Properties

Label 800.2.bq.b.223.2
Level $800$
Weight $2$
Character 800.223
Analytic conductor $6.388$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,2,Mod(63,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([10, 0, 19]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.63");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 800.bq (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.38803216170\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(7\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 223.2
Character \(\chi\) \(=\) 800.223
Dual form 800.2.bq.b.287.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.802897 - 1.57577i) q^{3} +(1.58800 - 1.57424i) q^{5} +(1.63701 + 1.63701i) q^{7} +(-0.0750643 + 0.103317i) q^{9} +(-1.12357 - 1.54647i) q^{11} +(-0.802739 - 5.06830i) q^{13} +(-3.75566 - 1.23838i) q^{15} +(5.98323 + 3.04861i) q^{17} +(1.06996 + 3.29301i) q^{19} +(1.26521 - 3.89391i) q^{21} +(0.167463 - 1.05732i) q^{23} +(0.0435082 - 4.99981i) q^{25} +(-5.01720 - 0.794647i) q^{27} +(1.58725 + 0.515730i) q^{29} +(-2.42148 + 0.786787i) q^{31} +(-1.53477 + 3.01215i) q^{33} +(5.17664 + 0.0225230i) q^{35} +(2.41558 - 0.382590i) q^{37} +(-7.34197 + 5.33426i) q^{39} +(-3.16381 - 2.29864i) q^{41} +(5.65583 - 5.65583i) q^{43} +(0.0434441 + 0.282238i) q^{45} +(-2.00667 + 1.02245i) q^{47} -1.64038i q^{49} -11.8759i q^{51} +(-10.8796 + 5.54343i) q^{53} +(-4.21876 - 0.687014i) q^{55} +(4.32997 - 4.32997i) q^{57} +(-9.07009 - 6.58981i) q^{59} +(-1.66556 + 1.21010i) q^{61} +(-0.292013 + 0.0462503i) q^{63} +(-9.25349 - 6.78476i) q^{65} +(4.46901 - 8.77093i) q^{67} +(-1.80056 + 0.585036i) q^{69} +(-14.0374 - 4.56101i) q^{71} +(3.53528 + 0.559934i) q^{73} +(-7.91350 + 3.94577i) q^{75} +(0.692281 - 4.37089i) q^{77} +(-1.35379 + 4.16655i) q^{79} +(2.89450 + 8.90837i) q^{81} +(15.5424 + 7.91927i) q^{83} +(14.3006 - 4.57787i) q^{85} +(-0.461727 - 2.91523i) q^{87} +(-0.720489 - 0.991668i) q^{89} +(6.98277 - 9.61096i) q^{91} +(3.18400 + 3.18400i) q^{93} +(6.88311 + 3.54493i) q^{95} +(6.96008 + 13.6599i) q^{97} +0.244117 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 2 q^{5} + 4 q^{7} - 6 q^{13} + 42 q^{15} - 2 q^{17} + 18 q^{19} + 16 q^{21} + 8 q^{23} - 34 q^{25} - 42 q^{27} - 20 q^{31} - 36 q^{33} - 22 q^{35} + 20 q^{37} + 36 q^{39} + 16 q^{41} + 32 q^{43}+ \cdots - 132 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{11}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.802897 1.57577i −0.463553 0.909774i −0.997916 0.0645189i \(-0.979449\pi\)
0.534364 0.845255i \(-0.320551\pi\)
\(4\) 0 0
\(5\) 1.58800 1.57424i 0.710177 0.704024i
\(6\) 0 0
\(7\) 1.63701 + 1.63701i 0.618732 + 0.618732i 0.945206 0.326474i \(-0.105860\pi\)
−0.326474 + 0.945206i \(0.605860\pi\)
\(8\) 0 0
\(9\) −0.0750643 + 0.103317i −0.0250214 + 0.0344391i
\(10\) 0 0
\(11\) −1.12357 1.54647i −0.338770 0.466277i 0.605312 0.795989i \(-0.293049\pi\)
−0.944082 + 0.329711i \(0.893049\pi\)
\(12\) 0 0
\(13\) −0.802739 5.06830i −0.222640 1.40569i −0.805247 0.592939i \(-0.797968\pi\)
0.582608 0.812754i \(-0.302032\pi\)
\(14\) 0 0
\(15\) −3.75566 1.23838i −0.969706 0.319748i
\(16\) 0 0
\(17\) 5.98323 + 3.04861i 1.45115 + 0.739396i 0.989070 0.147444i \(-0.0471047\pi\)
0.462076 + 0.886840i \(0.347105\pi\)
\(18\) 0 0
\(19\) 1.06996 + 3.29301i 0.245467 + 0.755469i 0.995559 + 0.0941360i \(0.0300088\pi\)
−0.750093 + 0.661333i \(0.769991\pi\)
\(20\) 0 0
\(21\) 1.26521 3.89391i 0.276091 0.849722i
\(22\) 0 0
\(23\) 0.167463 1.05732i 0.0349185 0.220467i −0.964058 0.265691i \(-0.914400\pi\)
0.998977 + 0.0452237i \(0.0144001\pi\)
\(24\) 0 0
\(25\) 0.0435082 4.99981i 0.00870164 0.999962i
\(26\) 0 0
\(27\) −5.01720 0.794647i −0.965561 0.152930i
\(28\) 0 0
\(29\) 1.58725 + 0.515730i 0.294746 + 0.0957687i 0.452657 0.891685i \(-0.350476\pi\)
−0.157912 + 0.987453i \(0.550476\pi\)
\(30\) 0 0
\(31\) −2.42148 + 0.786787i −0.434911 + 0.141311i −0.518286 0.855207i \(-0.673430\pi\)
0.0833756 + 0.996518i \(0.473430\pi\)
\(32\) 0 0
\(33\) −1.53477 + 3.01215i −0.267169 + 0.524348i
\(34\) 0 0
\(35\) 5.17664 + 0.0225230i 0.875012 + 0.00380709i
\(36\) 0 0
\(37\) 2.41558 0.382590i 0.397119 0.0628975i 0.0453188 0.998973i \(-0.485570\pi\)
0.351800 + 0.936075i \(0.385570\pi\)
\(38\) 0 0
\(39\) −7.34197 + 5.33426i −1.17566 + 0.854164i
\(40\) 0 0
\(41\) −3.16381 2.29864i −0.494104 0.358988i 0.312656 0.949866i \(-0.398781\pi\)
−0.806760 + 0.590879i \(0.798781\pi\)
\(42\) 0 0
\(43\) 5.65583 5.65583i 0.862506 0.862506i −0.129122 0.991629i \(-0.541216\pi\)
0.991629 + 0.129122i \(0.0412160\pi\)
\(44\) 0 0
\(45\) 0.0434441 + 0.282238i 0.00647627 + 0.0420735i
\(46\) 0 0
\(47\) −2.00667 + 1.02245i −0.292703 + 0.149140i −0.594176 0.804335i \(-0.702522\pi\)
0.301473 + 0.953475i \(0.402522\pi\)
\(48\) 0 0
\(49\) 1.64038i 0.234340i
\(50\) 0 0
\(51\) 11.8759i 1.66296i
\(52\) 0 0
\(53\) −10.8796 + 5.54343i −1.49443 + 0.761449i −0.994512 0.104624i \(-0.966636\pi\)
−0.499917 + 0.866074i \(0.666636\pi\)
\(54\) 0 0
\(55\) −4.21876 0.687014i −0.568857 0.0926370i
\(56\) 0 0
\(57\) 4.32997 4.32997i 0.573519 0.573519i
\(58\) 0 0
\(59\) −9.07009 6.58981i −1.18082 0.857920i −0.188561 0.982062i \(-0.560382\pi\)
−0.992264 + 0.124142i \(0.960382\pi\)
\(60\) 0 0
\(61\) −1.66556 + 1.21010i −0.213253 + 0.154937i −0.689284 0.724491i \(-0.742075\pi\)
0.476031 + 0.879428i \(0.342075\pi\)
\(62\) 0 0
\(63\) −0.292013 + 0.0462503i −0.0367901 + 0.00582699i
\(64\) 0 0
\(65\) −9.25349 6.78476i −1.14775 0.841546i
\(66\) 0 0
\(67\) 4.46901 8.77093i 0.545977 1.07154i −0.438941 0.898516i \(-0.644646\pi\)
