Properties

Label 800.2.bq.c.223.5
Level $800$
Weight $2$
Character 800.223
Analytic conductor $6.388$
Analytic rank $0$
Dimension $64$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,2,Mod(63,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([10, 0, 19]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.63");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 800.bq (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.38803216170\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(8\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 223.5
Character \(\chi\) \(=\) 800.223
Dual form 800.2.bq.c.287.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.366689 + 0.719668i) q^{3} +(-0.581776 - 2.15906i) q^{5} +(1.82087 + 1.82087i) q^{7} +(1.37989 - 1.89926i) q^{9} +(-2.56052 - 3.52425i) q^{11} +(-0.435508 - 2.74969i) q^{13} +(1.34048 - 1.21039i) q^{15} +(-3.87720 - 1.97553i) q^{17} +(-0.914631 - 2.81494i) q^{19} +(-0.642727 + 1.97811i) q^{21} +(-0.658396 + 4.15695i) q^{23} +(-4.32307 + 2.51218i) q^{25} +(4.26611 + 0.675685i) q^{27} +(1.54965 + 0.503512i) q^{29} +(10.0043 - 3.25059i) q^{31} +(1.59738 - 3.13503i) q^{33} +(2.87202 - 4.99069i) q^{35} +(3.29071 - 0.521197i) q^{37} +(1.81917 - 1.32170i) q^{39} +(-8.06571 - 5.86008i) q^{41} +(2.01659 - 2.01659i) q^{43} +(-4.90341 - 1.87433i) q^{45} +(-0.681030 + 0.347002i) q^{47} -0.368901i q^{49} -3.51471i q^{51} +(-4.65994 + 2.37436i) q^{53} +(-6.11942 + 7.57863i) q^{55} +(1.69044 - 1.69044i) q^{57} +(-0.111573 - 0.0810625i) q^{59} +(9.77366 - 7.10098i) q^{61} +(5.97090 - 0.945698i) q^{63} +(-5.68337 + 2.53999i) q^{65} +(2.64671 - 5.19446i) q^{67} +(-3.23305 + 1.05048i) q^{69} +(-0.559408 - 0.181763i) q^{71} +(15.0889 + 2.38985i) q^{73} +(-3.39316 - 2.18999i) q^{75} +(1.75483 - 11.0795i) q^{77} +(-3.31359 + 10.1982i) q^{79} +(-1.09829 - 3.38020i) q^{81} +(0.0483434 + 0.0246322i) q^{83} +(-2.00963 + 9.52042i) q^{85} +(0.205879 + 1.29987i) q^{87} +(8.88915 + 12.2349i) q^{89} +(4.21381 - 5.79981i) q^{91} +(6.00781 + 6.00781i) q^{93} +(-5.54552 + 3.61241i) q^{95} +(-5.19630 - 10.1983i) q^{97} -10.2267 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 2 q^{5} - 4 q^{7} + 4 q^{13} - 22 q^{15} + 8 q^{17} + 18 q^{19} - 16 q^{21} - 8 q^{23} + 40 q^{25} - 18 q^{27} + 20 q^{31} + 44 q^{33} - 38 q^{35} - 10 q^{37} + 36 q^{39} - 16 q^{41} - 32 q^{43}+ \cdots - 132 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{11}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.366689 + 0.719668i 0.211708 + 0.415501i 0.972302 0.233727i \(-0.0750922\pi\)
