 0 0
\(741\) −2.44562e20 −0.0732406
\(742\) 0 0
\(743\) 2.67434e21 0.784876 0.392438 0.919778i \(-0.371632\pi\)
0.392438 + 0.919778i \(0.371632\pi\)
\(744\) 0 0
\(745\) 2.32693e21 0.669286
\(746\) 0 0
\(747\) 5.46130e20 0.153954
\(748\) 0 0
\(749\) −1.08811e20 −0.0300649
\(750\) 0 0
\(751\) −4.11797e21 −1.11528 −0.557640 0.830083i \(-0.688293\pi\)
−0.557640 + 0.830083i \(0.688293\pi\)
\(752\) 0 0
\(753\) 2.01764e20 0.0535649
\(754\) 0 0
\(755\) 2.68554e21 0.698924
\(756\) 0 0
\(757\) −3.83231e21 −0.977781 −0.488890 0.872345i \(-0.662598\pi\)
−0.488890 + 0.872345i \(0.662598\pi\)
\(758\) 0 0
\(759\) 1.11545e21 0.279022
\(760\) 0 0
\(761\) 3.19772e21 0.784253 0.392126 0.919911i \(-0.371740\pi\)
0.392126 + 0.919911i \(0.371740\pi\)
\(762\) 0 0
\(763\) 2.39386e19 0.00575658
\(764\) 0 0
\(765\) −1.35635e21 −0.319823
\(766\) 0 0
\(767\) 3.42417e20 0.0791753
\(768\) 0 0
\(769\) −5.42196e21 −1.22944 −0.614722 0.788744i \(-0.710732\pi\)
−0.614722 + 0.788744i \(0.710732\pi\)
\(770\) 0 0
\(771\) 2.93280e21 0.652191
\(772\) 0 0
\(773\) −4.69088e21 −1.02308 −0.511538 0.859261i \(-0.670924\pi\)
−0.511538 + 0.859261i \(0.670924\pi\)
\(774\) 0 0
\(775\) −1.42656e21 −0.305160
\(776\) 0 0
\(777\) 8.76589e19 0.0183924
\(778\) 0 0
\(779\) −3.91663e21 −0.806087
\(780\) 0 0
\(781\) 5.72887e21 1.15661
\(782\) 0 0
\(783\) −2.03300e21 −0.402647
\(784\) 0 0
\(785\) −2.53652e21 −0.492851
\(786\) 0 0
\(787\) 9.27131e21 1.76738 0.883691 0.468070i \(-0.155051\pi\)
0.883691 + 0.468070i \(0.155051\pi\)
\(788\) 0 0
\(789\) −1.31405e21 −0.245773
\(790\) 0 0
\(791\) −4.23899e20 −0.0777926
\(792\) 0 0
\(793\) −3.49937e19 −0.00630145
\(794\) 0 0
\(795\) 5.45782e20 0.0964419
\(796\) 0 0
\(797\) 8.35314e21 1.44848 0.724240 0.689548i \(-0.242191\pi\)
0.724240 + 0.689548i \(0.242191\pi\)
\(798\) 0 0
\(799\) 2.22682e21 0.378951
\(800\) 0 0
\(801\) −8.62575e21 −1.44063
\(802\) 0 0
\(803\) −1.23853e22 −2.03020
\(804\) 0 0
\(805\) −8.74649e19 −0.0140723
\(806\) 0 0
\(807\) −1.21062e21 −0.191187
\(808\) 0 0
\(809\) −5.86882e21 −0.909781 −0.454890 0.890547i \(-0.650322\pi\)
−0.454890 + 0.890547i \(0.650322\pi\)
\(810\) 0 0
\(811\) −9.20718e21 −1.40110 −0.700552 0.713602i \(-0.747063\pi\)
−0.700552 + 0.713602i \(0.747063\pi\)
\(812\) 0 0
\(813\) 8.48091e19 0.0126696
\(814\) 0 0
\(815\) 1.89364e21 0.277725
\(816\) 0 0
\(817\) 2.05789e21 0.296317
\(818\) 0 0
\(819\) 4.25333e19 0.00601312
\(820\) 0 0
\(821\) 2.78078e21 0.386005 0.193003 0.981198i \(-0.438177\pi\)
0.193003 + 0.981198i \(0.438177\pi\)
\(822\) 0 0
\(823\) −1.08620e22 −1.48051 −0.740257 0.672324i \(-0.765296\pi\)
−0.740257 + 0.672324i \(0.765296\pi\)
\(824\) 0 0
\(825\) 5.51599e20 0.0738276
\(826\) 0 0
\(827\) 4.48033e21 0.588869 0.294435 0.955672i \(-0.404869\pi\)
0.294435 + 0.955672i \(0.404869\pi\)
\(828\) 0 0
\(829\) −1.15562e22 −1.49161 −0.745807 0.666163i \(-0.767936\pi\)