0.984918 0.173024i \(-0.0553538\pi\)
\(68\) 0 0
\(69\) −1.80056 + 0.585036i −0.216761 + 0.0704301i
\(70\) 0 0
\(71\) −14.0374 4.56101i −1.66593 0.541293i −0.683826 0.729645i \(-0.739685\pi\)
−0.982102 + 0.188352i \(0.939685\pi\)
\(72\) 0 0
\(73\) 3.53528 + 0.559934i 0.413774 + 0.0655353i 0.359851 0.933010i \(-0.382828\pi\)
0.0539227 + 0.998545i \(0.482828\pi\)
\(74\) 0 0
\(75\) −7.91350 + 3.94577i −0.913773 + 0.455619i
\(76\) 0 0
\(77\) 0.692281 4.37089i 0.0788927 0.498109i
\(78\) 0 0
\(79\) −1.35379 + 4.16655i −0.152314 + 0.468773i −0.997879 0.0650989i \(-0.979264\pi\)
0.845565 + 0.533872i \(0.179264\pi\)
\(80\) 0 0
\(81\) 2.89450 + 8.90837i 0.321612 + 0.989819i
\(82\) 0 0
\(83\) 15.5424 + 7.91927i 1.70601 + 0.869253i 0.984179 + 0.177179i \(0.0566972\pi\)
0.721827 + 0.692074i \(0.243303\pi\)
\(84\) 0 0
\(85\) 14.3006 4.57787i 1.55112 0.496540i
\(86\) 0 0
\(87\) −0.461727 2.91523i −0.0495024 0.312546i
\(88\) 0 0
\(89\) −0.720489 0.991668i −0.0763717 0.105117i 0.769122 0.639102i \(-0.220694\pi\)
−0.845494 + 0.533985i \(0.820694\pi\)
\(90\) 0 0
\(91\) 6.98277 9.61096i 0.731993 1.00750i
\(92\) 0 0
\(93\) 3.18400 + 3.18400i 0.330165 + 0.330165i
\(94\) 0 0
\(95\) 6.88311 + 3.54493i 0.706192 + 0.363702i
\(96\) 0 0
\(97\) 6.96008 + 13.6599i 0.706689 + 1.38696i 0.912792 + 0.408425i \(0.133922\pi\)
−0.206103 + 0.978530i \(0.566078\pi\)
\(98\) 0 0
\(99\) 0.244117 0.0245347
\(100\) 0 0
\(101\) 11.2777 1.12218 0.561088 0.827756i \(-0.310383\pi\)
0.561088 + 0.827756i \(0.310383\pi\)
\(102\) 0 0
\(103\) −0.551746 1.08286i −0.0543651 0.106698i 0.862225 0.506525i \(-0.169070\pi\)
−0.916591 + 0.399827i \(0.869070\pi\)
\(104\) 0 0
\(105\) −4.12082 8.17530i −0.402150 0.797827i
\(106\) 0 0
\(107\) 13.0776 + 13.0776i 1.26426 + 1.26426i 0.949008 + 0.315253i \(0.102089\pi\)
0.315253 + 0.949008i \(0.397911\pi\)
\(108\) 0 0
\(109\) −8.56546 + 11.7893i −0.820422 + 1.12921i 0.169208 + 0.985580i \(0.445879\pi\)
−0.989631 + 0.143634i \(0.954121\pi\)
\(110\) 0 0
\(111\) −2.54234 3.49923i −0.241308 0.332132i
\(112\) 0 0
\(113\) −0.441788 2.78934i −0.0415599 0.262399i 0.958156 0.286248i \(-0.0924080\pi\)
−0.999716 + 0.0238488i \(0.992408\pi\)
\(114\) 0 0
\(115\) −1.39855 1.94266i −0.130416 0.181154i
\(116\) 0 0
\(117\) 0.583899 + 0.297512i 0.0539815 + 0.0275049i
\(118\) 0 0
\(119\) 4.80401 + 14.7852i 0.440383 + 1.35536i
\(120\) 0 0
\(121\) 2.27005 6.98648i 0.206368 0.635135i
\(122\) 0 0
\(123\) −1.08193 + 6.83102i −0.0975541 + 0.615932i
\(124\) 0 0
\(125\) −7.80183 8.00821i −0.697817 0.716276i
\(126\) 0 0
\(127\) 15.7328 + 2.49184i 1.39606 + 0.221115i 0.808706 0.588213i \(-0.200168\pi\)
0.587357 + 0.809328i \(0.300168\pi\)
\(128\) 0 0
\(129\) −13.4534 4.37126i −1.18450 0.384868i
\(130\) 0 0
\(131\) −4.31577 + 1.40228i −0.377070 + 0.122518i −0.491419 0.870923i \(-0.663522\pi\)
0.114349 + 0.993441i \(0.463522\pi\)
\(132\) 0 0
\(133\) −3.63916 + 7.14225i −0.315555 + 0.619311i
\(134\) 0 0
\(135\) −9.21830 + 6.63640i −0.793385 + 0.571171i
\(136\) 0 0
\(137\) −1.57173 + 0.248938i −0.134282 + 0.0212682i −0.223214 0.974770i \(-0.571655\pi\)
0.0889314 + 0.996038i \(0.471655\pi\)
\(138\) 0 0
\(139\) 0.720939 0.523792i 0.0611492 0.0444275i −0.556791 0.830653i \(-0.687967\pi\)
0.617940 + 0.786225i \(0.287967\pi\)
\(140\) 0 0
\(141\) 3.22230 + 2.34114i 0.271367 + 0.197159i
\(142\) 0 0
\(143\) −6.93601 + 6.93601i −0.580019 + 0.580019i
\(144\) 0 0
\(145\) 3.33245 1.67975i 0.276745 0.139495i
\(146\) 0 0
\(147\) −2.58487 + 1.31706i −0.213197 + 0.108629i
\(148\) 0 0
\(149\) 11.5629i 0.947269i 0.880721 + 0.473635i \(0.157058\pi\)
−0.880721 + 0.473635i \(0.842942\pi\)
\(150\) 0 0
\(151\) 20.3599i 1.65687i 0.560087 + 0.828434i \(0.310768\pi\)
−0.560087 + 0.828434i \(0.689232\pi\)
\(152\) 0 0
\(153\) −0.764101 + 0.389329i −0.0617739 + 0.0314754i
\(154\) 0 0
\(155\) −2.60672 + 5.06142i −0.209377 + 0.406543i
\(156\) 0 0
\(157\) −1.68701 + 1.68701i −0.134638 + 0.134638i −0.771214 0.636576i \(-0.780350\pi\)
0.636576 + 0.771214i \(0.280350\pi\)
\(158\) 0 0
\(159\) 17.4704 + 12.6930i 1.38549 + 1.00662i
\(160\) 0 0
\(161\) 2.00499 1.45671i 0.158015 0.114805i
\(162\) 0 0
\(163\) 18.2675 2.89328i 1.43082 0.226619i 0.607554 0.794278i \(-0.292151\pi\)
0.823264 + 0.567659i \(0.192151\pi\)
\(164\) 0 0
\(165\) 2.30465 + 7.19941i 0.179417 + 0.560473i
\(166\) 0 0
\(167\) 10.8718 21.3372i 0.841287 1.65112i 0.0854655 0.996341i \(-0.472762\pi\)
0.755822 0.654778i \(-0.227238\pi\)
\(168\) 0 0
\(169\) −12.6795 + 4.11982i −0.975347 + 0.316909i
\(170\) 0 0
\(171\) −0.420541 0.136642i −0.0321596 0.0104493i
\(172\) 0 0
\(173\) −12.7691 2.02243i −0.970817 0.153762i −0.349170 0.937060i \(-0.613536\pi\)
−0.621647 + 0.783297i \(0.713536\pi\)
\(174\) 0 0
\(175\) 8.25597 8.11353i 0.624093 0.613325i
\(176\) 0 0
\(177\) −3.10170 + 19.5833i −0.233138 + 1.47197i
\(178\) 0 0
\(179\) −2.16773 + 6.67160i −0.162024 + 0.498659i −0.998805 0.0488796i \(-0.984435\pi\)
0.836781 + 0.547538i \(0.184435\pi\)
\(180\) 0 0
\(181\) 1.13046 + 3.47920i 0.0840264 + 0.258607i 0.984239 0.176844i \(-0.0565889\pi\)
−0.900212 + 0.435451i \(0.856589\pi\)
\(182\) 0 0
\(183\) 3.24411 + 1.65296i 0.239812 + 0.122190i
\(184\) 0 0
\(185\) 3.23366 4.41027i 0.237743 0.324249i
\(186\) 0 0
\(187\) −2.00803 12.6782i −0.146842 0.927122i
\(188\) 0 0
\(189\) −6.91238 9.51407i −0.502801 0.692047i
\(190\) 0 0
\(191\) 8.29296 11.4143i 0.600058 0.825909i −0.395656 0.918399i \(-0.629483\pi\)
0.995714 + 0.0924903i \(0.0294827\pi\)
\(192\) 0 0
\(193\) 14.8817 + 14.8817i 1.07121 + 1.07121i 0.997262 + 0.0739449i \(0.0235589\pi\)