−0.760594 + 0.649228i \(0.775092\pi\)
\(4\) 0 0
\(5\) −0.581776 2.15906i −0.260178 0.965561i
\(6\) 0 0
\(7\) 1.82087 + 1.82087i 0.688222 + 0.688222i 0.961839 0.273617i \(-0.0882199\pi\)
−0.273617 + 0.961839i \(0.588220\pi\)
\(8\) 0 0
\(9\) 1.37989 1.89926i 0.459965 0.633087i
\(10\) 0 0
\(11\) −2.56052 3.52425i −0.772025 1.06260i −0.996118 0.0880330i \(-0.971942\pi\)
0.224093 0.974568i \(-0.428058\pi\)
\(12\) 0 0
\(13\) −0.435508 2.74969i −0.120788 0.762626i −0.971508 0.237007i \(-0.923834\pi\)
0.850720 0.525619i \(-0.176166\pi\)
\(14\) 0 0
\(15\) 1.34048 1.21039i 0.346109 0.312521i
\(16\) 0 0
\(17\) −3.87720 1.97553i −0.940359 0.479137i −0.0845448 0.996420i \(-0.526944\pi\)
−0.855815 + 0.517283i \(0.826944\pi\)
\(18\) 0 0
\(19\) −0.914631 2.81494i −0.209831 0.645792i −0.999480 0.0322345i \(-0.989738\pi\)
0.789650 0.613558i \(-0.210262\pi\)
\(20\) 0 0
\(21\) −0.642727 + 1.97811i −0.140255 + 0.431659i
\(22\) 0 0
\(23\) −0.658396 + 4.15695i −0.137285 + 0.866783i 0.818882 + 0.573962i \(0.194594\pi\)
−0.956167 + 0.292821i \(0.905406\pi\)
\(24\) 0 0
\(25\) −4.32307 + 2.51218i −0.864615 + 0.502435i
\(26\) 0 0
\(27\) 4.26611 + 0.675685i 0.821013 + 0.130036i
\(28\) 0 0
\(29\) 1.54965 + 0.503512i 0.287763 + 0.0934999i 0.449342 0.893360i \(-0.351659\pi\)
−0.161579 + 0.986860i \(0.551659\pi\)
\(30\) 0 0
\(31\) 10.0043 3.25059i 1.79682 0.583823i 0.797026 0.603945i \(-0.206405\pi\)
0.999798 + 0.0201213i \(0.00640523\pi\)
\(32\) 0 0
\(33\) 1.59738 3.13503i 0.278067 0.545738i
\(34\) 0 0
\(35\) 2.87202 4.99069i 0.485460 0.843581i
\(36\) 0 0
\(37\) 3.29071 0.521197i 0.540990 0.0856843i 0.120041 0.992769i \(-0.461697\pi\)
0.420948 + 0.907085i \(0.361697\pi\)
\(38\) 0 0
\(39\) 1.81917 1.32170i 0.291300 0.211642i
\(40\) 0 0
\(41\) −8.06571 5.86008i −1.25965 0.915191i −0.260912 0.965363i \(-0.584023\pi\)
−0.998741 + 0.0501717i \(0.984023\pi\)
\(42\) 0 0
\(43\) 2.01659 2.01659i 0.307527 0.307527i −0.536423 0.843950i \(-0.680225\pi\)
0.843950 + 0.536423i \(0.180225\pi\)
\(44\) 0 0
\(45\) −4.90341 1.87433i −0.730957 0.279409i
\(46\) 0 0
\(47\) −0.681030 + 0.347002i −0.0993384 + 0.0506154i −0.502954 0.864313i \(-0.667753\pi\)
0.403615 + 0.914929i \(0.367753\pi\)
\(48\) 0 0
\(49\) 0.368901i 0.0527001i
\(50\) 0 0
\(51\) 3.51471i 0.492157i
\(52\) 0 0
\(53\) −4.65994 + 2.37436i −0.640092 + 0.326143i −0.743738 0.668471i \(-0.766949\pi\)
0.103646 + 0.994614i \(0.466949\pi\)
\(54\) 0 0
\(55\) −6.11942 + 7.57863i −0.825142 + 1.02190i
\(56\) 0 0
\(57\) 1.69044 1.69044i 0.223904 0.223904i
\(58\) 0 0
