Properties

Label 80.22.a.d
Level $80$
Weight $22$
Character orbit 80.a
Self dual yes
Analytic conductor $223.582$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [80,22,Mod(1,80)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(80, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 22, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("80.1");
 
S:= CuspForms(chi, 22);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 22 \)
Character orbit: \([\chi]\) \(=\) 80.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(223.581875430\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{157921}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 39480 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4}\cdot 5\cdot 7 \)
Twist minimal: no (minimal twist has level 10)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 280\sqrt{157921}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta + 63346) q^{3} - 9765625 q^{5} + ( - 7317 \beta + 146299342) q^{7} + ( - 126692 \beta + 5933368913) q^{9} + (953802 \beta + 20663415888) q^{11} + ( - 276588 \beta + 943525736114) q^{13} + (9765625 \beta - 618613281250) q^{15}+ \cdots + (30\!\cdots\!30 \beta - 13\!\cdots\!56) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 126692 q^{3} - 19531250 q^{5} + 292598684 q^{7} + 11866737826 q^{9} + 41326831776 q^{11} + 1887051472228 q^{13} - 1237226562500 q^{15} - 3100413932364 q^{17} - 7175794652440 q^{19} + 199718603894264 q^{21}+ \cdots - 27\!\cdots\!12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
199.196
−198.196
0 −47924.0 0 −9.76562e6 0 −6.67863e8 0 −8.16365e9 0
1.2 0 174616. 0 −9.76562e6 0 9.60462e8 0 2.00304e10 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 80.22.a.d 2
4.b odd 2 1 10.22.a.b 2
20.d odd 2 1 50.22.a.f 2
20.e even 4 2 50.22.b.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.22.a.b 2 4.b odd 2 1
50.22.a.f 2 20.d odd 2 1
50.22.b.f 4 20.e even 4 2
80.22.a.d 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 126692T_{3} - 8368290684 \) acting on \(S_{22}^{\mathrm{new}}(\Gamma_0(80))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + \cdots - 8368290684 \) Copy content Toggle raw display
$5$ \( (T + 9765625)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots - 64\!\cdots\!36 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots - 10\!\cdots\!56 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots + 88\!\cdots\!96 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 10\!\cdots\!76 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 97\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 87\!\cdots\!76 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 56\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 25\!\cdots\!76 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 47\!\cdots\!56 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 75\!\cdots\!36 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 65\!\cdots\!36 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 72\!\cdots\!96 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 11\!\cdots\!84 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 18\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 24\!\cdots\!56 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 10\!\cdots\!76 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 15\!\cdots\!84 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 12\!\cdots\!76 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 18\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 18\!\cdots\!44 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 57\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 13\!\cdots\!96 \) Copy content Toggle raw display
show more
show less