Properties

Label 80.9.p.b.33.1
Level $80$
Weight $9$
Character 80.33
Analytic conductor $32.590$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [80,9,Mod(17,80)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(80, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("80.17");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 80.p (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.5902888049\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{249})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 125x^{2} + 3844 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 33.1
Root \(8.38987i\) of defining polynomial
Character \(\chi\) \(=\) 80.33
Dual form 80.9.p.b.17.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-52.9493 - 52.9493i) q^{3} +(-490.341 + 387.544i) q^{5} +(2624.01 - 2624.01i) q^{7} -953.736i q^{9} -5372.73 q^{11} +(27972.7 + 27972.7i) q^{13} +(46483.4 + 5443.05i) q^{15} +(53444.2 - 53444.2i) q^{17} -144788. i q^{19} -277879. q^{21} +(-52148.7 - 52148.7i) q^{23} +(90244.3 - 380058. i) q^{25} +(-397900. + 397900. i) q^{27} +41723.4i q^{29} -244148. q^{31} +(284482. + 284482. i) q^{33} +(-269741. + 2.30358e6i) q^{35} +(-2.00653e6 + 2.00653e6i) q^{37} -2.96228e6i q^{39} -4.17322e6 q^{41} +(-4.01446e6 - 4.01446e6i) q^{43} +(369615. + 467656. i) q^{45} +(-2.26940e6 + 2.26940e6i) q^{47} -8.00606e6i q^{49} -5.65967e6 q^{51} +(-3.72734e6 - 3.72734e6i) q^{53} +(2.63447e6 - 2.08217e6i) q^{55} +(-7.66643e6 + 7.66643e6i) q^{57} +1.12165e7i q^{59} +2.02002e7 q^{61} +(-2.50261e6 - 2.50261e6i) q^{63} +(-2.45569e7 - 2.87552e6i) q^{65} +(1.30857e7 - 1.30857e7i) q^{67} +5.52248e6i q^{69} -2.61041e7 q^{71} +(-1.85930e7 - 1.85930e7i) q^{73} +(-2.49022e7 + 1.53454e7i) q^{75} +(-1.40981e7 + 1.40981e7i) q^{77} -3.07594e6i q^{79} +3.58796e7 q^{81} +(-2.41522e7 - 2.41522e7i) q^{83} +(-5.49393e6 + 4.69179e7i) q^{85} +(2.20923e6 - 2.20923e6i) q^{87} -5.76618e6i q^{89} +1.46802e8 q^{91} +(1.29275e7 + 1.29275e7i) q^{93} +(5.61117e7 + 7.09955e7i) q^{95} +(2.86891e7 - 2.86891e7i) q^{97} +5.12416e6i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 54 q^{3} + 90 q^{5} + 1186 q^{7} + 19852 q^{11} + 73704 q^{13} + 137490 q^{15} + 198944 q^{17} - 766572 q^{21} - 631334 q^{23} + 545600 q^{25} - 184680 q^{27} + 2329892 q^{31} + 1362948 q^{33} - 1403870 q^{35}+ \cdots + 139631604 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/80\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(21\) \(31\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −52.9493 52.9493i −0.653695 0.653695i 0.300185 0.953881i \(-0.402951\pi\)
−0.953881 + 0.300185i \(0.902951\pi\)
\(4\) 0 0
\(5\) −490.341 + 387.544i −0.784546 + 0.620070i
\(6\) 0 0
\(7\) 2624.01 2624.01i 1.09288 1.09288i 0.0976629 0.995220i \(-0.468863\pi\)
0.995220 0.0976629i \(-0.0311367\pi\)
\(8\) 0 0
\(9\) 953.736i 0.145364i
\(10\) 0 0
\(11\) −5372.73 −0.366964 −0.183482 0.983023i \(-0.558737\pi\)
−0.183482 + 0.983023i \(0.558737\pi\)
\(12\) 0 0
\(13\) 27972.7 + 27972.7i 0.979403 + 0.979403i 0.999792 0.0203888i \(-0.00649040\pi\)
−0.0203888 + 0.999792i \(0.506490\pi\)
\(14\) 0 0
\(15\) 46483.4 + 5443.05i 0.918192 + 0.107517i
\(16\) 0 0
\(17\) 53444.2 53444.2i 0.639890 0.639890i −0.310638 0.950528i \(-0.600543\pi\)
0.950528 + 0.310638i \(0.100543\pi\)
\(18\) 0 0
\(19\) 144788.i 1.11101i −0.831513 0.555505i \(-0.812525\pi\)
0.831513 0.555505i \(-0.187475\pi\)
\(20\) 0 0
\(21\) −277879. −1.42882
\(22\) 0 0
\(23\) −52148.7 52148.7i −0.186351 0.186351i 0.607765 0.794117i \(-0.292066\pi\)
−0.794117 + 0.607765i \(0.792066\pi\)
\(24\) 0 0
\(25\) 90244.3 380058.i 0.231025 0.972948i
\(26\) 0 0
\(27\) −397900. + 397900.i −0.748720 + 0.748720i
\(28\) 0 0
\(29\) 41723.4i 0.0589913i 0.999565 + 0.0294956i \(0.00939012\pi\)
−0.999565 + 0.0294956i \(0.990610\pi\)
\(30\) 0 0
\(31\) −244148. −0.264367 −0.132183 0.991225i \(-0.542199\pi\)
−0.132183 + 0.991225i \(0.542199\pi\)
\(32\) 0 0
\(33\) 284482. + 284482.i 0.239883 + 0.239883i
\(34\) 0 0
\(35\) −269741. + 2.30358e6i −0.179753 + 1.53508i
\(36\) 0 0
\(37\) −2.00653e6 + 2.00653e6i −1.07063 + 1.07063i −0.0733185 + 0.997309i \(0.523359\pi\)
−0.997309 + 0.0733185i \(0.976641\pi\)
\(38\) 0 0
\(39\) 2.96228e6i 1.28046i
\(40\) 0 0
\(41\) −4.17322e6 −1.47685 −0.738424 0.674336i \(-0.764430\pi\)
−0.738424 + 0.674336i \(0.764430\pi\)
\(42\) 0 0
\(43\) −4.01446e6 4.01446e6i −1.17423 1.17423i −0.981191 0.193038i \(-0.938166\pi\)
−0.193038 0.981191i \(-0.561834\pi\)
\(44\) 0 0
\(45\) 369615. + 467656.i 0.0901362 + 0.114045i
\(46\) 0 0
\(47\) −2.26940e6 + 2.26940e6i −0.465071 + 0.465071i −0.900313 0.435242i \(-0.856663\pi\)
0.435242 + 0.900313i \(0.356663\pi\)
\(48\) 0 0
\(49\) 8.00606e6i 1.38878i
\(50\) 0 0
\(51\) −5.65967e6 −0.836586
\(52\) 0 0
\(53\) −3.72734e6 3.72734e6i −0.472384 0.472384i 0.430301 0.902685i \(-0.358407\pi\)
−0.902685 + 0.430301i \(0.858407\pi\)
\(54\) 0 0
\(55\) 2.63447e6 2.08217e6i 0.287901 0.227544i
\(56\) 0 0
\(57\) −7.66643e6 + 7.66643e6i −0.726262 + 0.726262i
\(58\) 0 0
\(59\) 1.12165e7i 0.925653i 0.886449 + 0.462826i \(0.153165\pi\)
−0.886449 + 0.462826i \(0.846835\pi\)
\(60\) 0 0
\(61\) 2.02002e7 1.45893 0.729467 0.684016i \(-0.239768\pi\)
0.729467 + 0.684016i \(0.239768\pi\)
\(62\) 0 0
\(63\) −2.50261e6 2.50261e6i −0.158866 0.158866i
\(64\) 0 0
\(65\) −2.45569e7 2.87552e6i −1.37569 0.161088i
\(66\) 0 0