−0.745807 + 0.666163i \(0.767936\pi\)
\(830\) 0 0
\(831\) −1.13824e20 −0.0144287
\(832\) 0 0
\(833\) 6.50250e21 0.809548
\(834\) 0 0
\(835\) 2.54987e20 0.0311796
\(836\) 0 0
\(837\) 8.21727e21 0.986930
\(838\) 0 0
\(839\) −1.16410e22 −1.37333 −0.686666 0.726973i \(-0.740926\pi\)
−0.686666 + 0.726973i \(0.740926\pi\)
\(840\) 0 0
\(841\) −5.28537e21 −0.612500
\(842\) 0 0
\(843\) 1.43981e21 0.163907
\(844\) 0 0
\(845\) 3.89161e21 0.435215
\(846\) 0 0
\(847\) 5.81179e19 0.00638535
\(848\) 0 0
\(849\) −2.80138e21 −0.302387
\(850\) 0 0
\(851\) 9.16129e21 0.971594
\(852\) 0 0
\(853\) −8.05337e21 −0.839189 −0.419595 0.907712i \(-0.637828\pi\)
−0.419595 + 0.907712i \(0.637828\pi\)
\(854\) 0 0
\(855\) 5.01083e21 0.513055
\(856\) 0 0
\(857\) 3.51278e21 0.353423 0.176712 0.984263i \(-0.443454\pi\)
0.176712 + 0.984263i \(0.443454\pi\)
\(858\) 0 0
\(859\) −4.79620e21 −0.474186 −0.237093 0.971487i \(-0.576195\pi\)
−0.237093 + 0.971487i \(0.576195\pi\)
\(860\) 0 0
\(861\) −9.12552e19 −0.00886613
\(862\) 0 0
\(863\) −6.27772e21 −0.599406 −0.299703 0.954033i \(-0.596888\pi\)
−0.299703 + 0.954033i \(0.596888\pi\)
\(864\) 0 0
\(865\) 7.45472e21 0.699537
\(866\) 0 0
\(867\) −1.27591e21 −0.117673
\(868\) 0 0
\(869\) −2.13275e22 −1.93327
\(870\) 0 0
\(871\) −2.61506e21 −0.232994
\(872\) 0 0
\(873\) 2.99286e21 0.262107
\(874\) 0 0
\(875\) −4.32520e19 −0.00372345
\(876\) 0 0
\(877\) −4.69963e21 −0.397711 −0.198855 0.980029i \(-0.563722\pi\)
−0.198855 + 0.980029i \(0.563722\pi\)
\(878\) 0 0
\(879\) 7.19136e21 0.598266
\(880\) 0 0
\(881\) −1.89876e22 −1.55293 −0.776465 0.630161i \(-0.782989\pi\)
−0.776465 + 0.630161i \(0.782989\pi\)
\(882\) 0 0
\(883\) 5.43744e21 0.437209 0.218605 0.975814i \(-0.429849\pi\)
0.218605 + 0.975814i \(0.429849\pi\)
\(884\) 0 0
\(885\) 9.39897e20 0.0743029
\(886\) 0 0
\(887\) 1.43529e22 1.11561 0.557807 0.829971i \(-0.311643\pi\)
0.557807 + 0.829971i \(0.311643\pi\)
\(888\) 0 0
\(889\) −5.02250e20 −0.0383846
\(890\) 0 0
\(891\) 9.42554e21 0.708310
\(892\) 0 0
\(893\) −8.22665e21 −0.607907
\(894\) 0 0
\(895\) −8.45401e21 −0.614314
\(896\) 0 0
\(897\) −5.95517e20 −0.0425551
\(898\) 0 0
\(899\) −1.35155e22 −0.949804
\(900\) 0 0
\(901\) 7.36175e21 0.508798
\(902\) 0 0
\(903\) 4.79476e19 0.00325918
\(904\) 0 0
\(905\) −1.73425e21 −0.115944
\(906\) 0 0
\(907\) 1.44404e22 0.949564 0.474782 0.880103i \(-0.342527\pi\)
0.474782 + 0.880103i \(0.342527\pi\)
\(908\) 0 0
\(909\) 1.76700e22 1.14290
\(910\) 0 0
\(911\) 6.00661e21 0.382157 0.191078 0.981575i \(-0.438802\pi\)
0.191078 + 0.981575i \(0.438802\pi\)
\(912\) 0 0
\(913\) −2.99579e21 −0.187491
\(914\) 0 0
\(915\) −9.60538e19 −0.00591366
\(916\) 0 0
\(917\) −7.10315e20 −0.0430210
\(918\) 0 0
\(919\) −2.25875e22 −1.34586 −0.672932 0.739704i \(-0.734966\pi\)
−0.672932 + 0.739704i \(0.734966\pi\)
\(920\) 0 0
\(921\) −1.28584e21 −0.0753770