0.0739449 + 0.997262i \(0.476441\pi\)
\(194\) 0 0
\(195\) −3.26165 + 20.0289i −0.233572 + 1.43430i
\(196\) 0 0
\(197\) 5.73475 + 11.2551i 0.408584 + 0.801891i 0.999990 0.00448295i \(-0.00142697\pi\)
−0.591406 + 0.806374i \(0.701427\pi\)
\(198\) 0 0
\(199\) 4.55115 0.322623 0.161311 0.986904i \(-0.448428\pi\)
0.161311 + 0.986904i \(0.448428\pi\)
\(200\) 0 0
\(201\) −17.4092 −1.22795
\(202\) 0 0
\(203\) 1.75410 + 3.44261i 0.123114 + 0.241624i
\(204\) 0 0
\(205\) −8.64276 + 1.33036i −0.603637 + 0.0929163i
\(206\) 0 0
\(207\) 0.0966690 + 0.0966690i 0.00671896 + 0.00671896i
\(208\) 0 0
\(209\) 3.89035 5.35461i 0.269101 0.370386i
\(210\) 0 0
\(211\) −4.12697 5.68028i −0.284112 0.391047i 0.642978 0.765884i \(-0.277698\pi\)
−0.927090 + 0.374838i \(0.877698\pi\)
\(212\) 0 0
\(213\) 4.08342 + 25.7817i 0.279792 + 1.76653i
\(214\) 0 0
\(215\) 0.0778165 17.8851i 0.00530704 1.21976i
\(216\) 0 0
\(217\) −5.25197 2.67601i −0.356527 0.181660i
\(218\) 0 0
\(219\) −1.95614 6.02038i −0.132184 0.406819i
\(220\) 0 0
\(221\) 10.6483 32.7720i 0.716281 2.20448i
\(222\) 0 0
\(223\) −2.28864 + 14.4499i −0.153259 + 0.967639i 0.784444 + 0.620200i \(0.212949\pi\)
−0.937703 + 0.347439i \(0.887051\pi\)
\(224\) 0 0
\(225\) 0.513300 + 0.379803i 0.0342200 + 0.0253202i
\(226\) 0 0
\(227\) −17.9295 2.83975i −1.19002 0.188481i −0.470149 0.882587i \(-0.655800\pi\)
−0.719872 + 0.694107i \(0.755800\pi\)
\(228\) 0 0
\(229\) −18.5870 6.03929i −1.22826 0.399087i −0.378180 0.925732i \(-0.623450\pi\)
−0.850085 + 0.526645i \(0.823450\pi\)
\(230\) 0 0
\(231\) −7.44336 + 2.41850i −0.489737 + 0.159125i
\(232\) 0 0
\(233\) −5.96169 + 11.7005i −0.390563 + 0.766523i −0.999647 0.0265828i \(-0.991537\pi\)
0.609083 + 0.793106i \(0.291537\pi\)
\(234\) 0 0
\(235\) −1.57701 + 4.78264i −0.102873 + 0.311985i
\(236\) 0 0
\(237\) 7.65250 1.21204i 0.497083 0.0787302i
\(238\) 0 0
\(239\) −3.74251 + 2.71909i −0.242083 + 0.175884i −0.702211 0.711969i \(-0.747804\pi\)
0.460128 + 0.887853i \(0.347804\pi\)
\(240\) 0 0
\(241\) 18.1898 + 13.2156i 1.17171 + 0.851294i 0.991212 0.132282i \(-0.0422305\pi\)
0.180494 + 0.983576i \(0.442230\pi\)
\(242\) 0 0
\(243\) 0.937823 0.937823i 0.0601613 0.0601613i
\(244\) 0 0
\(245\) −2.58236 2.60493i −0.164981 0.166423i
\(246\) 0 0
\(247\) 15.8311 8.06633i 1.00731 0.513248i
\(248\) 0 0
\(249\) 30.8497i 1.95502i
\(250\) 0 0
\(251\) 9.97785i 0.629796i 0.949125 + 0.314898i \(0.101970\pi\)
−0.949125 + 0.314898i \(0.898030\pi\)
\(252\) 0 0
\(253\) −1.82327 + 0.929003i −0.114628 + 0.0584059i
\(254\) 0 0
\(255\) −18.6956 18.8590i −1.17077 1.18100i
\(256\) 0 0
\(257\) 9.29121 9.29121i 0.579570 0.579570i −0.355215 0.934785i \(-0.615592\pi\)
0.934785 + 0.355215i \(0.115592\pi\)
\(258\) 0 0
\(259\) 4.58064 + 3.32803i 0.284627 + 0.206794i
\(260\) 0 0
\(261\) −0.172430 + 0.125278i −0.0106731 + 0.00775450i
\(262\) 0 0
\(263\) 4.96316 0.786087i 0.306041 0.0484722i −0.00152499 0.999999i \(-0.500485\pi\)
0.307566 + 0.951527i \(0.400485\pi\)
\(264\) 0 0
\(265\) −8.55012 + 25.9301i −0.525230 + 1.59288i
\(266\) 0 0
\(267\) −0.984167 + 1.93154i −0.0602300 + 0.118208i
\(268\) 0 0
\(269\) 5.24447 1.70403i 0.319761 0.103897i −0.144739 0.989470i \(-0.546234\pi\)
0.464500 + 0.885573i \(0.346234\pi\)
\(270\) 0 0
\(271\) 9.52234 + 3.09399i 0.578441 + 0.187947i 0.583602 0.812040i \(-0.301643\pi\)
−0.00516117 + 0.999987i \(0.501643\pi\)
\(272\) 0 0
\(273\) −20.7511 3.28666i −1.25592 0.198918i
\(274\) 0 0
\(275\) −7.78093 + 5.55037i −0.469207 + 0.334700i
\(276\) 0 0
\(277\) −1.87483 + 11.8372i −0.112648 + 0.711229i 0.865124 + 0.501558i \(0.167239\pi\)
−0.977772 + 0.209671i \(0.932761\pi\)
\(278\) 0 0
\(279\) 0.100478 0.309240i 0.00601548 0.0185137i
\(280\) 0 0
\(281\) 3.75565 + 11.5587i 0.224043 + 0.689535i 0.998387 + 0.0567696i \(0.0180800\pi\)
−0.774344 + 0.632765i \(0.781920\pi\)
\(282\) 0 0
\(283\) 13.1948 + 6.72311i 0.784352 + 0.399647i 0.799825 0.600233i \(-0.204925\pi\)
−0.0154732 + 0.999880i \(0.504925\pi\)
\(284\) 0 0
\(285\) 0.0595744 13.6924i 0.00352889 0.811070i
\(286\) 0 0
\(287\) −1.41629 8.94210i −0.0836009 0.527835i
\(288\) 0 0
\(289\) 16.5127 + 22.7278i 0.971334 + 1.33693i
\(290\) 0 0
\(291\) 15.9367 21.9350i 0.934227 1.28585i
\(292\) 0 0
\(293\) −1.30381 1.30381i −0.0761692 0.0761692i 0.667996 0.744165i \(-0.267152\pi\)
−0.744165 + 0.667996i \(0.767152\pi\)
\(294\) 0 0
\(295\) −24.7773 + 3.81391i −1.44259 + 0.222054i
\(296\) 0 0
\(297\) 4.40830 + 8.65178i 0.255796 + 0.502027i
\(298\) 0 0
\(299\) −5.49325 −0.317683
\(300\) 0 0
\(301\) 18.5173 1.06732
\(302\) 0 0
\(303\) −9.05485 17.7711i −0.520187 1.02093i
\(304\) 0 0
\(305\) −0.739920 + 4.54363i −0.0423677 + 0.260168i
\(306\) 0 0
\(307\) −9.07999 9.07999i −0.518222 0.518222i 0.398811 0.917033i \(-0.369423\pi\)
−0.917033 + 0.398811i \(0.869423\pi\)
\(308\) 0 0
\(309\) −1.26335 + 1.73885i −0.0718695 + 0.0989199i
\(310\) 0 0
\(311\) −7.93253 10.9182i −0.449813 0.619114i 0.522545 0.852612i \(-0.324983\pi\)
−0.972357 + 0.233498i \(0.924983\pi\)
\(312\) 0 0
\(313\) −0.856290 5.40640i −0.0484004 0.305588i 0.951598 0.307345i \(-0.0994406\pi\)
−0.999998 + 0.00175729i \(0.999441\pi\)
\(314\) 0 0
\(315\) −0.390908 + 0.533145i −0.0220252 + 0.0300393i
\(316\) 0 0
\(317\) −27.8654 14.1981i −1.56508 0.797447i −0.565451 0.824782i \(-0.691298\pi\)
−0.999626 + 0.0273357i \(0.991298\pi\)
\(318\) 0 0
\(319\) −0.985838 3.03410i −0.0551963 0.169877i
\(320\) 0 0
\(321\) 10.1074 31.1073i 0.564139 1.73624i
\(322\) 0 0
\(323\) −3.63726 + 22.9647i −0.202382 + 1.27779i
\(324\) 0 0
\(325\) −25.3754 + 3.79303i −1.40758 + 0.210400i