\(67\) 1.30857e7 1.30857e7i 0.649377 0.649377i −0.303465 0.952843i \(-0.598144\pi\)
0.952843 + 0.303465i \(0.0981436\pi\)
\(68\) 0 0
\(69\) 5.52248e6i 0.243634i
\(70\) 0 0
\(71\) −2.61041e7 −1.02725 −0.513624 0.858015i \(-0.671697\pi\)
−0.513624 + 0.858015i \(0.671697\pi\)
\(72\) 0 0
\(73\) −1.85930e7 1.85930e7i −0.654722 0.654722i 0.299404 0.954126i \(-0.403212\pi\)
−0.954126 + 0.299404i \(0.903212\pi\)
\(74\) 0 0
\(75\) −2.49022e7 + 1.53454e7i −0.787032 + 0.484991i
\(76\) 0 0
\(77\) −1.40981e7 + 1.40981e7i −0.401049 + 0.401049i
\(78\) 0 0
\(79\) 3.07594e6i 0.0789714i −0.999220 0.0394857i \(-0.987428\pi\)
0.999220 0.0394857i \(-0.0125720\pi\)
\(80\) 0 0
\(81\) 3.58796e7 0.833505
\(82\) 0 0
\(83\) −2.41522e7 2.41522e7i −0.508914 0.508914i 0.405279 0.914193i \(-0.367174\pi\)
−0.914193 + 0.405279i \(0.867174\pi\)
\(84\) 0 0
\(85\) −5.49393e6 + 4.69179e7i −0.105246 + 0.898800i
\(86\) 0 0
\(87\) 2.20923e6 2.20923e6i 0.0385623 0.0385623i
\(88\) 0 0
\(89\) 5.76618e6i 0.0919027i −0.998944 0.0459513i \(-0.985368\pi\)
0.998944 0.0459513i \(-0.0146319\pi\)
\(90\) 0 0
\(91\) 1.46802e8 2.14075
\(92\) 0 0
\(93\) 1.29275e7 + 1.29275e7i 0.172815 + 0.172815i
\(94\) 0 0
\(95\) 5.61117e7 + 7.09955e7i 0.688905 + 0.871639i
\(96\) 0 0
\(97\) 2.86891e7 2.86891e7i 0.324063 0.324063i −0.526260 0.850324i \(-0.676406\pi\)
0.850324 + 0.526260i \(0.176406\pi\)
\(98\) 0 0
\(99\) 5.12416e6i 0.0533436i
\(100\) 0 0
\(101\) 7.95260e7 0.764229 0.382115 0.924115i \(-0.375196\pi\)
0.382115 + 0.924115i \(0.375196\pi\)
\(102\) 0 0
\(103\) −4.96462e7 4.96462e7i −0.441100 0.441100i 0.451282 0.892382i \(-0.350967\pi\)
−0.892382 + 0.451282i \(0.850967\pi\)
\(104\) 0 0
\(105\) 1.36256e8 1.07690e8i 1.12098 0.885972i
\(106\) 0 0
\(107\) −6.12534e7 + 6.12534e7i −0.467300 + 0.467300i −0.901039 0.433739i \(-0.857194\pi\)
0.433739 + 0.901039i \(0.357194\pi\)
\(108\) 0 0
\(109\) 9.33557e7i 0.661355i −0.943744 0.330678i \(-0.892723\pi\)
0.943744 0.330678i \(-0.107277\pi\)
\(110\) 0 0
\(111\) 2.12489e8 1.39973
\(112\) 0 0
\(113\) 1.17246e8 + 1.17246e8i 0.719093 + 0.719093i 0.968419 0.249327i \(-0.0802093\pi\)
−0.249327 + 0.968419i \(0.580209\pi\)
\(114\) 0 0
\(115\) 4.57806e7 + 5.36075e6i 0.261752 + 0.0306503i
\(116\) 0 0
\(117\) 2.66786e7 2.66786e7i 0.142370 0.142370i
\(118\) 0 0
\(119\) 2.80477e8i 1.39865i
\(120\) 0 0
\(121\) −1.85493e8 −0.865337
\(122\) 0 0
\(123\) 2.20969e8 + 2.20969e8i 0.965409 + 0.965409i
\(124\) 0 0
\(125\) 1.03039e8 + 2.21332e8i 0.422046 + 0.906574i
\(126\) 0 0
\(127\) −1.16482e7 + 1.16482e7i −0.0447759 + 0.0447759i −0.729140 0.684364i \(-0.760080\pi\)
0.684364 + 0.729140i \(0.260080\pi\)
\(128\) 0 0
\(129\) 4.25126e8i 1.53518i
\(130\) 0 0
\(131\) −3.83537e8 −1.30233 −0.651167 0.758934i \(-0.725720\pi\)
−0.651167 + 0.758934i \(0.725720\pi\)
\(132\) 0 0
\(133\) −3.79925e8 3.79925e8i −1.21420 1.21420i
\(134\) 0 0
\(135\) 4.09031e7 3.49311e8i 0.123146 1.05166i
\(136\) 0 0
\(137\) −1.46786e7 + 1.46786e7i −0.0416681 + 0.0416681i −0.727634 0.685966i \(-0.759380\pi\)
0.685966 + 0.727634i \(0.259380\pi\)
\(138\) 0 0
\(139\) 4.00314e8i 1.07236i 0.844103 + 0.536181i \(0.180134\pi\)
−0.844103 + 0.536181i \(0.819866\pi\)
\(140\) 0 0
\(141\) 2.40326e8 0.608030
\(142\) 0 0
\(143\) −1.50290e8 1.50290e8i −0.359406 0.359406i
\(144\) 0 0
\(145\) −1.61697e7 2.04587e7i −0.0365788 0.0462814i
\(146\) 0 0
\(147\) −4.23916e8 + 4.23916e8i −0.907842 + 0.907842i
\(148\) 0 0
\(149\) 5.62457e8i 1.14115i −0.821244 0.570577i \(-0.806719\pi\)
0.821244 0.570577i \(-0.193281\pi\)
\(150\) 0 0
\(151\) 2.75254e7 0.0529452 0.0264726 0.999650i \(-0.491573\pi\)
0.0264726 + 0.999650i \(0.491573\pi\)
\(152\) 0 0
\(153\) −5.09717e7 5.09717e7i −0.0930172 0.0930172i
\(154\) 0 0
\(155\) 1.19716e8 9.46182e7i 0.207408 0.163926i
\(156\) 0 0
\(157\) −3.22628e8 + 3.22628e8i −0.531010 + 0.531010i −0.920873 0.389863i \(-0.872522\pi\)
0.389863 + 0.920873i \(0.372522\pi\)
\(158\) 0 0
\(159\) 3.94720e8i 0.617591i
\(160\) 0 0
\(161\) −2.73678e8 −0.407320
\(162\) 0 0
\(163\) −2.36679e8 2.36679e8i −0.335281 0.335281i 0.519307 0.854588i \(-0.326190\pi\)
−0.854588 + 0.519307i \(0.826190\pi\)
\(164\) 0 0
\(165\) −2.49743e8 2.92440e7i −0.336944 0.0394549i
\(166\) 0 0
\(167\) 5.45436e8 5.45436e8i 0.701258 0.701258i −0.263422 0.964681i \(-0.584851\pi\)
0.964681 + 0.263422i \(0.0848512\pi\)
\(168\) 0 0
\(169\) 7.49218e8i 0.918462i
\(170\) 0 0
\(171\) −1.38089e8 −0.161501
\(172\) 0 0
\(173\) −6.41655e8 6.41655e8i −0.716337 0.716337i 0.251516 0.967853i \(-0.419071\pi\)
−0.967853 + 0.251516i \(0.919071\pi\)
\(174\) 0 0
\(175\) −7.60474e8 1.23408e9i −0.810834 1.31580i
\(176\) 0 0
\(177\) 5.93905e8 5.93905e8i 0.605095 0.605095i
\(178\) 0 0
\(179\) 9.41081e8i 0.916673i 0.888779 + 0.458337i \(0.151555\pi\)
−0.888779 + 0.458337i \(0.848445\pi\)
\(180\) 0 0
\(181\) −4.09543e8 −0.381580 −0.190790 0.981631i \(-0.561105\pi\)
−0.190790 + 0.981631i \(0.561105\pi\)
\(182\) 0 0
\(183\) −1.06959e9 1.06959e9i −0.953699 0.953699i
\(184\) 0 0
\(185\) 2.06266e8 1.76150e9i 0.176092 1.50382i
\(186\) 0 0
\(187\) −2.87141e8 + 2.87141e8i −0.234817 + 0.234817i
\(188\) 0 0
\(189\) 2.08819e9i 1.63652i
\(190\) 0 0
\(191\) −5.56054e8 −0.417814 −0.208907 0.977935i \(-0.566991\pi\)
−0.208907 + 0.977935i \(0.566991\pi\)
\(192\) 0 0
\(193\) 1.72776e8 + 1.72776e8i 0.124524 + 0.124524i 0.766622 0.642098i \(-0.221936\pi\)
−0.642098 + 0.766622i \(0.721936\pi\)
\(194\) 0 0