\(922\) 0 0
\(923\) −3.05853e21 −0.176400
\(924\) 0 0
\(925\) 4.53032e21 0.257079
\(926\) 0 0
\(927\) −1.85865e22 −1.03777
\(928\) 0 0
\(929\) 3.26962e22 1.79630 0.898151 0.439686i \(-0.144910\pi\)
0.898151 + 0.439686i \(0.144910\pi\)
\(930\) 0 0
\(931\) −2.40225e22 −1.29866
\(932\) 0 0
\(933\) 4.03157e21 0.214468
\(934\) 0 0
\(935\) 7.44021e21 0.389492
\(936\) 0 0
\(937\) 2.67083e21 0.137594 0.0687970 0.997631i \(-0.478084\pi\)
0.0687970 + 0.997631i \(0.478084\pi\)
\(938\) 0 0
\(939\) 1.55401e21 0.0787881
\(940\) 0 0
\(941\) −2.61162e22 −1.30313 −0.651565 0.758593i \(-0.725887\pi\)
−0.651565 + 0.758593i \(0.725887\pi\)
\(942\) 0 0
\(943\) −9.53715e21 −0.468361
\(944\) 0 0
\(945\) 2.49140e20 0.0120422
\(946\) 0 0
\(947\) 1.03859e22 0.494105 0.247053 0.969002i \(-0.420538\pi\)
0.247053 + 0.969002i \(0.420538\pi\)
\(948\) 0 0
\(949\) 6.61225e21 0.309637
\(950\) 0 0
\(951\) −3.51681e21 −0.162104
\(952\) 0 0
\(953\) 1.16131e20 0.00526929 0.00263464 0.999997i \(-0.499161\pi\)
0.00263464 + 0.999997i \(0.499161\pi\)
\(954\) 0 0
\(955\) −2.67492e21 −0.119477
\(956\) 0 0
\(957\) 5.22594e21 0.229787
\(958\) 0 0
\(959\) −1.71318e21 −0.0741589
\(960\) 0 0
\(961\) 3.11635e22 1.32807
\(962\) 0 0
\(963\) 1.51794e22 0.636881
\(964\) 0 0
\(965\) 1.77446e22 0.733013
\(966\) 0 0
\(967\) 3.55619e22 1.44639 0.723197 0.690642i \(-0.242672\pi\)
0.723197 + 0.690642i \(0.242672\pi\)
\(968\) 0 0
\(969\) −9.05473e21 −0.362616
\(970\) 0 0
\(971\) 4.08883e22 1.61233 0.806166 0.591690i \(-0.201539\pi\)
0.806166 + 0.591690i \(0.201539\pi\)
\(972\) 0 0
\(973\) −5.52298e20 −0.0214451
\(974\) 0 0
\(975\) −2.94487e20 −0.0112598
\(976\) 0 0
\(977\) 1.47056e22 0.553700 0.276850 0.960913i \(-0.410709\pi\)
0.276850 + 0.960913i \(0.410709\pi\)
\(978\) 0 0
\(979\) 4.73164e22 1.75445
\(980\) 0 0
\(981\) −3.33949e21 −0.121945
\(982\) 0 0
\(983\) 2.02443e22 0.728034 0.364017 0.931392i \(-0.381405\pi\)
0.364017 + 0.931392i \(0.381405\pi\)
\(984\) 0 0
\(985\) −2.06148e21 −0.0730144
\(986\) 0 0
\(987\) −1.91676e20 −0.00668636
\(988\) 0 0
\(989\) 5.01104e21 0.172169
\(990\) 0 0
\(991\) −1.99356e22 −0.674649 −0.337324 0.941389i \(-0.609522\pi\)
−0.337324 + 0.941389i \(0.609522\pi\)
\(992\) 0 0
\(993\) 1.17825e21 0.0392753
\(994\) 0 0
\(995\) 1.55854e22 0.511735
\(996\) 0 0
\(997\) −4.00115e21 −0.129411 −0.0647056 0.997904i \(-0.520611\pi\)
−0.0647056 + 0.997904i \(0.520611\pi\)
\(998\) 0 0
\(999\) −2.60955e22 −0.831427
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 80.16.a.b.1.1 1
4.3 odd 2 10.16.a.c.1.1 1
12.11 even 2 90.16.a.d.1.1 1
20.3 even 4 50.16.b.b.49.1 2
20.7 even 4 50.16.b.b.49.2 2
20.19 odd 2 50.16.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.16.a.c.1.1 1 4.3 odd 2
50.16.a.a.1.1 1 20.19 odd 2
50.16.b.b.49.1 2 20.3 even 4
50.16.b.b.49.2 2 20.7 even 4
80.16.a.b.1.1 1 1.1 even 1 trivial
90.16.a.d.1.1 1 12.11 even 2