\(59\) −0.111573 0.0810625i −0.0145256 0.0105534i 0.580499 0.814261i \(-0.302858\pi\)
−0.595024 + 0.803708i \(0.702858\pi\)
\(60\) 0 0
\(61\) 9.77366 7.10098i 1.25139 0.909188i 0.253088 0.967443i \(-0.418554\pi\)
0.998302 + 0.0582557i \(0.0185539\pi\)
\(62\) 0 0
\(63\) 5.97090 0.945698i 0.752263 0.119147i
\(64\) 0 0
\(65\) −5.68337 + 2.53999i −0.704936 + 0.315047i
\(66\) 0 0
\(67\) 2.64671 5.19446i 0.323347 0.634604i −0.670920 0.741530i \(-0.734101\pi\)
0.994267 + 0.106926i \(0.0341007\pi\)
\(68\) 0 0
\(69\) −3.23305 + 1.05048i −0.389213 + 0.126463i
\(70\) 0 0
\(71\) −0.559408 0.181763i −0.0663895 0.0215712i 0.275634 0.961263i \(-0.411112\pi\)
−0.342023 + 0.939691i \(0.611112\pi\)
\(72\) 0 0
\(73\) 15.0889 + 2.38985i 1.76603 + 0.279711i 0.953100 0.302655i \(-0.0978730\pi\)
0.812927 + 0.582366i \(0.197873\pi\)
\(74\) 0 0
\(75\) −3.39316 2.18999i −0.391808 0.252878i
\(76\) 0 0
\(77\) 1.75483 11.0795i 0.199981 1.26263i
\(78\) 0 0
\(79\) −3.31359 + 10.1982i −0.372808 + 1.14738i 0.572138 + 0.820157i \(0.306114\pi\)
−0.944946 + 0.327227i \(0.893886\pi\)
\(80\) 0 0
\(81\) −1.09829 3.38020i −0.122033 0.375578i
\(82\) 0 0
\(83\) 0.0483434 + 0.0246322i 0.00530638 + 0.00270374i 0.456642 0.889651i \(-0.349052\pi\)
−0.451335 + 0.892354i \(0.649052\pi\)
\(84\) 0 0
\(85\) −2.00963 + 9.52042i −0.217975 + 1.03263i
\(86\) 0 0
\(87\) 0.205879 + 1.29987i 0.0220725 + 0.139360i
\(88\) 0 0
\(89\) 8.88915 + 12.2349i 0.942248 + 1.29689i 0.954886 + 0.296973i \(0.0959773\pi\)
−0.0126374 + 0.999920i \(0.504023\pi\)
\(90\) 0 0
\(91\) 4.21381 5.79981i 0.441727 0.607986i
\(92\) 0 0
\(93\) 6.00781 + 6.00781i 0.622981 + 0.622981i
\(94\) 0 0
\(95\) −5.54552 + 3.61241i −0.568959 + 0.370625i
\(96\) 0 0
\(97\) −5.19630 10.1983i −0.527604 1.03548i −0.988948 0.148260i \(-0.952633\pi\)
0.461344 0.887221i \(-0.347367\pi\)
\(98\) 0 0
\(99\) −10.2267 −1.02782
\(100\) 0 0
\(101\) −14.4256 −1.43540 −0.717698 0.696354i \(-0.754804\pi\)
−0.717698 + 0.696354i \(0.754804\pi\)
\(102\) 0 0
\(103\) 8.37053 + 16.4281i 0.824773 + 1.61871i 0.784997 + 0.619500i \(0.212664\pi\)
0.0397759 + 0.999209i \(0.487336\pi\)
\(104\) 0 0
\(105\) 4.64478 + 0.236870i 0.453284 + 0.0231161i
\(106\) 0 0
\(107\) 4.91292 + 4.91292i 0.474950 + 0.474950i 0.903512 0.428562i \(-0.140980\pi\)
−0.428562 + 0.903512i \(0.640980\pi\)
\(108\) 0 0
\(109\) −4.61263 + 6.34874i −0.441810 + 0.608099i −0.970613 0.240645i \(-0.922641\pi\)
0.528803 + 0.848744i \(0.322641\pi\)
\(110\) 0 0
\(111\) 1.58176 + 2.17710i 0.150134 + 0.206641i
\(112\) 0 0