\(326\) 0 0
\(327\) 25.4545 + 4.03160i 1.40764 + 0.222948i
\(328\) 0 0
\(329\) −4.95871 1.61118i −0.273382 0.0888273i
\(330\) 0 0
\(331\) 28.7064 9.32728i 1.57785 0.512673i 0.616346 0.787476i \(-0.288612\pi\)
0.961501 + 0.274802i \(0.0886124\pi\)
\(332\) 0 0
\(333\) −0.141796 + 0.278290i −0.00777036 + 0.0152502i
\(334\) 0 0
\(335\) −6.71079 20.9636i −0.366649 1.14536i
\(336\) 0 0
\(337\) −24.3091 + 3.85019i −1.32420 + 0.209733i −0.778182 0.628038i \(-0.783858\pi\)
−0.546021 + 0.837772i \(0.683858\pi\)
\(338\) 0 0
\(339\) −4.04066 + 2.93571i −0.219458 + 0.159446i
\(340\) 0 0
\(341\) 3.93745 + 2.86073i 0.213225 + 0.154917i
\(342\) 0 0
\(343\) 14.1444 14.1444i 0.763726 0.763726i
\(344\) 0 0
\(345\) −1.93830 + 3.76355i −0.104354 + 0.202623i
\(346\) 0 0
\(347\) −29.1884 + 14.8723i −1.56692 + 0.798384i −0.999683 0.0251719i \(-0.991987\pi\)
−0.567235 + 0.823556i \(0.691987\pi\)
\(348\) 0 0
\(349\) 14.9232i 0.798820i −0.916773 0.399410i \(-0.869215\pi\)
0.916773 0.399410i \(-0.130785\pi\)
\(350\) 0 0
\(351\) 26.0666i 1.39133i
\(352\) 0 0
\(353\) 20.8385 10.6177i 1.10912 0.565126i 0.199222 0.979954i \(-0.436158\pi\)
0.909900 + 0.414829i \(0.136158\pi\)
\(354\) 0 0
\(355\) −29.4715 + 14.8553i −1.56419 + 0.788439i
\(356\) 0 0
\(357\) 19.4411 19.4411i 1.02893 1.02893i
\(358\) 0 0
\(359\) 14.3121 + 10.3983i 0.755362 + 0.548802i 0.897484 0.441047i \(-0.145393\pi\)
−0.142122 + 0.989849i \(0.545393\pi\)
\(360\) 0 0
\(361\) 5.67222 4.12111i 0.298538 0.216900i
\(362\) 0 0
\(363\) −12.8317 + 2.03235i −0.673491 + 0.106671i
\(364\) 0 0
\(365\) 6.49551 4.67622i 0.339991 0.244765i
\(366\) 0 0
\(367\) −0.412877 + 0.810317i −0.0215520 + 0.0422982i −0.901531 0.432714i \(-0.857556\pi\)
0.879979 + 0.475012i \(0.157556\pi\)
\(368\) 0 0
\(369\) 0.474978 0.154330i 0.0247264 0.00803409i
\(370\) 0 0
\(371\) −26.8847 8.73537i −1.39578 0.453518i
\(372\) 0 0
\(373\) 24.7281 + 3.91655i 1.28037 + 0.202791i 0.759312 0.650727i \(-0.225536\pi\)
0.521063 + 0.853518i \(0.325536\pi\)
\(374\) 0 0
\(375\) −6.35506 + 18.7237i −0.328174 + 0.966887i
\(376\) 0 0
\(377\) 1.33972 8.45867i 0.0689992 0.435644i
\(378\) 0 0
\(379\) −0.569050 + 1.75136i −0.0292301 + 0.0899611i −0.964607 0.263691i \(-0.915060\pi\)
0.935377 + 0.353652i \(0.115060\pi\)
\(380\) 0 0
\(381\) −8.70527 26.7921i −0.445985 1.37260i
\(382\) 0 0
\(383\) −13.8405 7.05210i −0.707218 0.360345i 0.0630986 0.998007i \(-0.479902\pi\)
−0.770316 + 0.637662i \(0.779902\pi\)
\(384\) 0 0
\(385\) −5.78150 8.03080i −0.294653 0.409288i
\(386\) 0 0
\(387\) 0.159793 + 1.00890i 0.00812275 + 0.0512850i
\(388\) 0 0
\(389\) −12.6454 17.4049i −0.641148 0.882464i 0.357529 0.933902i \(-0.383619\pi\)
−0.998676 + 0.0514382i \(0.983619\pi\)
\(390\) 0 0
\(391\) 4.22533 5.81567i 0.213684 0.294111i
\(392\) 0 0
\(393\) 5.67479 + 5.67479i 0.286255 + 0.286255i
\(394\) 0 0
\(395\) 4.40934 + 8.74770i 0.221858 + 0.440144i
\(396\) 0 0
\(397\) 15.6893 + 30.7920i 0.787424 + 1.54541i 0.837358 + 0.546655i \(0.184099\pi\)
−0.0499334 + 0.998753i \(0.515901\pi\)
\(398\) 0 0
\(399\) 14.1764 0.709709
\(400\) 0 0
\(401\) 12.0007 0.599284 0.299642 0.954052i \(-0.403133\pi\)
0.299642 + 0.954052i \(0.403133\pi\)
\(402\) 0 0
\(403\) 5.93149 + 11.6412i 0.295468 + 0.579889i
\(404\) 0 0
\(405\) 18.6204 + 9.58986i 0.925257 + 0.476524i
\(406\) 0 0
\(407\) −3.30575 3.30575i −0.163860 0.163860i
\(408\) 0 0
\(409\) 7.13726 9.82359i 0.352915 0.485745i −0.595243 0.803546i \(-0.702944\pi\)
0.948158 + 0.317800i \(0.102944\pi\)
\(410\) 0 0
\(411\) 1.65421 + 2.27683i 0.0815962 + 0.112308i
\(412\) 0 0
\(413\) −4.06025 25.6354i −0.199792 1.26144i
\(414\) 0 0
\(415\) 37.1483 11.8918i 1.82354 0.583745i
\(416\) 0 0
\(417\) −1.40422 0.715485i −0.0687648 0.0350374i
\(418\) 0 0
\(419\) 0.00780791 + 0.0240303i 0.000381441 + 0.00117396i 0.951247 0.308430i \(-0.0998035\pi\)
−0.950866 + 0.309604i \(0.899804\pi\)
\(420\) 0 0
\(421\) −5.01573 + 15.4368i −0.244452 + 0.752345i 0.751274 + 0.659990i \(0.229439\pi\)
−0.995726 + 0.0923551i \(0.970561\pi\)
\(422\) 0 0
\(423\) 0.0449928 0.284073i 0.00218762 0.0138121i
\(424\) 0 0
\(425\) 15.5028 29.7824i 0.751995 1.44466i
\(426\) 0 0
\(427\) −4.70748 0.745592i −0.227811 0.0360817i
\(428\) 0 0
\(429\) 16.4985 + 5.36069i 0.796555 + 0.258816i
\(430\) 0 0
\(431\) −38.2252 + 12.4201i −1.84124 + 0.598256i −0.843073 + 0.537799i \(0.819256\pi\)
−0.998171 + 0.0604570i \(0.980744\pi\)
\(432\) 0 0
\(433\) −5.32284 + 10.4467i −0.255800 + 0.502035i −0.982817 0.184585i \(-0.940906\pi\)
0.727017 + 0.686619i \(0.240906\pi\)
\(434\) 0 0
\(435\) −5.32251 3.90253i −0.255195 0.187112i
\(436\) 0 0
\(437\) 3.66095 0.579838i 0.175127 0.0277374i
\(438\) 0 0
\(439\) 19.8543 14.4250i 0.947592 0.688466i −0.00264427 0.999997i \(-0.500842\pi\)
0.950236 + 0.311531i \(0.100842\pi\)
\(440\) 0 0
\(441\) 0.169480 + 0.123134i 0.00807046 + 0.00586353i
\(442\) 0 0
\(443\) −0.733468 + 0.733468i −0.0348481 + 0.0348481i −0.724316 0.689468i \(-0.757844\pi\)
0.689468 + 0.724316i \(0.257844\pi\)
\(444\) 0 0
\(445\) −2.70527 0.440546i −0.128242 0.0208839i
\(446\) 0 0
\(447\) 18.2205 9.28381i 0.861801 0.439109i
\(448\) 0 0
\(449\) 36.8453i 1.73884i 0.494075 + 0.869419i \(0.335507\pi\)
−0.494075 + 0.869419i \(0.664493\pi\)
\(450\) 0 0
\(451\) 7.47542i 0.352004i
\(452\) 0 0
\(453\) 32.0826 16.3469i 1.50737 0.768046i
\(454\) 0 0
\(455\) −4.04134 26.2548i −0.189461 1.23084i
\(456\) 0 0
\(457\) 20.5195 20.5195i 0.959860 0.959860i −0.0393645 0.999225i \(-0.512533\pi\)
0.999225 + 0.0393645i \(0.0125333\pi\)
\(458\) 0 0
\(459\) −27.5965 20.0500i −1.28809 0.935856i