\(195\) 1.14801e9 + 1.45253e9i 0.793977 + 1.00458i
\(196\) 0 0
\(197\) −1.39026e9 + 1.39026e9i −0.923060 + 0.923060i −0.997245 0.0741846i \(-0.976365\pi\)
0.0741846 + 0.997245i \(0.476365\pi\)
\(198\) 0 0
\(199\) 1.80023e8i 0.114793i −0.998351 0.0573964i \(-0.981720\pi\)
0.998351 0.0573964i \(-0.0182799\pi\)
\(200\) 0 0
\(201\) −1.38576e9 −0.848990
\(202\) 0 0
\(203\) 1.09483e8 + 1.09483e8i 0.0644705 + 0.0644705i
\(204\) 0 0
\(205\) 2.04630e9 1.61731e9i 1.15866 0.915750i
\(206\) 0 0
\(207\) −4.97361e7 + 4.97361e7i −0.0270888 + 0.0270888i
\(208\) 0 0
\(209\) 7.77906e8i 0.407701i
\(210\) 0 0
\(211\) 4.17651e8 0.210709 0.105355 0.994435i \(-0.466402\pi\)
0.105355 + 0.994435i \(0.466402\pi\)
\(212\) 0 0
\(213\) 1.38219e9 + 1.38219e9i 0.671507 + 0.671507i
\(214\) 0 0
\(215\) 3.52423e9 + 4.12675e8i 1.64934 + 0.193132i
\(216\) 0 0
\(217\) −6.40648e8 + 6.40648e8i −0.288922 + 0.288922i
\(218\) 0 0
\(219\) 1.96897e9i 0.855978i
\(220\) 0 0
\(221\) 2.98996e9 1.25342
\(222\) 0 0
\(223\) −1.19002e9 1.19002e9i −0.481210 0.481210i 0.424308 0.905518i \(-0.360517\pi\)
−0.905518 + 0.424308i \(0.860517\pi\)
\(224\) 0 0
\(225\) −3.62475e8 8.60692e7i −0.141432 0.0335829i
\(226\) 0 0
\(227\) −2.69749e9 + 2.69749e9i −1.01591 + 1.01591i −0.0160418 + 0.999871i \(0.505106\pi\)
−0.999871 + 0.0160418i \(0.994894\pi\)
\(228\) 0 0
\(229\) 4.90322e9i 1.78295i −0.453069 0.891475i \(-0.649671\pi\)
0.453069 0.891475i \(-0.350329\pi\)
\(230\) 0 0
\(231\) 1.49297e9 0.524328
\(232\) 0 0
\(233\) −2.60187e9 2.60187e9i −0.882798 0.882798i 0.111020 0.993818i \(-0.464588\pi\)
−0.993818 + 0.111020i \(0.964588\pi\)
\(234\) 0 0
\(235\) 2.33288e8 1.99227e9i 0.0764929 0.653247i
\(236\) 0 0
\(237\) −1.62869e8 + 1.62869e8i −0.0516232 + 0.0516232i
\(238\) 0 0
\(239\) 4.57968e9i 1.40360i −0.712374 0.701800i \(-0.752380\pi\)
0.712374 0.701800i \(-0.247620\pi\)
\(240\) 0 0
\(241\) 5.82501e9 1.72675 0.863373 0.504566i \(-0.168348\pi\)
0.863373 + 0.504566i \(0.168348\pi\)
\(242\) 0 0
\(243\) 7.10820e8 + 7.10820e8i 0.203861 + 0.203861i
\(244\) 0 0
\(245\) 3.10270e9 + 3.92570e9i 0.861144 + 1.08957i
\(246\) 0 0
\(247\) 4.05012e9 4.05012e9i 1.08813 1.08813i
\(248\) 0 0
\(249\) 2.55769e9i 0.665350i
\(250\) 0 0
\(251\) 4.01845e9 1.01243 0.506214 0.862408i \(-0.331045\pi\)
0.506214 + 0.862408i \(0.331045\pi\)
\(252\) 0 0
\(253\) 2.80181e8 + 2.80181e8i 0.0683843 + 0.0683843i
\(254\) 0 0
\(255\) 2.77517e9 2.19337e9i 0.656340 0.518742i
\(256\) 0 0
\(257\) −1.77795e9 + 1.77795e9i −0.407556 + 0.407556i −0.880885 0.473330i \(-0.843052\pi\)
0.473330 + 0.880885i \(0.343052\pi\)
\(258\) 0 0
\(259\) 1.05303e10i 2.34014i
\(260\) 0 0
\(261\) 3.97931e7 0.00857523
\(262\) 0 0
\(263\) −1.87568e9 1.87568e9i −0.392046 0.392046i 0.483370 0.875416i \(-0.339412\pi\)
−0.875416 + 0.483370i \(0.839412\pi\)
\(264\) 0 0
\(265\) 3.27218e9 + 3.83161e8i 0.663519 + 0.0776958i
\(266\) 0 0
\(267\) −3.05315e8 + 3.05315e8i −0.0600764 + 0.0600764i
\(268\) 0 0
\(269\) 5.91528e9i 1.12971i 0.825191 + 0.564854i \(0.191068\pi\)
−0.825191 + 0.564854i \(0.808932\pi\)
\(270\) 0 0
\(271\) 1.60432e9 0.297449 0.148725 0.988879i \(-0.452483\pi\)
0.148725 + 0.988879i \(0.452483\pi\)
\(272\) 0 0
\(273\) −7.77304e9 7.77304e9i −1.39940 1.39940i
\(274\) 0 0
\(275\) −4.84858e8 + 2.04195e9i −0.0847781 + 0.357037i
\(276\) 0 0
\(277\) −1.67266e9 + 1.67266e9i −0.284111 + 0.284111i −0.834746 0.550635i \(-0.814386\pi\)
0.550635 + 0.834746i \(0.314386\pi\)
\(278\) 0 0
\(279\) 2.32853e8i 0.0384295i
\(280\) 0 0
\(281\) 9.29346e9 1.49057 0.745285 0.666747i \(-0.232314\pi\)
0.745285 + 0.666747i \(0.232314\pi\)
\(282\) 0 0
\(283\) −4.61061e9 4.61061e9i −0.718808 0.718808i 0.249553 0.968361i \(-0.419716\pi\)
−0.968361 + 0.249553i \(0.919716\pi\)
\(284\) 0 0
\(285\) 7.88088e8 6.73024e9i 0.119453 1.02012i
\(286\) 0 0
\(287\) −1.09506e10 + 1.09506e10i −1.61402 + 1.61402i
\(288\) 0 0
\(289\) 1.26318e9i 0.181082i
\(290\) 0 0
\(291\) −3.03814e9 −0.423678
\(292\) 0 0
\(293\) −6.99292e9 6.99292e9i −0.948829 0.948829i 0.0499241 0.998753i \(-0.484102\pi\)
−0.998753 + 0.0499241i \(0.984102\pi\)
\(294\) 0 0
\(295\) −4.34688e9 5.49990e9i −0.573970 0.726217i
\(296\) 0 0
\(297\) 2.13781e9 2.13781e9i 0.274753 0.274753i
\(298\) 0 0
\(299\) 2.91749e9i 0.365026i
\(300\) 0 0
\(301\) −2.10680e10 −2.56659
\(302\) 0 0
\(303\) −4.21085e9 4.21085e9i −0.499573 0.499573i
\(304\) 0 0
\(305\) −9.90498e9 + 7.82845e9i −1.14460 + 0.904642i
\(306\) 0 0
\(307\) −2.31844e9 + 2.31844e9i −0.261001 + 0.261001i −0.825461 0.564459i \(-0.809085\pi\)
0.564459 + 0.825461i \(0.309085\pi\)
\(308\) 0 0
\(309\) 5.25746e9i 0.576690i
\(310\) 0 0
\(311\) 1.45111e10 1.55117 0.775584 0.631245i \(-0.217456\pi\)
0.775584 + 0.631245i \(0.217456\pi\)
\(312\) 0 0
\(313\) 2.03082e9 + 2.03082e9i 0.211590 + 0.211590i 0.804943 0.593353i \(-0.202196\pi\)
−0.593353 + 0.804943i \(0.702196\pi\)
\(314\) 0 0
\(315\) 2.19701e9 + 2.57262e8i 0.223146 + 0.0261296i
\(316\) 0 0
\(317\) 9.69018e8 9.69018e8i 0.0959611 0.0959611i −0.657497 0.753458i \(-0.728385\pi\)
0.753458 + 0.657497i \(0.228385\pi\)
\(318\) 0 0
\(319\) 2.24168e8i 0.0216477i
\(320\) 0 0
\(321\) 6.48666e9 0.610943
\(322\) 0 0
\(323\) −7.73808e9 7.73808e9i −0.710924 0.710924i
\(324\) 0 0
\(325\) 1.31556e10 8.10688e9i 1.17918 0.726641i
\(326\) 0 0
\(327\) −4.94312e9 + 4.94312e9i −0.432325 + 0.432325i
\(328\) 0 0
\(329\) 1.19099e10i 1.01654i
\(330\) 0 0