\(113\) 1.14268 + 7.21461i 0.107494 + 0.678693i 0.981310 + 0.192435i \(0.0616385\pi\)
−0.873815 + 0.486258i \(0.838361\pi\)
\(114\) 0 0
\(115\) 9.35813 0.996894i 0.872650 0.0929609i
\(116\) 0 0
\(117\) −5.82333 2.96714i −0.538367 0.274312i
\(118\) 0 0
\(119\) −3.46268 10.6570i −0.317424 0.976929i
\(120\) 0 0
\(121\) −2.46490 + 7.58617i −0.224081 + 0.689652i
\(122\) 0 0
\(123\) 1.25971 7.95347i 0.113584 0.717140i
\(124\) 0 0
\(125\) 7.93900 + 7.87225i 0.710085 + 0.704116i
\(126\) 0 0
\(127\) −4.84973 0.768122i −0.430344 0.0681598i −0.0624949 0.998045i \(-0.519906\pi\)
−0.367849 + 0.929885i \(0.619906\pi\)
\(128\) 0 0
\(129\) 2.19074 + 0.711814i 0.192884 + 0.0626717i
\(130\) 0 0
\(131\) −2.58638 + 0.840365i −0.225973 + 0.0734231i −0.419815 0.907610i \(-0.637905\pi\)
0.193842 + 0.981033i \(0.437905\pi\)
\(132\) 0 0
\(133\) 3.46021 6.79105i 0.300039 0.588859i
\(134\) 0 0
\(135\) −1.02307 9.60387i −0.0880521 0.826570i
\(136\) 0 0
\(137\) 10.0917 1.59836i 0.862190 0.136557i 0.290348 0.956921i \(-0.406229\pi\)
0.571842 + 0.820364i \(0.306229\pi\)
\(138\) 0 0
\(139\) −18.6778 + 13.5702i −1.58423 + 1.15101i −0.672602 + 0.740005i \(0.734823\pi\)
−0.911632 + 0.411008i \(0.865177\pi\)
\(140\) 0 0
\(141\) −0.499453 0.362874i −0.0420615 0.0305595i
\(142\) 0 0
\(143\) −8.57546 + 8.57546i −0.717116 + 0.717116i
\(144\) 0 0
\(145\) 0.185564 3.63872i 0.0154102 0.302179i
\(146\) 0 0
\(147\) 0.265486 0.135272i 0.0218969 0.0111570i
\(148\) 0 0
\(149\) 0.198651i 0.0162742i 0.999967 + 0.00813708i \(0.00259014\pi\)
−0.999967 + 0.00813708i \(0.997410\pi\)
\(150\) 0 0
\(151\) 8.56486i 0.696999i 0.937309 + 0.348499i \(0.113309\pi\)
−0.937309 + 0.348499i \(0.886691\pi\)
\(152\) 0 0
\(153\) −9.10218 + 4.63779i −0.735868 + 0.374943i
\(154\) 0 0
\(155\) −12.8385 19.7087i −1.03121 1.58304i
\(156\) 0 0
\(157\) 5.38963 5.38963i 0.430139 0.430139i −0.458536 0.888676i \(-0.651626\pi\)
0.888676 + 0.458536i \(0.151626\pi\)
\(158\) 0 0
\(159\) −3.41750 2.48296i −0.271025 0.196911i
\(160\) 0 0
\(161\) −8.76809 + 6.37039i −0.691022 + 0.502057i
\(162\) 0 0
\(163\) −22.0925 + 3.49911i −1.73042 + 0.274072i −0.940661 0.339347i \(-0.889794\pi\)
−0.789758 + 0.613418i \(0.789794\pi\)
\(164\) 0 0
\(165\) −7.69802 1.62495i −0.599290 0.126502i
\(166\) 0 0
\(167\) 5.04342 9.89826i 0.390271 0.765950i −0.609366 0.792889i \(-0.708576\pi\)
0.999637 + 0.0269388i \(0.00857592\pi\)
\(168\) 0 0
\(169\) 4.99261 1.62220i 0.384047 0.124784i
\(170\) 0 0
\(171\) −6.60841 2.14720i −0.505358 0.164201i
\(172\) 0 0
\(173\) 15.6169 + 2.47347i 1.18733 + 0.188054i 0.718687 0.695334i \(-0.244744\pi\)