\(460\) 0 0
\(461\) −20.1162 + 14.6153i −0.936903 + 0.680700i −0.947673 0.319242i \(-0.896572\pi\)
0.0107699 + 0.999942i \(0.496572\pi\)
\(462\) 0 0
\(463\) −41.3445 + 6.54832i −1.92144 + 0.304326i −0.997026 0.0770638i \(-0.975445\pi\)
−0.924414 + 0.381390i \(0.875445\pi\)
\(464\) 0 0
\(465\) 10.0686 + 0.0438074i 0.466920 + 0.00203152i
\(466\) 0 0
\(467\) 7.38246 14.4889i 0.341620 0.670466i −0.654727 0.755865i \(-0.727217\pi\)
0.996347 + 0.0853991i \(0.0272165\pi\)
\(468\) 0 0
\(469\) 21.6740 7.04229i 1.00081 0.325183i
\(470\) 0 0
\(471\) 4.01283 + 1.30385i 0.184902 + 0.0600782i
\(472\) 0 0
\(473\) −15.1013 2.39181i −0.694358 0.109976i
\(474\) 0 0
\(475\) 16.5110 5.20635i 0.757576 0.238884i
\(476\) 0 0
\(477\) 0.243938 1.54016i 0.0111692 0.0705193i
\(478\) 0 0
\(479\) −2.20447 + 6.78465i −0.100725 + 0.309998i −0.988703 0.149886i \(-0.952109\pi\)
0.887979 + 0.459885i \(0.152109\pi\)
\(480\) 0 0
\(481\) −3.87816 11.9358i −0.176829 0.544224i
\(482\) 0 0
\(483\) −3.90524 1.98982i −0.177695 0.0905400i
\(484\) 0 0
\(485\) 32.5567 + 10.7351i 1.47832 + 0.487457i
\(486\) 0 0
\(487\) −5.13557 32.4247i −0.232715 1.46930i −0.776520 0.630092i \(-0.783017\pi\)
0.543806 0.839211i \(-0.316983\pi\)
\(488\) 0 0
\(489\) −19.2260 26.4624i −0.869432 1.19667i
\(490\) 0 0
\(491\) −1.51395 + 2.08378i −0.0683238 + 0.0940396i −0.841811 0.539772i \(-0.818511\pi\)
0.773488 + 0.633811i \(0.218511\pi\)
\(492\) 0 0
\(493\) 7.92465 + 7.92465i 0.356908 + 0.356908i
\(494\) 0 0
\(495\) 0.387658 0.384300i 0.0174239 0.0172730i
\(496\) 0 0
\(497\) −15.5129 30.4458i −0.695848 1.36568i
\(498\) 0 0
\(499\) −29.4600 −1.31881 −0.659406 0.751787i \(-0.729192\pi\)
−0.659406 + 0.751787i \(0.729192\pi\)
\(500\) 0 0
\(501\) −42.3515 −1.89213
\(502\) 0 0
\(503\) −6.35254 12.4676i −0.283246 0.555902i 0.704921 0.709286i \(-0.250983\pi\)
−0.988167 + 0.153385i \(0.950983\pi\)
\(504\) 0 0
\(505\) 17.9091 17.7539i 0.796942 0.790038i
\(506\) 0 0
\(507\) 16.6722 + 16.6722i 0.740440 + 0.740440i
\(508\) 0 0
\(509\) −7.78677 + 10.7176i −0.345142 + 0.475048i −0.945935 0.324357i \(-0.894852\pi\)
0.600792 + 0.799405i \(0.294852\pi\)
\(510\) 0 0
\(511\) 4.87068 + 6.70392i 0.215466 + 0.296564i
\(512\) 0 0
\(513\) −2.75145 17.3720i −0.121479 0.766990i
\(514\) 0 0
\(515\) −2.58086 0.851006i −0.113726 0.0374998i
\(516\) 0 0
\(517\) 3.83583 + 1.95445i 0.168699 + 0.0859567i
\(518\) 0 0
\(519\) 7.06538 + 21.7450i 0.310136 + 0.954500i
\(520\) 0 0
\(521\) 7.91273 24.3529i 0.346663 1.06692i −0.614025 0.789287i \(-0.710450\pi\)
0.960688 0.277632i \(-0.0895495\pi\)
\(522\) 0 0
\(523\) 2.94267 18.5793i 0.128674 0.812416i −0.835954 0.548800i \(-0.815085\pi\)
0.964628 0.263616i \(-0.0849152\pi\)
\(524\) 0 0
\(525\) −19.4138 6.49522i −0.847287 0.283475i
\(526\) 0 0
\(527\) −16.8869 2.67462i −0.735604 0.116508i
\(528\) 0 0
\(529\) 20.7844 + 6.75327i 0.903670 + 0.293620i
\(530\) 0 0
\(531\) 1.36168 0.442437i 0.0590919 0.0192001i
\(532\) 0 0
\(533\) −9.11049 + 17.8803i −0.394619 + 0.774483i
\(534\) 0 0
\(535\) 41.3547 + 0.179930i 1.78792 + 0.00777905i
\(536\) 0 0
\(537\) 12.2534 1.94075i 0.528773 0.0837494i
\(538\) 0 0
\(539\) −2.53680 + 1.84309i −0.109268 + 0.0793875i
\(540\) 0 0
\(541\) 30.8738 + 22.4311i 1.32737 + 0.964390i 0.999809 + 0.0195594i \(0.00622636\pi\)
0.327560 + 0.944830i \(0.393774\pi\)
\(542\) 0 0
\(543\) 4.57479 4.57479i 0.196323 0.196323i
\(544\) 0 0
\(545\) 4.95733 + 32.2057i 0.212349 + 1.37954i
\(546\) 0 0
\(547\) −27.9167 + 14.2243i −1.19363 + 0.608186i −0.933914 0.357499i \(-0.883630\pi\)
−0.259718 + 0.965685i \(0.583630\pi\)
\(548\) 0 0
\(549\) 0.262916i 0.0112210i
\(550\) 0 0
\(551\) 5.77866i 0.246179i
\(552\) 0 0
\(553\) −9.03687 + 4.60451i −0.384287 + 0.195804i
\(554\) 0 0
\(555\) −9.54588 1.55452i −0.405200 0.0659859i
\(556\) 0 0
\(557\) −24.8337 + 24.8337i −1.05224 + 1.05224i −0.0536800 + 0.998558i \(0.517095\pi\)
−0.998558 + 0.0536800i \(0.982905\pi\)
\(558\) 0 0
\(559\) −33.2056 24.1253i −1.40445 1.02039i
\(560\) 0 0
\(561\) −18.3657 + 13.3435i −0.775402 + 0.563363i
\(562\) 0 0
\(563\) 5.00149 0.792158i 0.210788 0.0333855i −0.0501475 0.998742i \(-0.515969\pi\)
0.260935 + 0.965356i \(0.415969\pi\)
\(564\) 0 0
\(565\) −5.09266 3.73399i −0.214250 0.157090i
\(566\) 0 0
\(567\) −9.84477 + 19.3214i −0.413441 + 0.811424i
\(568\) 0 0
\(569\) −41.8606 + 13.6013i −1.75489 + 0.570197i −0.996650 0.0817818i \(-0.973939\pi\)
−0.758237 + 0.651979i \(0.773939\pi\)
\(570\) 0 0
\(571\) −23.8146 7.73782i −0.996608 0.323818i −0.235099 0.971972i \(-0.575541\pi\)
−0.761509 + 0.648154i \(0.775541\pi\)
\(572\) 0 0
\(573\) −24.6447 3.90334i −1.02955 0.163064i
\(574\) 0 0
\(575\) −5.27912 0.883287i −0.220155 0.0368356i
\(576\) 0 0
\(577\) −2.44309 + 15.4251i −0.101707 + 0.642154i 0.883190 + 0.469015i \(0.155391\pi\)
−0.984897 + 0.173139i \(0.944609\pi\)
\(578\) 0 0
\(579\) 11.5017 35.3986i 0.477995 1.47112i
\(580\) 0 0
\(581\) 12.4792 + 38.4071i 0.517726 + 1.59340i
\(582\) 0 0
\(583\) 20.7968 + 10.5965i 0.861314 + 0.438862i
\(584\) 0 0
\(585\) 1.39559 0.446751i 0.0577005 0.0184709i
\(586\) 0 0
\(587\) 3.77597 + 23.8405i 0.155851 + 0.984004i 0.934350 + 0.356358i \(0.115982\pi\)
−0.778499 + 0.627646i \(0.784018\pi\)
\(588\) 0 0
\(589\) −5.18180 7.13213i −0.213512 0.293874i
\(590\) 0 0
\(591\) 13.1310 18.0733i 0.540139 0.743437i
\(592\) 0 0
\(593\) −9.90078 9.90078i −0.406576 0.406576i 0.473967 0.880543i \(-0.342822\pi\)
−0.880543 + 0.473967i \(0.842822\pi\)
\(594\) 0 0
\(595\) 30.9044 + 15.9163i 1.26696 + 0.652505i
\(596\) 0 0
\(597\) −3.65411 7.17159i −0.149553 0.293514i