\(331\) 7.63072e9 0.635702 0.317851 0.948141i \(-0.397039\pi\)
0.317851 + 0.948141i \(0.397039\pi\)
\(332\) 0 0
\(333\) 1.91370e9 + 1.91370e9i 0.155631 + 0.155631i
\(334\) 0 0
\(335\) −1.34517e9 + 1.14877e10i −0.106807 + 0.912126i
\(336\) 0 0
\(337\) −2.47412e9 + 2.47412e9i −0.191824 + 0.191824i −0.796484 0.604660i \(-0.793309\pi\)
0.604660 + 0.796484i \(0.293309\pi\)
\(338\) 0 0
\(339\) 1.24162e10i 0.940135i
\(340\) 0 0
\(341\) 1.31174e9 0.0970132
\(342\) 0 0
\(343\) −5.88110e9 5.88110e9i −0.424895 0.424895i
\(344\) 0 0
\(345\) −2.14020e9 2.70790e9i −0.151070 0.191142i
\(346\) 0 0
\(347\) 2.63557e9 2.63557e9i 0.181785 0.181785i −0.610348 0.792133i \(-0.708971\pi\)
0.792133 + 0.610348i \(0.208971\pi\)
\(348\) 0 0
\(349\) 2.46965e10i 1.66469i −0.554257 0.832346i \(-0.686998\pi\)
0.554257 0.832346i \(-0.313002\pi\)
\(350\) 0 0
\(351\) −2.22607e10 −1.46660
\(352\) 0 0
\(353\) −1.25084e10 1.25084e10i −0.805566 0.805566i 0.178393 0.983959i \(-0.442910\pi\)
−0.983959 + 0.178393i \(0.942910\pi\)
\(354\) 0 0
\(355\) 1.27999e10 1.01165e10i 0.805923 0.636966i
\(356\) 0 0
\(357\) −1.48510e10 + 1.48510e10i −0.914290 + 0.914290i
\(358\) 0 0
\(359\) 2.30279e10i 1.38636i 0.720763 + 0.693181i \(0.243792\pi\)
−0.720763 + 0.693181i \(0.756208\pi\)
\(360\) 0 0
\(361\) −3.97999e9 −0.234344
\(362\) 0 0
\(363\) 9.82172e9 + 9.82172e9i 0.565667 + 0.565667i
\(364\) 0 0
\(365\) 1.63225e10 + 1.91131e9i 0.919634 + 0.107686i
\(366\) 0 0
\(367\) 9.47400e9 9.47400e9i 0.522239 0.522239i −0.396008 0.918247i \(-0.629605\pi\)
0.918247 + 0.396008i \(0.129605\pi\)
\(368\) 0 0
\(369\) 3.98015e9i 0.214681i
\(370\) 0 0
\(371\) −1.95612e10 −1.03252
\(372\) 0 0
\(373\) 6.05089e9 + 6.05089e9i 0.312597 + 0.312597i 0.845915 0.533318i \(-0.179055\pi\)
−0.533318 + 0.845915i \(0.679055\pi\)
\(374\) 0 0
\(375\) 6.26354e9 1.71752e10i 0.316734 0.868513i
\(376\) 0 0
\(377\) −1.16712e9 + 1.16712e9i −0.0577763 + 0.0577763i
\(378\) 0 0
\(379\) 4.27189e9i 0.207044i −0.994627 0.103522i \(-0.966989\pi\)
0.994627 0.103522i \(-0.0330113\pi\)
\(380\) 0 0
\(381\) 1.23353e9 0.0585397
\(382\) 0 0
\(383\) 2.68406e10 + 2.68406e10i 1.24738 + 1.24738i 0.956874 + 0.290502i \(0.0938224\pi\)
0.290502 + 0.956874i \(0.406178\pi\)
\(384\) 0 0
\(385\) 1.44925e9 1.23765e10i 0.0659628 0.563320i
\(386\) 0 0
\(387\) −3.82873e9 + 3.82873e9i −0.170691 + 0.170691i
\(388\) 0 0
\(389\) 9.16592e8i 0.0400293i 0.999800 + 0.0200146i \(0.00637128\pi\)
−0.999800 + 0.0200146i \(0.993629\pi\)
\(390\) 0 0
\(391\) −5.57410e9 −0.238489
\(392\) 0 0
\(393\) 2.03080e10 + 2.03080e10i 0.851330 + 0.851330i
\(394\) 0 0
\(395\) 1.19206e9 + 1.50826e9i 0.0489678 + 0.0619567i
\(396\) 0 0
\(397\) 5.24090e9 5.24090e9i 0.210981 0.210981i −0.593703 0.804684i \(-0.702335\pi\)
0.804684 + 0.593703i \(0.202335\pi\)
\(398\) 0 0
\(399\) 4.02336e10i 1.58744i
\(400\) 0 0
\(401\) 1.76862e10 0.684000 0.342000 0.939700i \(-0.388896\pi\)
0.342000 + 0.939700i \(0.388896\pi\)
\(402\) 0 0
\(403\) −6.82950e9 6.82950e9i −0.258922 0.258922i
\(404\) 0 0
\(405\) −1.75933e10 + 1.39049e10i −0.653923 + 0.516832i
\(406\) 0 0
\(407\) 1.07805e10 1.07805e10i 0.392882 0.392882i
\(408\) 0 0
\(409\) 2.18253e9i 0.0779950i 0.999239 + 0.0389975i \(0.0124164\pi\)
−0.999239 + 0.0389975i \(0.987584\pi\)
\(410\) 0 0
\(411\) 1.55445e9 0.0544765
\(412\) 0 0
\(413\) 2.94321e10 + 2.94321e10i 1.01163 + 1.01163i
\(414\) 0 0
\(415\) 2.12029e10 + 2.48278e9i 0.714829 + 0.0837040i
\(416\) 0 0
\(417\) 2.11964e10 2.11964e10i 0.700998 0.700998i
\(418\) 0 0
\(419\) 3.02443e10i 0.981268i −0.871366 0.490634i \(-0.836765\pi\)
0.871366 0.490634i \(-0.163235\pi\)
\(420\) 0 0
\(421\) 1.77840e10 0.566109 0.283055 0.959104i \(-0.408652\pi\)
0.283055 + 0.959104i \(0.408652\pi\)
\(422\) 0 0
\(423\) 2.16441e9 + 2.16441e9i 0.0676048 + 0.0676048i
\(424\) 0 0
\(425\) −1.54889e10 2.51349e10i −0.474749 0.770410i
\(426\) 0 0
\(427\) 5.30055e10 5.30055e10i 1.59444 1.59444i
\(428\) 0 0
\(429\) 1.59155e10i 0.469884i
\(430\) 0 0
\(431\) 2.12717e10 0.616443 0.308221 0.951315i \(-0.400266\pi\)
0.308221 + 0.951315i \(0.400266\pi\)
\(432\) 0 0
\(433\) −2.24808e10 2.24808e10i −0.639529 0.639529i 0.310910 0.950439i \(-0.399366\pi\)
−0.950439 + 0.310910i \(0.899366\pi\)
\(434\) 0 0
\(435\) −2.27103e8 + 1.93945e9i −0.00634257 + 0.0541653i
\(436\) 0 0
\(437\) −7.55051e9 + 7.55051e9i −0.207038 + 0.207038i
\(438\) 0 0
\(439\) 1.46904e10i 0.395526i −0.980250 0.197763i \(-0.936632\pi\)
0.980250 0.197763i \(-0.0633676\pi\)
\(440\) 0 0
\(441\) −7.63567e9 −0.201880
\(442\) 0 0
\(443\) −1.79953e10 1.79953e10i −0.467245 0.467245i 0.433776 0.901021i \(-0.357181\pi\)
−0.901021 + 0.433776i \(0.857181\pi\)
\(444\) 0 0
\(445\) 2.23465e9 + 2.82740e9i 0.0569861 + 0.0721019i
\(446\) 0 0
\(447\) −2.97817e10 + 2.97817e10i −0.745968 + 0.745968i
\(448\) 0 0
\(449\) 2.81226e10i 0.691943i 0.938245 + 0.345972i \(0.112451\pi\)
−0.938245 + 0.345972i \(0.887549\pi\)
\(450\) 0 0
\(451\) 2.24216e10 0.541951
\(452\) 0 0
\(453\) −1.45745e9 1.45745e9i −0.0346100 0.0346100i
\(454\) 0 0
\(455\) −7.19829e10 + 5.68921e10i −1.67951 + 1.32741i
\(456\) 0 0
\(457\) 5.32217e10 5.32217e10i 1.22018 1.22018i 0.252614 0.967567i \(-0.418710\pi\)
0.967567 0.252614i \(-0.0812901\pi\)
\(458\) 0 0
\(459\) 4.25310e10i 0.958196i
\(460\) 0 0
\(461\) 2.80695e9 0.0621485 0.0310743 0.999517i \(-0.490107\pi\)
0.0310743 + 0.999517i \(0.490107\pi\)
\(462\) 0 0