0.468641 + 0.883388i \(0.344744\pi\)
\(174\) 0 0
\(175\) −12.4461 3.29740i −0.940834 0.249260i
\(176\) 0 0
\(177\) 0.0174255 0.110020i 0.00130978 0.00826963i
\(178\) 0 0
\(179\) −4.81330 + 14.8138i −0.359763 + 1.10724i 0.593433 + 0.804884i \(0.297772\pi\)
−0.953196 + 0.302353i \(0.902228\pi\)
\(180\) 0 0
\(181\) −0.982681 3.02438i −0.0730421 0.224801i 0.907870 0.419252i \(-0.137707\pi\)
−0.980912 + 0.194451i \(0.937707\pi\)
\(182\) 0 0
\(183\) 8.69425 + 4.42994i 0.642698 + 0.327471i
\(184\) 0 0
\(185\) −3.03975 6.80162i −0.223487 0.500065i
\(186\) 0 0
\(187\) 2.96537 + 18.7226i 0.216849 + 1.36913i
\(188\) 0 0
\(189\) 6.53767 + 8.99834i 0.475546 + 0.654533i
\(190\) 0 0
\(191\) 14.4163 19.8423i 1.04312 1.43574i 0.148502 0.988912i \(-0.452555\pi\)
0.894622 0.446824i \(-0.147445\pi\)
\(192\) 0 0
\(193\) −1.11728 1.11728i −0.0804236 0.0804236i 0.665751 0.746174i \(-0.268111\pi\)
−0.746174 + 0.665751i \(0.768111\pi\)
\(194\) 0 0
\(195\) −3.91198 3.15876i −0.280143 0.226203i
\(196\) 0 0
\(197\) 2.80217 + 5.49957i 0.199646 + 0.391828i 0.969024 0.246966i \(-0.0794336\pi\)
−0.769378 + 0.638794i \(0.779434\pi\)
\(198\) 0 0
\(199\) −10.9496 −0.776199 −0.388099 0.921618i \(-0.626868\pi\)
−0.388099 + 0.921618i \(0.626868\pi\)
\(200\) 0 0
\(201\) 4.70881 0.332134
\(202\) 0 0
\(203\) 1.90488 + 3.73853i 0.133696 + 0.262394i
\(204\) 0 0
\(205\) −7.95983 + 20.8236i −0.555939 + 1.45438i
\(206\) 0 0
\(207\) 6.98661 + 6.98661i 0.485603 + 0.485603i
\(208\) 0 0
\(209\) −7.57863 + 10.4311i −0.524225 + 0.721534i
\(210\) 0 0
\(211\) −7.39143 10.1734i −0.508847 0.700368i 0.474877 0.880052i \(-0.342492\pi\)
−0.983724 + 0.179684i \(0.942492\pi\)
\(212\) 0 0
\(213\) −0.0743200 0.469238i −0.00509233 0.0321517i
\(214\) 0 0
\(215\) −5.52714 3.18073i −0.376948 0.216924i
\(216\) 0 0
\(217\) 24.1354 + 12.2976i 1.63841 + 0.834814i
\(218\) 0 0
\(219\) 3.81305 + 11.7354i 0.257662 + 0.793003i
\(220\) 0 0
\(221\) −3.74355 + 11.5215i −0.251818 + 0.775017i
\(222\) 0 0
\(223\) −4.56640 + 28.8311i −0.305789 + 1.93068i 0.0560337 + 0.998429i \(0.482155\pi\)
−0.361823 + 0.932247i \(0.617845\pi\)
\(224\) 0 0
\(225\) −1.19411 + 11.6772i −0.0796071 + 0.778479i
\(226\) 0 0
\(227\) 22.7567 + 3.60431i 1.51042 + 0.239226i 0.856026 0.516932i \(-0.172926\pi\)
0.654389 + 0.756158i \(0.272926\pi\)
\(228\) 0 0
\(229\) 6.73750 + 2.18915i 0.445227 + 0.144663i 0.523046 0.852305i \(-0.324796\pi\)
−0.0778192 + 0.996967i \(0.524796\pi\)
\(230\) 0 0
\(231\) 8.61707 2.79985i 0.566961 0.184217i
\(232\) 0 0