\(598\) 0 0
\(599\) 2.63535 0.107678 0.0538388 0.998550i \(-0.482854\pi\)
0.0538388 + 0.998550i \(0.482854\pi\)
\(600\) 0 0
\(601\) −27.5274 −1.12287 −0.561433 0.827522i \(-0.689750\pi\)
−0.561433 + 0.827522i \(0.689750\pi\)
\(602\) 0 0
\(603\) 0.570725 + 1.12011i 0.0232417 + 0.0456144i
\(604\) 0 0
\(605\) −7.39359 14.6682i −0.300592 0.596346i
\(606\) 0 0
\(607\) 12.2589 + 12.2589i 0.497575 + 0.497575i 0.910682 0.413107i \(-0.135557\pi\)
−0.413107 + 0.910682i \(0.635557\pi\)
\(608\) 0 0
\(609\) 4.01642 5.52812i 0.162753 0.224011i
\(610\) 0 0
\(611\) 6.79291 + 9.34964i 0.274812 + 0.378246i
\(612\) 0 0
\(613\) −3.40746 21.5139i −0.137626 0.868938i −0.955811 0.293982i \(-0.905019\pi\)
0.818185 0.574955i \(-0.194981\pi\)
\(614\) 0 0
\(615\) 9.03559 + 12.5509i 0.364350 + 0.506101i
\(616\) 0 0
\(617\) −5.88424 2.99817i −0.236891 0.120702i 0.331516 0.943450i \(-0.392440\pi\)
−0.568407 + 0.822748i \(0.692440\pi\)
\(618\) 0 0
\(619\) −13.7716 42.3846i −0.553528 1.70358i −0.699800 0.714338i \(-0.746728\pi\)
0.146273 0.989244i \(-0.453272\pi\)
\(620\) 0 0
\(621\) −1.68040 + 5.17172i −0.0674319 + 0.207534i
\(622\) 0 0
\(623\) 0.443924 2.80282i 0.0177854 0.112293i
\(624\) 0 0
\(625\) −24.9962 0.435065i −0.999849 0.0174026i
\(626\) 0 0
\(627\) −11.5612 1.83111i −0.461710 0.0731276i
\(628\) 0 0
\(629\) 15.6193 + 5.07503i 0.622784 + 0.202355i
\(630\) 0 0
\(631\) −7.02958 + 2.28405i −0.279843 + 0.0909265i −0.445576 0.895244i \(-0.647001\pi\)
0.165733 + 0.986171i \(0.447001\pi\)
\(632\) 0 0
\(633\) −5.63731 + 11.0638i −0.224063 + 0.439748i
\(634\) 0 0
\(635\) 28.9065 20.8103i 1.14712 0.825831i
\(636\) 0 0
\(637\) −8.31394 + 1.31680i −0.329410 + 0.0521735i
\(638\) 0 0
\(639\) 1.52494 1.10793i 0.0603255 0.0438291i
\(640\) 0 0
\(641\) 7.88973 + 5.73223i 0.311626 + 0.226409i 0.732594 0.680666i \(-0.238310\pi\)
−0.420968 + 0.907075i \(0.638310\pi\)
\(642\) 0 0
\(643\) 28.0440 28.0440i 1.10595 1.10595i 0.112270 0.993678i \(-0.464188\pi\)
0.993678 0.112270i \(-0.0358122\pi\)
\(644\) 0 0
\(645\) −28.2454 + 14.2373i −1.11216 + 0.560593i
\(646\) 0 0
\(647\) −14.9306 + 7.60751i −0.586982 + 0.299082i −0.722146 0.691741i \(-0.756844\pi\)
0.135164 + 0.990823i \(0.456844\pi\)
\(648\) 0 0
\(649\) 21.4307i 0.841229i
\(650\) 0 0
\(651\) 10.4245i 0.408568i
\(652\) 0 0
\(653\) 20.2493 10.3175i 0.792417 0.403757i −0.0104270 0.999946i \(-0.503319\pi\)
0.802844 + 0.596189i \(0.203319\pi\)
\(654\) 0 0
\(655\) −4.64592 + 9.02089i −0.181531 + 0.352475i
\(656\) 0 0
\(657\) −0.323224 + 0.323224i −0.0126102 + 0.0126102i
\(658\) 0 0
\(659\) 27.2858 + 19.8243i 1.06290 + 0.772244i 0.974623 0.223852i \(-0.0718632\pi\)
0.0882794 + 0.996096i \(0.471863\pi\)
\(660\) 0 0
\(661\) −33.0378 + 24.0033i −1.28502 + 0.933622i −0.999692 0.0248083i \(-0.992102\pi\)
−0.285328 + 0.958430i \(0.592102\pi\)
\(662\) 0 0
\(663\) −60.1908 + 9.53328i −2.33762 + 0.370242i
\(664\) 0 0
\(665\) 5.46465 + 17.0708i 0.211910 + 0.661978i
\(666\) 0 0
\(667\) 0.811100 1.59187i 0.0314059 0.0616376i
\(668\) 0 0
\(669\) 24.6074 7.99542i 0.951376 0.309121i
\(670\) 0 0
\(671\) 3.74275 + 1.21609i 0.144487 + 0.0469468i
\(672\) 0 0
\(673\) −6.65972 1.05480i −0.256713 0.0406594i 0.0267512 0.999642i \(-0.491484\pi\)
−0.283465 + 0.958983i \(0.591484\pi\)
\(674\) 0 0
\(675\) −4.19137 + 25.0505i −0.161326 + 0.964194i
\(676\) 0 0
\(677\) 6.38634 40.3217i 0.245447 1.54969i −0.489766 0.871854i \(-0.662918\pi\)
0.735213 0.677836i \(-0.237082\pi\)
\(678\) 0 0
\(679\) −10.9677 + 33.7552i −0.420903 + 1.29541i
\(680\) 0 0
\(681\) 9.92072 + 30.5328i 0.380163 + 1.17002i
\(682\) 0 0
\(683\) 23.8558 + 12.1551i 0.912818 + 0.465104i 0.846315 0.532683i \(-0.178816\pi\)
0.0665024 + 0.997786i \(0.478816\pi\)
\(684\) 0 0
\(685\) −2.10403 + 2.86961i −0.0803908 + 0.109642i
\(686\) 0 0
\(687\) 5.40691 + 34.1379i 0.206286 + 1.30244i
\(688\) 0 0
\(689\) 36.8293 + 50.6911i 1.40308 + 1.93118i
\(690\) 0 0
\(691\) 10.0700 13.8601i 0.383079 0.527263i −0.573318 0.819333i \(-0.694344\pi\)
0.956397 + 0.292070i \(0.0943439\pi\)
\(692\) 0 0
\(693\) 0.399622 + 0.399622i 0.0151804 + 0.0151804i
\(694\) 0 0
\(695\) 0.320275 1.96672i 0.0121487 0.0746019i
\(696\) 0 0
\(697\) −11.9221 23.3985i −0.451583 0.886282i
\(698\) 0 0
\(699\) 23.2239 0.878409
\(700\) 0 0
\(701\) −15.5330 −0.586675 −0.293337 0.956009i \(-0.594766\pi\)
−0.293337 + 0.956009i \(0.594766\pi\)
\(702\) 0 0
\(703\) 3.84446 + 7.54518i 0.144997 + 0.284572i
\(704\) 0 0
\(705\) 8.80255 1.35495i 0.331523 0.0510305i
\(706\) 0 0
\(707\) 18.4618 + 18.4618i 0.694326 + 0.694326i
\(708\) 0 0
\(709\) 13.1370 18.0816i 0.493371 0.679067i −0.487634 0.873048i \(-0.662140\pi\)
0.981005 + 0.193981i \(0.0621400\pi\)
\(710\) 0 0
\(711\) −0.328854 0.452629i −0.0123330 0.0169749i
\(712\) 0 0
\(713\) 0.426378 + 2.69204i 0.0159680 + 0.100818i
\(714\) 0 0
\(715\) −0.0954300 + 21.9334i −0.00356888 + 0.820263i
\(716\) 0 0
\(717\) 7.28953 + 3.71420i 0.272232 + 0.138709i
\(718\) 0 0
\(719\) −5.66246 17.4272i −0.211174 0.649927i −0.999403 0.0345449i \(-0.989002\pi\)
0.788229 0.615382i \(-0.210998\pi\)
\(720\) 0 0
\(721\) 0.869444 2.67587i 0.0323798 0.0996547i
\(722\) 0 0
\(723\) 6.22035 39.2738i 0.231337 1.46061i
\(724\) 0 0
\(725\) 2.64761 7.91353i 0.0983298 0.293901i
\(726\) 0 0
\(727\) 20.0537 + 3.17619i 0.743749 + 0.117798i 0.516797 0.856108i \(-0.327124\pi\)
0.226951 + 0.973906i \(0.427124\pi\)
\(728\) 0 0
\(729\) 24.4943 + 7.95869i 0.907197 + 0.294766i
\(730\) 0 0
\(731\) 51.0826 16.5977i 1.88936 0.613889i
\(732\) 0 0
\(733\) 14.2639 27.9944i 0.526848 1.03400i −0.462252 0.886749i \(-0.652958\pi\)