\(463\) 1.84228e10 + 1.84228e10i 0.400896 + 0.400896i 0.878549 0.477653i \(-0.158512\pi\)
−0.477653 + 0.878549i \(0.658512\pi\)
\(464\) 0 0
\(465\) −1.13489e10 1.32891e9i −0.242739 0.0284239i
\(466\) 0 0
\(467\) 1.19286e10 1.19286e10i 0.250796 0.250796i −0.570501 0.821297i \(-0.693251\pi\)
0.821297 + 0.570501i \(0.193251\pi\)
\(468\) 0 0
\(469\) 6.86739e10i 1.41939i
\(470\) 0 0
\(471\) 3.41658e10 0.694238
\(472\) 0 0
\(473\) 2.15686e10 + 2.15686e10i 0.430900 + 0.430900i
\(474\) 0 0
\(475\) −5.50278e10 1.30663e10i −1.08095 0.256672i
\(476\) 0 0
\(477\) −3.55490e9 + 3.55490e9i −0.0686679 + 0.0686679i
\(478\) 0 0
\(479\) 8.08280e10i 1.53539i −0.640813 0.767697i \(-0.721403\pi\)
0.640813 0.767697i \(-0.278597\pi\)
\(480\) 0 0
\(481\) −1.12256e11 −2.09715
\(482\) 0 0
\(483\) 1.44911e10 + 1.44911e10i 0.266263 + 0.266263i
\(484\) 0 0
\(485\) −2.94916e9 + 2.51857e10i −0.0533006 + 0.455185i
\(486\) 0 0
\(487\) −7.93140e10 + 7.93140e10i −1.41005 + 1.41005i −0.650797 + 0.759252i \(0.725565\pi\)
−0.759252 + 0.650797i \(0.774435\pi\)
\(488\) 0 0
\(489\) 2.50640e10i 0.438343i
\(490\) 0 0
\(491\) −6.00911e10 −1.03391 −0.516957 0.856011i \(-0.672935\pi\)
−0.516957 + 0.856011i \(0.672935\pi\)
\(492\) 0 0
\(493\) 2.22988e9 + 2.22988e9i 0.0377479 + 0.0377479i
\(494\) 0 0
\(495\) −1.98584e9 2.51259e9i −0.0330768 0.0418505i
\(496\) 0 0
\(497\) −6.84974e10 + 6.84974e10i −1.12266 + 1.12266i
\(498\) 0 0
\(499\) 1.08749e11i 1.75397i −0.480516 0.876986i \(-0.659551\pi\)
0.480516 0.876986i \(-0.340449\pi\)
\(500\) 0 0
\(501\) −5.77610e10 −0.916819
\(502\) 0 0
\(503\) 4.36650e10 + 4.36650e10i 0.682122 + 0.682122i 0.960478 0.278356i \(-0.0897896\pi\)
−0.278356 + 0.960478i \(0.589790\pi\)
\(504\) 0 0
\(505\) −3.89949e10 + 3.08198e10i −0.599573 + 0.473876i
\(506\) 0 0
\(507\) 3.96706e10 3.96706e10i 0.600394 0.600394i
\(508\) 0 0
\(509\) 6.95461e10i 1.03610i −0.855350 0.518050i \(-0.826658\pi\)
0.855350 0.518050i \(-0.173342\pi\)
\(510\) 0 0
\(511\) −9.75763e10 −1.43107
\(512\) 0 0
\(513\) 5.76112e10 + 5.76112e10i 0.831835 + 0.831835i
\(514\) 0 0
\(515\) 4.35836e10 + 5.10349e9i 0.619576 + 0.0725502i
\(516\) 0 0
\(517\) 1.21929e10 1.21929e10i 0.170665 0.170665i
\(518\) 0 0
\(519\) 6.79504e10i 0.936533i
\(520\) 0 0
\(521\) 1.18226e10 0.160459 0.0802294 0.996776i \(-0.474435\pi\)
0.0802294 + 0.996776i \(0.474435\pi\)
\(522\) 0 0
\(523\) −5.44052e10 5.44052e10i −0.727166 0.727166i 0.242888 0.970054i \(-0.421905\pi\)
−0.970054 + 0.242888i \(0.921905\pi\)
\(524\) 0 0
\(525\) −2.50770e10 + 1.05610e11i −0.330095 + 1.39017i
\(526\) 0 0
\(527\) −1.30483e10 + 1.30483e10i −0.169166 + 0.169166i
\(528\) 0 0
\(529\) 7.28720e10i 0.930546i
\(530\) 0 0
\(531\) 1.06975e10 0.134557
\(532\) 0 0
\(533\) −1.16736e11 1.16736e11i −1.44643 1.44643i
\(534\) 0 0
\(535\) 6.29669e9 5.37735e10i 0.0768595 0.656377i
\(536\) 0 0
\(537\) 4.98296e10 4.98296e10i 0.599225 0.599225i
\(538\) 0 0
\(539\) 4.30144e10i 0.509634i
\(540\) 0 0
\(541\) 1.29671e11 1.51375 0.756873 0.653562i \(-0.226726\pi\)
0.756873 + 0.653562i \(0.226726\pi\)
\(542\) 0 0
\(543\) 2.16850e10 + 2.16850e10i 0.249437 + 0.249437i
\(544\) 0 0
\(545\) 3.61794e10 + 4.57761e10i 0.410087 + 0.518864i
\(546\) 0 0
\(547\) −2.70067e10 + 2.70067e10i −0.301664 + 0.301664i −0.841664 0.540001i \(-0.818424\pi\)
0.540001 + 0.841664i \(0.318424\pi\)
\(548\) 0 0
\(549\) 1.92656e10i 0.212077i
\(550\) 0 0
\(551\) 6.04105e9 0.0655399
\(552\) 0 0
\(553\) −8.07130e9 8.07130e9i −0.0863064 0.0863064i
\(554\) 0 0
\(555\) −1.04192e11 + 8.23487e10i −1.09815 + 0.867930i
\(556\) 0 0
\(557\) 1.51528e9 1.51528e9i 0.0157425 0.0157425i −0.699192 0.714934i \(-0.746457\pi\)
0.714934 + 0.699192i \(0.246457\pi\)
\(558\) 0 0
\(559\) 2.24591e11i 2.30009i
\(560\) 0 0
\(561\) 3.04079e10 0.306997
\(562\) 0 0
\(563\) 1.16988e11 + 1.16988e11i 1.16441 + 1.16441i 0.983500 + 0.180911i \(0.0579045\pi\)
0.180911 + 0.983500i \(0.442095\pi\)
\(564\) 0 0
\(565\) −1.02929e11 1.20526e10i −1.01005 0.118273i
\(566\) 0 0
\(567\) 9.41486e10 9.41486e10i 0.910923 0.910923i
\(568\) 0 0
\(569\) 6.87794e10i 0.656159i −0.944650 0.328080i \(-0.893599\pi\)
0.944650 0.328080i \(-0.106401\pi\)
\(570\) 0 0
\(571\) 1.03730e10 0.0975795 0.0487897 0.998809i \(-0.484464\pi\)
0.0487897 + 0.998809i \(0.484464\pi\)
\(572\) 0 0
\(573\) 2.94427e10 + 2.94427e10i 0.273123 + 0.273123i
\(574\) 0 0
\(575\) −2.45257e10 + 1.51134e10i −0.224362 + 0.138258i
\(576\) 0 0
\(577\) 5.84784e10 5.84784e10i 0.527584 0.527584i −0.392267 0.919851i \(-0.628309\pi\)
0.919851 + 0.392267i \(0.128309\pi\)
\(578\) 0 0
\(579\) 1.82967e10i 0.162802i
\(580\) 0 0
\(581\) −1.26751e11 −1.11237
\(582\) 0 0
\(583\) 2.00260e10 + 2.00260e10i 0.173348 + 0.173348i
\(584\) 0 0
\(585\) −2.74249e9 + 2.34208e10i −0.0234165 + 0.199976i
\(586\) 0 0
\(587\) −2.36584e10 + 2.36584e10i −0.199266 + 0.199266i −0.799685 0.600420i \(-0.795000\pi\)
0.600420 + 0.799685i \(0.295000\pi\)
\(588\) 0 0
\(589\) 3.53497e10i 0.293714i
\(590\) 0 0
\(591\) 1.47226e11 1.20680
\(592\) 0 0
\(593\) 1.22246e11 + 1.22246e11i 0.988589 + 0.988589i 0.999936 0.0113464i \(-0.00361175\pi\)
−0.0113464 + 0.999936i \(0.503612\pi\)
\(594\) 0 0
\(595\) 1.08697e11 + 1.37529e11i 0.867261 + 1.09730i
\(596\) 0 0
\(597\) −9.53208e9 + 9.53208e9i −0.0750396 + 0.0750396i
\(598\) 0 0
\(599\) 9.59446e10i 0.745269i 0.927978 + 0.372635i \(0.121546\pi\)
−0.927978 + 0.372635i \(0.878454\pi\)
\(600\) 0 0