\(233\) 6.63901 13.0298i 0.434936 0.853609i −0.564664 0.825321i \(-0.690994\pi\)
0.999600 0.0282886i \(-0.00900573\pi\)
\(234\) 0 0
\(235\) 1.14540 + 1.26851i 0.0747179 + 0.0827482i
\(236\) 0 0
\(237\) −8.55436 + 1.35488i −0.555665 + 0.0880087i
\(238\) 0 0
\(239\) 5.24208 3.80859i 0.339082 0.246358i −0.405192 0.914231i \(-0.632795\pi\)
0.744274 + 0.667874i \(0.232795\pi\)
\(240\) 0 0
\(241\) −5.90034 4.28685i −0.380074 0.276140i 0.381302 0.924451i \(-0.375476\pi\)
−0.761376 + 0.648311i \(0.775476\pi\)
\(242\) 0 0
\(243\) 11.1925 11.1925i 0.717998 0.717998i
\(244\) 0 0
\(245\) −0.796479 + 0.214617i −0.0508852 + 0.0137114i
\(246\) 0 0
\(247\) −7.34189 + 3.74088i −0.467153 + 0.238027i
\(248\) 0 0
\(249\) 0.0438236i 0.00277721i
\(250\) 0 0
\(251\) 8.97752i 0.566656i 0.959023 + 0.283328i \(0.0914385\pi\)
−0.959023 + 0.283328i \(0.908561\pi\)
\(252\) 0 0
\(253\) 16.3359 8.32358i 1.02703 0.523299i
\(254\) 0 0
\(255\) −7.58846 + 2.04477i −0.475208 + 0.128048i
\(256\) 0 0
\(257\) −16.7559 + 16.7559i −1.04520 + 1.04520i −0.0462737 + 0.998929i \(0.514735\pi\)
−0.998929 + 0.0462737i \(0.985265\pi\)
\(258\) 0 0
\(259\) 6.94097 + 5.04291i 0.431291 + 0.313351i
\(260\) 0 0
\(261\) 3.09466 2.24840i 0.191554 0.139172i
\(262\) 0 0
\(263\) −22.8477 + 3.61872i −1.40885 + 0.223140i −0.814079 0.580754i \(-0.802758\pi\)
−0.594772 + 0.803894i \(0.702758\pi\)
\(264\) 0 0
\(265\) 7.83741 + 8.67974i 0.481448 + 0.533192i
\(266\) 0 0
\(267\) −5.54549 + 10.8836i −0.339379 + 0.666068i
\(268\) 0 0
\(269\) 13.9626 4.53674i 0.851317 0.276610i 0.149320 0.988789i \(-0.452292\pi\)
0.701998 + 0.712179i \(0.252292\pi\)
\(270\) 0 0
\(271\) −3.33847 1.08473i −0.202798 0.0658929i 0.205857 0.978582i \(-0.434002\pi\)
−0.408654 + 0.912689i \(0.634002\pi\)
\(272\) 0 0
\(273\) 5.71910 + 0.905817i 0.346136 + 0.0548225i
\(274\) 0 0
\(275\) 19.9228 + 8.80312i 1.20139 + 0.530848i
\(276\) 0 0
\(277\) 1.86639 11.7839i 0.112141 0.708028i −0.865994 0.500055i \(-0.833313\pi\)
0.978134 0.207973i \(-0.0666868\pi\)
\(278\) 0 0
\(279\) 7.63114 23.4862i 0.456864 1.40608i
\(280\) 0 0
\(281\) −8.07464 24.8512i −0.481693 1.48250i −0.836714 0.547640i \(-0.815526\pi\)
0.355021 0.934858i \(-0.384474\pi\)
\(282\) 0 0
\(283\) 11.1310 + 5.67151i 0.661667 + 0.337136i 0.752369 0.658742i \(-0.228911\pi\)
−0.0907018 + 0.995878i \(0.528911\pi\)
\(284\) 0 0
\(285\) −4.63322 2.66630i −0.274448 0.157938i
\(286\) 0 0
\(287\) −4.01615 25.3570i −0.237066 1.49678i
\(288\) 0 0
\(289\) 1.13761 + 1.56579i 0.0669182 + 0.0921050i
\(290\) 0 0
\(291\) 5.43397 7.47922i 0.318545 0.438440i
\(292\) 0 0