0.989100 0.147248i \(-0.0470415\pi\)
\(734\) 0 0
\(735\) −2.03141 + 6.16071i −0.0749298 + 0.227241i
\(736\) 0 0
\(737\) −18.5852 + 2.94361i −0.684595 + 0.108429i
\(738\) 0 0
\(739\) −2.90158 + 2.10812i −0.106736 + 0.0775486i −0.639873 0.768481i \(-0.721013\pi\)
0.533137 + 0.846029i \(0.321013\pi\)
\(740\) 0 0
\(741\) −25.4214 18.4697i −0.933879 0.678503i
\(742\) 0 0
\(743\) 10.7663 10.7663i 0.394978 0.394978i −0.481479 0.876458i \(-0.659900\pi\)
0.876458 + 0.481479i \(0.159900\pi\)
\(744\) 0 0
\(745\) 18.2028 + 18.3619i 0.666900 + 0.672729i
\(746\) 0 0
\(747\) −1.98488 + 1.01135i −0.0726230 + 0.0370033i
\(748\) 0 0
\(749\) 42.8164i 1.56448i
\(750\) 0 0
\(751\) 36.9923i 1.34987i 0.737878 + 0.674934i \(0.235828\pi\)
−0.737878 + 0.674934i \(0.764172\pi\)
\(752\) 0 0
\(753\) 15.7228 8.01118i 0.572972 0.291944i
\(754\) 0 0
\(755\) 32.0515 + 32.3316i 1.16647 + 1.17667i
\(756\) 0 0
\(757\) −5.41056 + 5.41056i −0.196650 + 0.196650i −0.798562 0.601912i \(-0.794406\pi\)
0.601912 + 0.798562i \(0.294406\pi\)
\(758\) 0 0
\(759\) 2.92780 + 2.12717i 0.106272 + 0.0772113i
\(760\) 0 0
\(761\) −14.0563 + 10.2125i −0.509539 + 0.370202i −0.812649 0.582754i \(-0.801975\pi\)
0.303109 + 0.952956i \(0.401975\pi\)
\(762\) 0 0
\(763\) −33.3211 + 5.27754i −1.20630 + 0.191060i
\(764\) 0 0
\(765\) −0.600496 + 1.82114i −0.0217110 + 0.0658433i
\(766\) 0 0
\(767\) −26.1182 + 51.2598i −0.943072 + 1.85088i
\(768\) 0 0
\(769\) −13.3053 + 4.32317i −0.479803 + 0.155897i −0.538926 0.842353i \(-0.681170\pi\)
0.0591228 + 0.998251i \(0.481170\pi\)
\(770\) 0 0
\(771\) −22.1007 7.18096i −0.795938 0.258616i
\(772\) 0 0
\(773\) −18.2188 2.88557i −0.655284 0.103787i −0.180066 0.983655i \(-0.557631\pi\)
−0.475219 + 0.879868i \(0.657631\pi\)
\(774\) 0 0
\(775\) 3.82843 + 12.1412i 0.137521 + 0.436124i
\(776\) 0 0
\(777\) 1.56644 9.89012i 0.0561958 0.354806i
\(778\) 0 0
\(779\) 4.18429 12.8779i 0.149918 0.461400i
\(780\) 0 0
\(781\) 8.71855 + 26.8329i 0.311974 + 0.960158i
\(782\) 0 0
\(783\) −7.55375 3.84883i −0.269949 0.137546i
\(784\) 0 0
\(785\) −0.0232109 + 5.33473i −0.000828432 + 0.190405i
\(786\) 0 0
\(787\) 4.35561 + 27.5002i 0.155261 + 0.980277i 0.935122 + 0.354325i \(0.115289\pi\)
−0.779862 + 0.625952i \(0.784711\pi\)
\(788\) 0 0
\(789\) −5.22360 7.18967i −0.185965 0.255959i
\(790\) 0 0
\(791\) 3.84297 5.28939i 0.136640 0.188069i
\(792\) 0 0
\(793\) 7.47014 + 7.47014i 0.265273 + 0.265273i
\(794\) 0 0
\(795\) 47.7249 7.34618i 1.69263 0.260542i
\(796\) 0 0
\(797\) 0.947071 + 1.85873i 0.0335470 + 0.0658397i 0.907172 0.420761i \(-0.138237\pi\)
−0.873625 + 0.486600i \(0.838237\pi\)
\(798\) 0 0
\(799\) −15.1234 −0.535028
\(800\) 0 0
\(801\) 0.156539 0.00553105
\(802\) 0 0
\(803\) −3.10623 6.09633i −0.109617 0.215135i
\(804\) 0 0
\(805\) 0.890711 5.46960i 0.0313934 0.192778i
\(806\) 0 0
\(807\) −6.89593 6.89593i −0.242748 0.242748i
\(808\) 0 0
\(809\) 6.47075 8.90622i 0.227499 0.313126i −0.679973 0.733237i \(-0.738009\pi\)
0.907473 + 0.420111i \(0.138009\pi\)
\(810\) 0 0
\(811\) 32.8255 + 45.1804i 1.15266 + 1.58650i 0.735276 + 0.677768i \(0.237053\pi\)
0.417383 + 0.908731i \(0.362947\pi\)
\(812\) 0 0
\(813\) −2.77002 17.4892i −0.0971488 0.613373i
\(814\) 0 0
\(815\) 24.4541 33.3520i 0.856588 1.16827i
\(816\) 0 0
\(817\) 24.6763 + 12.5732i 0.863313 + 0.439880i
\(818\) 0 0
\(819\) 0.468820 + 1.44288i 0.0163819 + 0.0504183i
\(820\) 0 0
\(821\) 12.1155 37.2876i 0.422833 1.30135i −0.482221 0.876049i \(-0.660170\pi\)
0.905054 0.425296i \(-0.139830\pi\)
\(822\) 0 0
\(823\) −1.70819 + 10.7851i −0.0595438 + 0.375945i 0.939864 + 0.341548i \(0.110951\pi\)
−0.999408 + 0.0343970i \(0.989049\pi\)
\(824\) 0 0
\(825\) 14.9934 + 7.80460i 0.522004 + 0.271721i
\(826\) 0 0
\(827\) −54.7925 8.67827i −1.90532 0.301773i −0.911369 0.411591i \(-0.864973\pi\)
−0.993952 + 0.109818i \(0.964973\pi\)
\(828\) 0 0
\(829\) 33.2430 + 10.8013i 1.15458 + 0.375145i 0.822865 0.568236i \(-0.192374\pi\)
0.331711 + 0.943381i \(0.392374\pi\)
\(830\) 0 0
\(831\) 20.1581 6.54975i 0.699275 0.227208i
\(832\) 0 0
\(833\) 5.00088 9.81478i 0.173270 0.340062i
\(834\) 0 0
\(835\) −16.3254 50.9984i −0.564964 1.76487i
\(836\) 0 0
\(837\) 12.7743 2.02325i 0.441544 0.0699337i
\(838\) 0 0
\(839\) 4.37152 3.17609i 0.150922 0.109651i −0.509762 0.860315i \(-0.670267\pi\)
0.660684 + 0.750665i \(0.270267\pi\)
\(840\) 0 0
\(841\) −21.2081 15.4086i −0.731314 0.531330i
\(842\) 0 0
\(843\) 15.1985 15.1985i 0.523464 0.523464i
\(844\) 0 0
\(845\) −13.6495 + 26.5029i −0.469557 + 0.911729i
\(846\) 0 0
\(847\) 15.1531 7.72087i 0.520665 0.265292i
\(848\) 0 0
\(849\) 26.1901i 0.898840i
\(850\) 0 0
\(851\) 2.61812i 0.0897479i
\(852\) 0 0
\(853\) −1.38358 + 0.704971i −0.0473730 + 0.0241377i −0.477517 0.878623i \(-0.658463\pi\)
0.430144 + 0.902761i \(0.358463\pi\)
\(854\) 0 0
\(855\) −0.882928 + 0.445046i −0.0301955 + 0.0152203i
\(856\) 0 0
\(857\) −9.74010 + 9.74010i −0.332716 + 0.332716i −0.853617 0.520901i \(-0.825596\pi\)
0.520901 + 0.853617i \(0.325596\pi\)
\(858\) 0 0
\(859\) 24.4862 + 17.7903i 0.835458 + 0.606996i 0.921098 0.389331i \(-0.127294\pi\)
−0.0856403 + 0.996326i \(0.527294\pi\)
\(860\) 0 0
\(861\) −12.9536 + 9.41134i −0.441457 + 0.320737i
\(862\) 0 0
\(863\) 31.1887 4.93981i 1.06168 0.168153i 0.398918 0.916987i \(-0.369386\pi\)
0.662758 + 0.748834i \(0.269386\pi\)
\(864\) 0 0
\(865\) −23.4612 + 16.8901i −0.797704 + 0.574280i
\(866\) 0 0
\(867\) 22.5558 44.2683i 0.766036 1.50343i
\(868\) 0 0
\(869\) 7.96452 2.58783i 0.270178 0.0877861i
\(870\) 0 0