\(601\) 1.94971e11 1.49442 0.747210 0.664588i \(-0.231393\pi\)
0.747210 + 0.664588i \(0.231393\pi\)
\(602\) 0 0
\(603\) −1.24803e10 1.24803e10i −0.0943964 0.0943964i
\(604\) 0 0
\(605\) 9.09547e10 7.18866e10i 0.678897 0.536570i
\(606\) 0 0
\(607\) 1.26277e11 1.26277e11i 0.930188 0.930188i −0.0675290 0.997717i \(-0.521512\pi\)
0.997717 + 0.0675290i \(0.0215115\pi\)
\(608\) 0 0
\(609\) 1.15941e10i 0.0842882i
\(610\) 0 0
\(611\) −1.26963e11 −0.910984
\(612\) 0 0
\(613\) 1.84169e11 + 1.84169e11i 1.30429 + 1.30429i 0.925468 + 0.378826i \(0.123672\pi\)
0.378826 + 0.925468i \(0.376328\pi\)
\(614\) 0 0
\(615\) −1.93986e11 2.27151e10i −1.35603 0.158786i
\(616\) 0 0
\(617\) −1.20679e11 + 1.20679e11i −0.832707 + 0.832707i −0.987886 0.155180i \(-0.950404\pi\)
0.155180 + 0.987886i \(0.450404\pi\)
\(618\) 0 0
\(619\) 1.43750e11i 0.979143i 0.871963 + 0.489572i \(0.162847\pi\)
−0.871963 + 0.489572i \(0.837153\pi\)
\(620\) 0 0
\(621\) 4.15000e10 0.279050
\(622\) 0 0
\(623\) −1.51305e10 1.51305e10i −0.100439 0.100439i
\(624\) 0 0
\(625\) −1.36300e11 6.85961e10i −0.893255 0.449551i
\(626\) 0 0
\(627\) 4.11896e10 4.11896e10i 0.266512 0.266512i
\(628\) 0 0
\(629\) 2.14475e11i 1.37017i
\(630\) 0 0
\(631\) 1.08715e11 0.685760 0.342880 0.939379i \(-0.388598\pi\)
0.342880 + 0.939379i \(0.388598\pi\)
\(632\) 0 0
\(633\) −2.21144e10 2.21144e10i −0.137740 0.137740i
\(634\) 0 0
\(635\) 1.19741e9 1.02258e10i 0.00736456 0.0628930i
\(636\) 0 0
\(637\) 2.23952e11 2.23952e11i 1.36018 1.36018i
\(638\) 0 0
\(639\) 2.48964e10i 0.149325i
\(640\) 0 0
\(641\) −3.25454e11 −1.92778 −0.963890 0.266299i \(-0.914199\pi\)
−0.963890 + 0.266299i \(0.914199\pi\)
\(642\) 0 0
\(643\) −4.11926e10 4.11926e10i −0.240977 0.240977i 0.576278 0.817254i \(-0.304505\pi\)
−0.817254 + 0.576278i \(0.804505\pi\)
\(644\) 0 0
\(645\) −1.64755e11 2.08457e11i −0.951918 1.20442i
\(646\) 0 0
\(647\) 8.13749e10 8.13749e10i 0.464380 0.464380i −0.435708 0.900088i \(-0.643502\pi\)
0.900088 + 0.435708i \(0.143502\pi\)
\(648\) 0 0
\(649\) 6.02630e10i 0.339682i
\(650\) 0 0
\(651\) 6.78438e10 0.377734
\(652\) 0 0
\(653\) 1.29147e11 + 1.29147e11i 0.710285 + 0.710285i 0.966595 0.256310i \(-0.0825067\pi\)
−0.256310 + 0.966595i \(0.582507\pi\)
\(654\) 0 0
\(655\) 1.88064e11 1.48638e11i 1.02174 0.807539i
\(656\) 0 0
\(657\) −1.77328e10 + 1.77328e10i −0.0951733 + 0.0951733i
\(658\) 0 0
\(659\) 2.74018e10i 0.145291i 0.997358 + 0.0726453i \(0.0231441\pi\)
−0.997358 + 0.0726453i \(0.976856\pi\)
\(660\) 0 0
\(661\) −1.19547e11 −0.626228 −0.313114 0.949716i \(-0.601372\pi\)
−0.313114 + 0.949716i \(0.601372\pi\)
\(662\) 0 0
\(663\) −1.58317e11 1.58317e11i −0.819355 0.819355i
\(664\) 0 0
\(665\) 3.33531e11 + 3.90553e10i 1.70549 + 0.199707i
\(666\) 0 0
\(667\) 2.17582e9 2.17582e9i 0.0109931 0.0109931i
\(668\) 0 0
\(669\) 1.26021e11i 0.629129i
\(670\) 0 0
\(671\) −1.08530e11 −0.535377
\(672\) 0 0
\(673\) −2.17592e11 2.17592e11i −1.06068 1.06068i −0.998036 0.0626416i \(-0.980047\pi\)
−0.0626416 0.998036i \(-0.519953\pi\)
\(674\) 0 0
\(675\) 1.15317e11 + 1.87133e11i 0.555492 + 0.901438i
\(676\) 0 0
\(677\) 1.34337e11 1.34337e11i 0.639503 0.639503i −0.310930 0.950433i \(-0.600640\pi\)
0.950433 + 0.310930i \(0.100640\pi\)
\(678\) 0 0
\(679\) 1.50561e11i 0.708327i
\(680\) 0 0
\(681\) 2.85661e11 1.32820
\(682\) 0 0
\(683\) 2.62510e11 + 2.62510e11i 1.20632 + 1.20632i 0.972210 + 0.234110i \(0.0752177\pi\)
0.234110 + 0.972210i \(0.424782\pi\)
\(684\) 0 0
\(685\) 1.50893e9 1.28862e10i 0.00685339 0.0585277i
\(686\) 0 0
\(687\) −2.59622e11 + 2.59622e11i −1.16551 + 1.16551i
\(688\) 0 0
\(689\) 2.08528e11i 0.925310i
\(690\) 0 0
\(691\) −3.13746e11 −1.37615 −0.688075 0.725639i \(-0.741544\pi\)
−0.688075 + 0.725639i \(0.741544\pi\)
\(692\) 0 0
\(693\) 1.34459e10 + 1.34459e10i 0.0582982 + 0.0582982i
\(694\) 0 0
\(695\) −1.55139e11 1.96290e11i −0.664940 0.841318i
\(696\) 0 0
\(697\) −2.23035e11 + 2.23035e11i −0.945021 + 0.945021i
\(698\) 0 0
\(699\) 2.75534e11i 1.15416i
\(700\) 0 0
\(701\) 2.56197e11 1.06097 0.530483 0.847696i \(-0.322011\pi\)
0.530483 + 0.847696i \(0.322011\pi\)
\(702\) 0 0
\(703\) 2.90521e11 + 2.90521e11i 1.18948 + 1.18948i
\(704\) 0 0
\(705\) −1.17842e11 + 9.31370e10i −0.477027 + 0.377021i
\(706\) 0 0
\(707\) 2.08677e11 2.08677e11i 0.835213 0.835213i
\(708\) 0 0
\(709\) 1.51234e10i 0.0598499i 0.999552 + 0.0299250i \(0.00952683\pi\)
−0.999552 + 0.0299250i \(0.990473\pi\)
\(710\) 0 0
\(711\) −2.93364e9 −0.0114796
\(712\) 0 0
\(713\) 1.27320e10 + 1.27320e10i 0.0492651 + 0.0492651i
\(714\) 0 0
\(715\) 1.31937e11 + 1.54494e10i 0.504828 + 0.0591136i
\(716\) 0 0
\(717\) −2.42491e11 + 2.42491e11i −0.917527 + 0.917527i
\(718\) 0 0
\(719\) 4.20879e11i 1.57486i −0.616404 0.787430i \(-0.711411\pi\)
0.616404 0.787430i \(-0.288589\pi\)
\(720\) 0 0
\(721\) −2.60544e11 −0.964140
\(722\) 0 0
\(723\) −3.08430e11 3.08430e11i −1.12877 1.12877i
\(724\) 0 0
\(725\) 1.58573e10 + 3.76530e9i 0.0573954 + 0.0136285i
\(726\) 0 0
\(727\) −2.08188e11 + 2.08188e11i −0.745277 + 0.745277i −0.973588 0.228312i \(-0.926680\pi\)
0.228312 + 0.973588i \(0.426680\pi\)
\(728\) 0 0
\(729\) 3.10681e11i 1.10003i
\(730\) 0 0
\(731\) −4.29099e11 −1.50275
\(732\) 0 0
\(733\) −2.48791e11 2.48791e11i −0.861826 0.861826i 0.129725 0.991550i \(-0.458591\pi\)
−0.991550 + 0.129725i \(0.958591\pi\)
\(734\) 0 0
\(735\) 4.35774e10 3.72149e11i 0.149318 1.27517i
\(736\) 0 0
