Properties

Label 800.2.bg.c
Level $800$
Weight $2$
Character orbit 800.bg
Analytic conductor $6.388$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,2,Mod(129,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.129");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 800.bg (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.38803216170\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\Q(\zeta_{20})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{20}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{20} q^{3} + (2 \zeta_{20}^{4} - \zeta_{20}^{2} + 2) q^{5} + (3 \zeta_{20}^{7} + \cdots + 3 \zeta_{20}^{3}) q^{7} - 2 \zeta_{20}^{2} q^{9} + (4 \zeta_{20}^{7} + \cdots - 2 \zeta_{20}) q^{11} + \cdots + ( - 4 \zeta_{20}^{7} + \cdots + 8 \zeta_{20}) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 10 q^{5} - 4 q^{9} + 10 q^{13} - 20 q^{17} - 16 q^{21} - 10 q^{25} + 18 q^{29} - 20 q^{33} + 50 q^{37} - 20 q^{41} - 20 q^{45} - 36 q^{49} + 50 q^{53} + 30 q^{61} + 22 q^{69} - 30 q^{73} - 60 q^{77}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(1\) \(1\) \(\zeta_{20}^{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
129.1
−0.587785 + 0.809017i
0.587785 0.809017i
−0.951057 0.309017i
0.951057 + 0.309017i
−0.951057 + 0.309017i
0.951057 0.309017i
−0.587785 0.809017i
0.587785 + 0.809017i
0 −0.587785 + 0.809017i 0 0.690983 + 2.12663i 0 3.85410i 0 0.618034 + 1.90211i 0
129.2 0 0.587785 0.809017i 0 0.690983 + 2.12663i 0 3.85410i 0 0.618034 + 1.90211i 0
289.1 0 −0.951057 0.309017i 0 1.80902 + 1.31433i 0 2.85410i 0 −1.61803 1.17557i 0
289.2 0 0.951057 + 0.309017i 0 1.80902 + 1.31433i 0 2.85410i 0 −1.61803 1.17557i 0
609.1 0 −0.951057 + 0.309017i 0 1.80902 1.31433i 0 2.85410i 0 −1.61803 + 1.17557i 0
609.2 0 0.951057 0.309017i 0 1.80902 1.31433i 0 2.85410i 0 −1.61803 + 1.17557i 0
769.1 0 −0.587785 0.809017i 0 0.690983 2.12663i 0 3.85410i 0 0.618034 1.90211i 0
769.2 0 0.587785 + 0.809017i 0 0.690983 2.12663i 0 3.85410i 0 0.618034 1.90211i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 129.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
25.e even 10 1 inner
100.h odd 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 800.2.bg.c 8
4.b odd 2 1 inner 800.2.bg.c 8
25.e even 10 1 inner 800.2.bg.c 8
100.h odd 10 1 inner 800.2.bg.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
800.2.bg.c 8 1.a even 1 1 trivial
800.2.bg.c 8 4.b odd 2 1 inner
800.2.bg.c 8 25.e even 10 1 inner
800.2.bg.c 8 100.h odd 10 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{8} - T_{3}^{6} + T_{3}^{4} - T_{3}^{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(800, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} - T^{6} + T^{4} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( (T^{4} - 5 T^{3} + 15 T^{2} + \cdots + 25)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} + 23 T^{2} + 121)^{2} \) Copy content Toggle raw display
$11$ \( T^{8} + 160 T^{4} + \cdots + 6400 \) Copy content Toggle raw display
$13$ \( (T^{4} - 5 T^{3} + 125)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} + 10 T^{3} + \cdots + 80)^{2} \) Copy content Toggle raw display
$19$ \( T^{8} + 45 T^{6} + \cdots + 164025 \) Copy content Toggle raw display
$23$ \( T^{8} - 41 T^{6} + \cdots + 130321 \) Copy content Toggle raw display
$29$ \( (T^{4} - 9 T^{3} + \cdots + 361)^{2} \) Copy content Toggle raw display
$31$ \( T^{8} + 15 T^{6} + \cdots + 366025 \) Copy content Toggle raw display
$37$ \( (T^{4} - 25 T^{3} + \cdots + 1805)^{2} \) Copy content Toggle raw display
$41$ \( (T^{4} + 10 T^{3} + \cdots + 400)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} + 147 T^{2} + 2401)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} + 76 T^{6} + \cdots + 2825761 \) Copy content Toggle raw display
$53$ \( (T^{4} - 25 T^{3} + 175 T^{2} + \cdots + 5)^{2} \) Copy content Toggle raw display
$59$ \( T^{8} + 6250 T^{4} + \cdots + 9765625 \) Copy content Toggle raw display
$61$ \( (T^{4} - 15 T^{3} + \cdots + 25)^{2} \) Copy content Toggle raw display
$67$ \( T^{8} + 16 T^{6} + \cdots + 256 \) Copy content Toggle raw display
$71$ \( T^{8} + 200 T^{6} + \cdots + 15625 \) Copy content Toggle raw display
$73$ \( (T^{4} + 15 T^{3} + \cdots + 405)^{2} \) Copy content Toggle raw display
$79$ \( T^{8} + 45 T^{6} + \cdots + 3258025 \) Copy content Toggle raw display
$83$ \( T^{8} - 101 T^{6} + \cdots + 923521 \) Copy content Toggle raw display
$89$ \( (T^{4} + 24 T^{3} + \cdots + 15376)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} + 10 T^{3} + 30 T^{2} + \cdots + 5)^{2} \) Copy content Toggle raw display
show more
show less