\(871\) −48.0411 15.6095i −1.62781 0.528908i
\(872\) 0 0
\(873\) −1.93376 0.306277i −0.0654478 0.0103659i
\(874\) 0 0
\(875\) 0.337837 25.8812i 0.0114210 0.874945i
\(876\) 0 0
\(877\) −1.68458 + 10.6360i −0.0568843 + 0.359154i 0.942784 + 0.333404i \(0.108197\pi\)
−0.999668 + 0.0257497i \(0.991803\pi\)
\(878\) 0 0
\(879\) −1.00768 + 3.10133i −0.0339883 + 0.104605i
\(880\) 0 0
\(881\) −6.51130 20.0397i −0.219371 0.675155i −0.998814 0.0486820i \(-0.984498\pi\)
0.779443 0.626473i \(-0.215502\pi\)
\(882\) 0 0
\(883\) −22.8713 11.6535i −0.769680 0.392171i 0.0246204 0.999697i \(-0.492162\pi\)
−0.794300 + 0.607525i \(0.792162\pi\)
\(884\) 0 0
\(885\) 25.9035 + 35.9812i 0.870736 + 1.20950i
\(886\) 0 0
\(887\) 3.32841 + 21.0148i 0.111757 + 0.705607i 0.978407 + 0.206690i \(0.0662690\pi\)
−0.866649 + 0.498918i \(0.833731\pi\)
\(888\) 0 0
\(889\) 21.6757 + 29.8340i 0.726979 + 1.00060i
\(890\) 0 0
\(891\) 10.5243 14.4855i 0.352577 0.485281i
\(892\) 0 0
\(893\) −5.51401 5.51401i −0.184519 0.184519i
\(894\) 0 0
\(895\) 7.06036 + 14.0071i 0.236002 + 0.468204i
\(896\) 0 0
\(897\) 4.41051 + 8.65612i 0.147263 + 0.289019i
\(898\) 0 0
\(899\) −4.24928 −0.141721
\(900\) 0 0
\(901\) −81.9949 −2.73165
\(902\) 0 0
\(903\) −14.8675 29.1791i −0.494760 0.971020i
\(904\) 0 0
\(905\) 7.27228 + 3.74536i 0.241739 + 0.124500i
\(906\) 0 0
\(907\) 3.71790 + 3.71790i 0.123451 + 0.123451i 0.766133 0.642682i \(-0.222178\pi\)
−0.642682 + 0.766133i \(0.722178\pi\)
\(908\) 0 0
\(909\) −0.846554 + 1.16518i −0.0280784 + 0.0386467i
\(910\) 0 0
\(911\) 34.6026 + 47.6263i 1.14643 + 1.57793i 0.752220 + 0.658913i \(0.228983\pi\)
0.394214 + 0.919018i \(0.371017\pi\)
\(912\) 0 0
\(913\) −5.21620 32.9338i −0.172631 1.08995i
\(914\) 0 0
\(915\) 7.75382 2.48212i 0.256333 0.0820565i
\(916\) 0 0
\(917\) −9.36051 4.76942i −0.309111 0.157500i
\(918\) 0 0
\(919\) 1.60613 + 4.94315i 0.0529812 + 0.163060i 0.974046 0.226350i \(-0.0726792\pi\)
−0.921065 + 0.389409i \(0.872679\pi\)
\(920\) 0 0
\(921\) −7.01771 + 21.5983i −0.231242 + 0.711688i
\(922\) 0 0
\(923\) −11.8482 + 74.8068i −0.389989 + 2.46230i
\(924\) 0 0
\(925\) −1.80778 12.0941i −0.0594395 0.397651i
\(926\) 0 0
\(927\) 0.153295 + 0.0242795i 0.00503486 + 0.000797443i
\(928\) 0 0
\(929\) −20.4118 6.63220i −0.669690 0.217596i −0.0456141 0.998959i \(-0.514524\pi\)
−0.624076 + 0.781364i \(0.714524\pi\)
\(930\) 0 0
\(931\) 5.40180 1.75515i 0.177037 0.0575227i
\(932\) 0 0
\(933\) −10.8356 + 21.2661i −0.354742 + 0.696220i
\(934\) 0 0
\(935\) −23.1473 16.9719i −0.756999 0.555040i
\(936\) 0 0
\(937\) −8.73364 + 1.38327i −0.285316 + 0.0451895i −0.297452 0.954737i \(-0.596137\pi\)
0.0121363 + 0.999926i \(0.496137\pi\)
\(938\) 0 0
\(939\) −7.83176 + 5.69010i −0.255580 + 0.185690i
\(940\) 0 0
\(941\) 23.9277 + 17.3845i 0.780021 + 0.566719i 0.904985 0.425443i \(-0.139882\pi\)
−0.124964 + 0.992161i \(0.539882\pi\)
\(942\) 0 0
\(943\) −2.96023 + 2.96023i −0.0963982 + 0.0963982i
\(944\) 0 0
\(945\) −25.9543 4.22660i −0.844295 0.137491i
\(946\) 0 0
\(947\) −11.3470 + 5.78157i −0.368727 + 0.187876i −0.628529 0.777786i \(-0.716343\pi\)
0.259802 + 0.965662i \(0.416343\pi\)
\(948\) 0 0
\(949\) 18.3673i 0.596229i
\(950\) 0 0
\(951\) 55.3092i 1.79352i
\(952\) 0 0
\(953\) −10.6704 + 5.43682i −0.345647 + 0.176116i −0.618192 0.786027i \(-0.712135\pi\)
0.272545 + 0.962143i \(0.412135\pi\)
\(954\) 0 0
\(955\) −4.79962 31.1811i −0.155312 1.00900i
\(956\) 0 0
\(957\) −3.98952 + 3.98952i −0.128963 + 0.128963i
\(958\) 0 0
\(959\) −2.98046 2.16543i −0.0962442 0.0699255i
\(960\) 0 0
\(961\) −19.8350 + 14.4110i −0.639838 + 0.464870i
\(962\) 0 0
\(963\) −2.33280 + 0.369480i −0.0751736 + 0.0119063i
\(964\) 0 0
\(965\) 47.0596 + 0.204752i 1.51490 + 0.00659118i
\(966\) 0 0
\(967\) −17.8583 + 35.0489i −0.574284 + 1.12710i 0.403008 + 0.915197i \(0.367965\pi\)
−0.977292 + 0.211899i \(0.932035\pi\)
\(968\) 0 0
\(969\) 39.1076 12.7068i 1.25632 0.408202i
\(970\) 0 0
\(971\) −30.3771 9.87011i −0.974846 0.316747i −0.222076 0.975029i \(-0.571283\pi\)
−0.752771 + 0.658283i \(0.771283\pi\)
\(972\) 0 0
\(973\) 2.03764 + 0.322730i 0.0653237 + 0.0103463i
\(974\) 0 0
\(975\) 26.3508 + 36.9406i 0.843902 + 1.18304i
\(976\) 0 0
\(977\) 1.13690 7.17811i 0.0363727 0.229648i −0.962805 0.270198i \(-0.912911\pi\)
0.999178 + 0.0405496i \(0.0129109\pi\)
\(978\) 0 0
\(979\) −0.724059 + 2.22843i −0.0231410 + 0.0712208i
\(980\) 0 0
\(981\) −0.575081 1.76992i −0.0183609 0.0565092i
\(982\) 0 0
\(983\) 2.63672 + 1.34348i 0.0840984 + 0.0428503i 0.495534 0.868589i \(-0.334972\pi\)
−0.411435 + 0.911439i \(0.634972\pi\)
\(984\) 0 0
\(985\) 26.8250 + 8.84520i 0.854717 + 0.281832i
\(986\) 0 0
\(987\) 1.44247 + 9.10741i 0.0459144 + 0.289892i
\(988\) 0 0
\(989\) −5.03289 6.92718i −0.160037 0.220271i
\(990\) 0 0
\(991\) −7.22323 + 9.94193i −0.229454 + 0.315816i −0.908184 0.418572i \(-0.862531\pi\)
0.678730 + 0.734388i \(0.262531\pi\)
\(992\) 0 0
\(993\) −37.7460 37.7460i −1.19783 1.19783i
\(994\) 0 0
\(995\) 7.22725 7.16463i 0.229119 0.227134i
\(996\) 0 0
\(997\) −9.37501 18.3995i −0.296910 0.582718i 0.693568 0.720391i \(-0.256038\pi\)
−0.990478 + 0.137673i \(0.956038\pi\)
\(998\) 0 0
\(999\) −12.4235 −0.393062
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.2.bq.b.223.2 yes 56
4.3 odd 2 800.2.bq.a.223.6 56
25.12 odd 20 800.2.bq.a.287.6 yes 56
100.87 even 20 inner 800.2.bq.b.287.2 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
800.2.bq.a.223.6 56 4.3 odd 2
800.2.bq.a.287.6 yes 56 25.12 odd 20
800.2.bq.b.223.2 yes 56 1.1 even 1 trivial
800.2.bq.b.287.2 yes 56 100.87 even 20 inner