\(737\) −7.03058e10 + 7.03058e10i −0.238298 + 0.238298i
\(738\) 0 0
\(739\) 1.15406e11i 0.386946i 0.981106 + 0.193473i \(0.0619752\pi\)
−0.981106 + 0.193473i \(0.938025\pi\)
\(740\) 0 0
\(741\) −4.28902e11 −1.42261
\(742\) 0 0
\(743\) −1.60556e11 1.60556e11i −0.526833 0.526833i 0.392794 0.919627i \(-0.371509\pi\)
−0.919627 + 0.392794i \(0.871509\pi\)
\(744\) 0 0
\(745\) 2.17977e11 + 2.75796e11i 0.707596 + 0.895289i
\(746\) 0 0
\(747\) −2.30348e10 + 2.30348e10i −0.0739780 + 0.0739780i
\(748\) 0 0
\(749\) 3.21459e11i 1.02141i
\(750\) 0 0
\(751\) 5.98277e10 0.188080 0.0940400 0.995568i \(-0.470022\pi\)
0.0940400 + 0.995568i \(0.470022\pi\)
\(752\) 0 0
\(753\) −2.12774e11 2.12774e11i −0.661819 0.661819i
\(754\) 0 0
\(755\) −1.34969e10 + 1.06673e10i −0.0415379 + 0.0328297i
\(756\) 0 0
\(757\) −2.88999e11 + 2.88999e11i −0.880060 + 0.880060i −0.993540 0.113480i \(-0.963800\pi\)
0.113480 + 0.993540i \(0.463800\pi\)
\(758\) 0 0
\(759\) 2.96708e10i 0.0894050i
\(760\) 0 0
\(761\) −1.15311e11 −0.343819 −0.171910 0.985113i \(-0.554994\pi\)
−0.171910 + 0.985113i \(0.554994\pi\)
\(762\) 0 0
\(763\) −2.44966e11 2.44966e11i −0.722783 0.722783i
\(764\) 0 0
\(765\) 4.47473e10 + 5.23975e9i 0.130654 + 0.0152991i
\(766\) 0 0
\(767\) −3.13755e11 + 3.13755e11i −0.906587 + 0.906587i
\(768\) 0 0
\(769\) 1.71633e11i 0.490791i 0.969423 + 0.245395i \(0.0789178\pi\)
−0.969423 + 0.245395i \(0.921082\pi\)
\(770\) 0 0
\(771\) 1.88283e11 0.532835
\(772\) 0 0
\(773\) −3.60143e11 3.60143e11i −1.00869 1.00869i −0.999962 0.00872501i \(-0.997223\pi\)
−0.00872501 0.999962i \(-0.502777\pi\)
\(774\) 0 0
\(775\) −2.20330e10 + 9.27905e10i −0.0610754 + 0.257215i
\(776\) 0 0
\(777\) 5.57572e11 5.57572e11i 1.52974 1.52974i
\(778\) 0 0
\(779\) 6.04232e11i 1.64079i
\(780\) 0 0
\(781\) 1.40250e11 0.376963
\(782\) 0 0
\(783\) −1.66018e10 1.66018e10i −0.0441679 0.0441679i
\(784\) 0 0
\(785\) 3.31653e10 2.83230e11i 0.0873383 0.745866i
\(786\) 0 0
\(787\) −3.81822e11 + 3.81822e11i −0.995318 + 0.995318i −0.999989 0.00467136i \(-0.998513\pi\)
0.00467136 + 0.999989i \(0.498513\pi\)
\(788\) 0 0
\(789\) 1.98632e11i 0.512557i
\(790\) 0 0
\(791\) 6.15310e11 1.57177
\(792\) 0 0
\(793\) 5.65054e11 + 5.65054e11i 1.42888 + 1.42888i
\(794\) 0 0
\(795\) −1.52972e11 1.93548e11i −0.382950 0.484529i
\(796\) 0 0
\(797\) 4.32433e11 4.32433e11i 1.07173 1.07173i 0.0745090 0.997220i \(-0.476261\pi\)
0.997220 0.0745090i \(-0.0237389\pi\)
\(798\) 0 0
\(799\) 2.42573e11i 0.595189i
\(800\) 0 0
\(801\) −5.49941e9 −0.0133594
\(802\) 0 0
\(803\) 9.98949e10 + 9.98949e10i 0.240260 + 0.240260i
\(804\) 0 0
\(805\) 1.34195e11 1.06062e11i 0.319561 0.252567i
\(806\) 0 0
\(807\) 3.13210e11 3.13210e11i 0.738485 0.738485i
\(808\) 0 0
\(809\) 4.04427e11i 0.944160i 0.881556 + 0.472080i \(0.156497\pi\)
−0.881556 + 0.472080i \(0.843503\pi\)
\(810\) 0 0
\(811\) 6.23463e11 1.44121 0.720605 0.693346i \(-0.243864\pi\)
0.720605 + 0.693346i \(0.243864\pi\)
\(812\) 0 0
\(813\) −8.49475e10 8.49475e10i −0.194441 0.194441i
\(814\) 0 0
\(815\) 2.07777e11 + 2.43299e10i 0.470941 + 0.0551456i
\(816\) 0 0
\(817\) −5.81245e11 + 5.81245e11i −1.30458 + 1.30458i
\(818\) 0 0
\(819\) 1.40010e11i 0.311188i
\(820\) 0 0
\(821\) 3.67266e11 0.808366 0.404183 0.914678i \(-0.367556\pi\)
0.404183 + 0.914678i \(0.367556\pi\)
\(822\) 0 0
\(823\) −1.17460e11 1.17460e11i −0.256030 0.256030i 0.567407 0.823437i \(-0.307947\pi\)
−0.823437 + 0.567407i \(0.807947\pi\)
\(824\) 0 0
\(825\) 1.33793e11 8.24468e10i 0.288813 0.177975i
\(826\) 0 0
\(827\) 5.29740e11 5.29740e11i 1.13251 1.13251i 0.142748 0.989759i \(-0.454406\pi\)
0.989759 0.142748i \(-0.0455939\pi\)
\(828\) 0 0
\(829\) 2.39704e11i 0.507525i −0.967267 0.253762i \(-0.918332\pi\)
0.967267 0.253762i \(-0.0816681\pi\)
\(830\) 0 0
\(831\) 1.77132e11 0.371444
\(832\) 0 0
\(833\) −4.27878e11 4.27878e11i −0.888669 0.888669i
\(834\) 0 0
\(835\) −5.60694e10 + 4.78831e11i −0.115340 + 0.984999i
\(836\) 0 0
\(837\) 9.71467e10 9.71467e10i 0.197937 0.197937i
\(838\) 0 0
\(839\) 5.22857e11i 1.05520i −0.849493 0.527601i \(-0.823092\pi\)
0.849493 0.527601i \(-0.176908\pi\)
\(840\) 0 0
\(841\) 4.98506e11 0.996520
\(842\) 0 0
\(843\) −4.92082e11 4.92082e11i −0.974378 0.974378i
\(844\) 0 0
\(845\) −2.90355e11 3.67372e11i −0.569511 0.720576i
\(846\) 0 0
\(847\) −4.86735e11 + 4.86735e11i −0.945712 + 0.945712i
\(848\) 0 0
\(849\) 4.88258e11i 0.939764i
\(850\) 0 0
\(851\) 2.09276e11 0.399025
\(852\) 0 0
\(853\) −2.94110e11 2.94110e11i −0.555537 0.555537i 0.372496 0.928034i \(-0.378502\pi\)
−0.928034 + 0.372496i \(0.878502\pi\)
\(854\) 0 0
\(855\) 6.77110e10 5.35158e10i 0.126705 0.100142i
\(856\) 0 0
\(857\) −1.69558e11 + 1.69558e11i −0.314336 + 0.314336i −0.846587 0.532251i \(-0.821346\pi\)
0.532251 + 0.846587i \(0.321346\pi\)
\(858\) 0 0
\(859\) 3.81187e11i 0.700109i −0.936729 0.350055i \(-0.886163\pi\)
0.936729 0.350055i \(-0.113837\pi\)
\(860\) 0 0
\(861\) 1.15965e12 2.11016
\(862\) 0 0
\(863\) −8.42734e10 8.42734e10i −0.151931 0.151931i 0.627049 0.778980i \(-0.284263\pi\)
−0.778980 + 0.627049i \(0.784263\pi\)
\(864\) 0 0
\(865\) 5.63300e11 + 6.59605e10i 1.00618 + 0.117820i
\(866\) 0 0
\(867\) 6.68848e10 6.68848e10i 0.118373 0.118373i
\(868\) 0 0
\(869\) 1.65262e10i 0.0289797i
\(870\) 0 0
\(871\) 7.32085e11 1.27200
\(872\) 0 0
\(873\) −2.73618e10 2.73618e10i −0.0471073 0.0471073i
\(874\) 0 0
\(875\) 8.51151e11 + 3.10402e11i 1.45203 + 0.529533i