\(293\) −5.15186 5.15186i −0.300975 0.300975i 0.540420 0.841395i \(-0.318265\pi\)
−0.841395 + 0.540420i \(0.818265\pi\)
\(294\) 0 0
\(295\) −0.110108 + 0.288053i −0.00641076 + 0.0167711i
\(296\) 0 0
\(297\) −8.54215 16.7649i −0.495666 0.972799i
\(298\) 0 0
\(299\) 11.7170 0.677614
\(300\) 0 0
\(301\) 7.34388 0.423294
\(302\) 0 0
\(303\) −5.28970 10.3816i −0.303885 0.596408i
\(304\) 0 0
\(305\) −21.0175 16.9707i −1.20346 0.971742i
\(306\) 0 0
\(307\) 9.16571 + 9.16571i 0.523115 + 0.523115i 0.918511 0.395396i \(-0.129393\pi\)
−0.395396 + 0.918511i \(0.629393\pi\)
\(308\) 0 0
\(309\) −8.75339 + 12.0480i −0.497963 + 0.685388i
\(310\) 0 0
\(311\) 5.82649 + 8.01948i 0.330390 + 0.454743i 0.941604 0.336722i \(-0.109318\pi\)
−0.611214 + 0.791466i \(0.709318\pi\)
\(312\) 0 0
\(313\) 1.37344 + 8.67156i 0.0776314 + 0.490145i 0.995616 + 0.0935304i \(0.0298152\pi\)
−0.917985 + 0.396615i \(0.870185\pi\)
\(314\) 0 0
\(315\) −5.51554 12.3413i −0.310766 0.695356i
\(316\) 0 0
\(317\) 6.55936 + 3.34216i 0.368410 + 0.187714i 0.628388 0.777900i \(-0.283715\pi\)
−0.259978 + 0.965615i \(0.583715\pi\)
\(318\) 0 0
\(319\) −2.19340 6.75061i −0.122807 0.377961i
\(320\) 0 0
\(321\) −1.73416 + 5.33719i −0.0967913 + 0.297893i
\(322\) 0 0
\(323\) −2.01481 + 12.7210i −0.112107 + 0.707815i
\(324\) 0 0
\(325\) 8.79044 + 10.7930i 0.487606 + 0.598690i
\(326\) 0 0
\(327\) −6.26039 0.991548i −0.346200 0.0548327i
\(328\) 0 0
\(329\) −1.87191 0.608219i −0.103202 0.0335322i
\(330\) 0 0
\(331\) −25.0641 + 8.14381i −1.37765 + 0.447624i −0.901895 0.431955i \(-0.857824\pi\)
−0.475751 + 0.879580i \(0.657824\pi\)
\(332\) 0 0
\(333\) 3.55094 6.96912i 0.194590 0.381905i
\(334\) 0 0
\(335\) −12.7549 2.69239i −0.696876 0.147101i
\(336\) 0 0
\(337\) 1.36532 0.216246i 0.0743738 0.0117796i −0.119137 0.992878i \(-0.538013\pi\)
0.193510 + 0.981098i \(0.438013\pi\)
\(338\) 0 0
\(339\) −4.77312 + 3.46787i −0.259240 + 0.188349i
\(340\) 0 0
\(341\) −37.0720 26.9344i −2.00756 1.45858i
\(342\) 0 0
\(343\) 13.4178 13.4178i 0.724492 0.724492i
\(344\) 0 0
\(345\) 4.14896 + 6.36920i 0.223373 + 0.342906i
\(346\) 0 0
\(347\) 23.9810 12.2189i 1.28737 0.655946i 0.329770 0.944061i \(-0.393029\pi\)
0.957596 + 0.288116i \(0.0930287\pi\)
\(348\) 0 0
\(349\) 28.2766i 1.51361i 0.653639 + 0.756806i \(0.273241\pi\)
−0.653639 + 0.756806i \(0.726759\pi\)
\(350\) 0 0
\(351\) 12.0247i 0.641833i
\(352\) 0 0
\(353\) 11.3849 5.80091i 0.605959 0.308751i −0.123958 0.992287i \(-0.539559\pi\)
0.729917 + 0.683536i \(0.239559\pi\)
\(354\) 0 0
\(355\) −0.0669864 + 1.31354i −0.00355527 + 0.0697154i