\(876\) 0 0
\(877\) 3.72176e10 3.72176e10i 0.0629144 0.0629144i −0.674950 0.737864i \(-0.735835\pi\)
0.737864 + 0.674950i \(0.235835\pi\)
\(878\) 0 0
\(879\) 7.40541e11i 1.24049i
\(880\) 0 0
\(881\) −4.91908e10 −0.0816545 −0.0408273 0.999166i \(-0.512999\pi\)
−0.0408273 + 0.999166i \(0.512999\pi\)
\(882\) 0 0
\(883\) −4.82360e11 4.82360e11i −0.793467 0.793467i 0.188589 0.982056i \(-0.439609\pi\)
−0.982056 + 0.188589i \(0.939609\pi\)
\(884\) 0 0
\(885\) −6.10518e10 + 5.21380e11i −0.0995235 + 0.849927i
\(886\) 0 0
\(887\) −7.58872e11 + 7.58872e11i −1.22595 + 1.22595i −0.260472 + 0.965481i \(0.583878\pi\)
−0.965481 + 0.260472i \(0.916122\pi\)
\(888\) 0 0
\(889\) 6.11301e10i 0.0978697i
\(890\) 0 0
\(891\) −1.92772e11 −0.305867
\(892\) 0 0
\(893\) 3.28582e11 + 3.28582e11i 0.516699 + 0.516699i
\(894\) 0 0
\(895\) −3.64710e11 4.61451e11i −0.568402 0.719173i
\(896\) 0 0
\(897\) −1.54479e11 + 1.54479e11i −0.238616 + 0.238616i
\(898\) 0 0
\(899\) 1.01867e10i 0.0155953i
\(900\) 0 0
\(901\) −3.98410e11 −0.604548
\(902\) 0 0
\(903\) 1.11553e12 + 1.11553e12i 1.67777 + 1.67777i
\(904\) 0 0
\(905\) 2.00816e11 1.58716e11i 0.299367 0.236606i
\(906\) 0 0
\(907\) 8.25250e11 8.25250e11i 1.21943 1.21943i 0.251597 0.967832i \(-0.419044\pi\)
0.967832 0.251597i \(-0.0809558\pi\)
\(908\) 0 0
\(909\) 7.58468e10i 0.111092i
\(910\) 0 0
\(911\) −5.86650e11 −0.851737 −0.425869 0.904785i \(-0.640031\pi\)
−0.425869 + 0.904785i \(0.640031\pi\)
\(912\) 0 0
\(913\) 1.29763e11 + 1.29763e11i 0.186753 + 0.186753i
\(914\) 0 0
\(915\) 9.38973e11 + 1.09951e11i 1.33958 + 0.156860i
\(916\) 0 0
\(917\) −1.00641e12 + 1.00641e12i −1.42330 + 1.42330i
\(918\) 0 0
\(919\) 1.27566e12i 1.78843i 0.447640 + 0.894214i \(0.352265\pi\)
−0.447640 + 0.894214i \(0.647735\pi\)
\(920\) 0 0
\(921\) 2.45520e11 0.341231
\(922\) 0 0
\(923\) −7.30203e11 7.30203e11i −1.00609 1.00609i
\(924\) 0 0
\(925\) 5.81519e11 + 9.43674e11i 0.794322 + 1.28901i
\(926\) 0 0
\(927\) −4.73493e10 + 4.73493e10i −0.0641202 + 0.0641202i
\(928\) 0 0
\(929\) 1.11916e12i 1.50255i −0.659991 0.751274i \(-0.729440\pi\)
0.659991 0.751274i \(-0.270560\pi\)
\(930\) 0 0
\(931\) −1.15918e12 −1.54295
\(932\) 0 0
\(933\) −7.68353e11 7.68353e11i −1.01399 1.01399i
\(934\) 0 0
\(935\) 2.95174e10 2.52077e11i 0.0386217 0.329828i
\(936\) 0 0
\(937\) 3.48571e11 3.48571e11i 0.452202 0.452202i −0.443883 0.896085i \(-0.646399\pi\)
0.896085 + 0.443883i \(0.146399\pi\)
\(938\) 0 0
\(939\) 2.15061e11i 0.276631i
\(940\) 0 0
\(941\) 3.10729e11 0.396299 0.198150 0.980172i \(-0.436507\pi\)
0.198150 + 0.980172i \(0.436507\pi\)
\(942\) 0 0
\(943\) 2.17628e11 + 2.17628e11i 0.275213 + 0.275213i
\(944\) 0 0
\(945\) −8.09265e11 1.02393e12i −1.01476 1.28393i
\(946\) 0 0
\(947\) 4.81109e11 4.81109e11i 0.598197 0.598197i −0.341636 0.939832i \(-0.610981\pi\)
0.939832 + 0.341636i \(0.110981\pi\)
\(948\) 0 0
\(949\) 1.04019e12i 1.28247i
\(950\) 0 0
\(951\) −1.02618e11 −0.125459
\(952\) 0 0
\(953\) 2.19961e11 + 2.19961e11i 0.266670 + 0.266670i 0.827757 0.561087i \(-0.189617\pi\)
−0.561087 + 0.827757i \(0.689617\pi\)
\(954\) 0 0
\(955\) 2.72656e11 2.15495e11i 0.327794 0.259074i
\(956\) 0 0
\(957\) −1.18696e10 + 1.18696e10i −0.0141510 + 0.0141510i
\(958\) 0 0
\(959\) 7.70338e10i 0.0910767i
\(960\) 0 0
\(961\) −7.93283e11 −0.930110
\(962\) 0 0
\(963\) 5.84196e10 + 5.84196e10i 0.0679287 + 0.0679287i
\(964\) 0 0
\(965\) −1.51677e11 1.77609e10i −0.174909 0.0204812i
\(966\) 0 0
\(967\) −6.94014e11 + 6.94014e11i −0.793711 + 0.793711i −0.982095 0.188384i \(-0.939675\pi\)
0.188384 + 0.982095i \(0.439675\pi\)
\(968\) 0 0
\(969\) 8.19453e11i 0.929456i
\(970\) 0 0
\(971\) −1.29419e12 −1.45587 −0.727935 0.685646i \(-0.759520\pi\)
−0.727935 + 0.685646i \(0.759520\pi\)
\(972\) 0 0
\(973\) 1.05043e12 + 1.05043e12i 1.17197 + 1.17197i
\(974\) 0 0
\(975\) −1.12584e12 2.67328e11i −1.24582 0.295819i
\(976\) 0 0
\(977\) 2.00533e11 2.00533e11i 0.220093 0.220093i −0.588444 0.808538i \(-0.700259\pi\)
0.808538 + 0.588444i \(0.200259\pi\)
\(978\) 0 0
\(979\) 3.09801e10i 0.0337250i
\(980\) 0 0
\(981\) −8.90367e10 −0.0961375
\(982\) 0 0
\(983\) −4.14637e11 4.14637e11i −0.444072 0.444072i 0.449306 0.893378i \(-0.351671\pi\)
−0.893378 + 0.449306i \(0.851671\pi\)
\(984\) 0 0
\(985\) 1.42915e11 1.22049e12i 0.151821 1.29655i
\(986\) 0 0
\(987\) 6.30619e11 6.30619e11i 0.664505 0.664505i
\(988\) 0 0
\(989\) 4.18698e11i 0.437638i
\(990\) 0 0
\(991\) 6.51779e11 0.675780 0.337890 0.941186i \(-0.390287\pi\)
0.337890 + 0.941186i \(0.390287\pi\)
\(992\) 0 0
\(993\) −4.04041e11 4.04041e11i −0.415555 0.415555i
\(994\) 0 0
\(995\) 6.97667e10 + 8.82725e10i 0.0711796 + 0.0900603i
\(996\) 0 0
\(997\) −6.71342e11 + 6.71342e11i −0.679459 + 0.679459i −0.959878 0.280419i \(-0.909527\pi\)
0.280419 + 0.959878i \(0.409527\pi\)
\(998\) 0 0
\(999\) 1.59680e12i 1.60320i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 80.9.p.b.33.1 4
4.3 odd 2 10.9.c.a.3.2 4
5.2 odd 4 inner 80.9.p.b.17.1 4
12.11 even 2 90.9.g.b.73.2 4
20.3 even 4 50.9.c.e.7.1 4
20.7 even 4 10.9.c.a.7.2 yes 4
20.19 odd 2 50.9.c.e.43.1 4
60.47 odd 4 90.9.g.b.37.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.9.c.a.3.2 4 4.3 odd 2
10.9.c.a.7.2 yes 4 20.7 even 4
50.9.c.e.7.1 4 20.3 even 4
50.9.c.e.43.1 4 20.19 odd 2
80.9.p.b.17.1 4 5.2 odd 4 inner
80.9.p.b.33.1 4 1.1 even 1 trivial
90.9.g.b.37.2 4 60.47 odd 4
90.9.g.b.73.2 4 12.11 even 2