\(356\) 0 0
\(357\) 6.39980 6.39980i 0.338714 0.338714i
\(358\) 0 0
\(359\) −1.56898 1.13993i −0.0828078 0.0601634i 0.545611 0.838039i \(-0.316298\pi\)
−0.628419 + 0.777875i \(0.716298\pi\)
\(360\) 0 0
\(361\) 8.28396 6.01865i 0.435998 0.316771i
\(362\) 0 0
\(363\) −6.36338 + 1.00786i −0.333991 + 0.0528989i
\(364\) 0 0
\(365\) −3.61854 33.9683i −0.189403 1.77798i
\(366\) 0 0
\(367\) 12.1323 23.8109i 0.633299 1.24292i −0.321849 0.946791i \(-0.604304\pi\)
0.955148 0.296129i \(-0.0956958\pi\)
\(368\) 0 0
\(369\) −22.2597 + 7.23260i −1.15879 + 0.376514i
\(370\) 0 0
\(371\) −12.8085 4.16173i −0.664984 0.216066i
\(372\) 0 0
\(373\) −21.1611 3.35159i −1.09568 0.173539i −0.417676 0.908596i \(-0.637155\pi\)
−0.678005 + 0.735057i \(0.737155\pi\)
\(374\) 0 0
\(375\) −2.75427 + 8.60011i −0.142230 + 0.444108i
\(376\) 0 0
\(377\) 0.709616 4.48034i 0.0365471 0.230749i
\(378\) 0 0
\(379\) −1.09116 + 3.35824i −0.0560490 + 0.172501i −0.975162 0.221493i \(-0.928907\pi\)
0.919113 + 0.393994i \(0.128907\pi\)
\(380\) 0 0
\(381\) −1.22555 3.77186i −0.0627869 0.193238i
\(382\) 0 0
\(383\) 14.5309 + 7.40386i 0.742494 + 0.378320i 0.783953 0.620821i \(-0.213200\pi\)
−0.0414587 + 0.999140i \(0.513200\pi\)
\(384\) 0 0
\(385\) −24.9423 + 2.65703i −1.27118 + 0.135415i
\(386\) 0 0
\(387\) −1.04735 6.61271i −0.0532398 0.336143i
\(388\) 0 0
\(389\) −7.07344 9.73575i −0.358638 0.493622i 0.591131 0.806576i \(-0.298682\pi\)
−0.949768 + 0.312953i \(0.898682\pi\)
\(390\) 0 0
\(391\) 10.7649 14.8166i 0.544405 0.749309i
\(392\) 0 0
\(393\) −1.55318 1.55318i −0.0783477 0.0783477i
\(394\) 0 0
\(395\) 23.9462 + 1.22118i 1.20486 + 0.0614444i
\(396\) 0 0
\(397\) −4.87032 9.55855i −0.244435 0.479730i 0.735895 0.677095i \(-0.236761\pi\)
−0.980330 + 0.197365i \(0.936761\pi\)
\(398\) 0 0
\(399\) 6.15613 0.308192
\(400\) 0 0
\(401\) 25.1243 1.25465 0.627324 0.778758i \(-0.284150\pi\)
0.627324 + 0.778758i \(0.284150\pi\)
\(402\) 0 0
\(403\) −13.2951 26.0930i −0.662274 1.29979i
\(404\) 0 0
\(405\) −6.65909 + 4.33780i −0.330893 + 0.215547i
\(406\) 0 0
\(407\) −10.2627 10.2627i −0.508705 0.508705i
\(408\) 0 0
\(409\) 12.3360 16.9790i 0.609974 0.839557i −0.386601 0.922247i \(-0.626351\pi\)
0.996575 + 0.0826897i \(0.0263510\pi\)
\(410\) 0 0
\(411\) 4.85080 + 6.67656i 0.239272 + 0.329330i
\(412\) 0 0
\(413\) −0.0555554 0.350763i −0.00273370 0.0172599i
\(414\) 0 0
\(415\) 0.0250574 0.118707i 0.00123002 0.00582708i
\(416\) 0 0
\(417\) −16.6150 8.46578i −0.813642 0.414571i
\(418\) 0 0
\(419\) 8.30723 + 25.5670i 0.405835 + 1.24903i 0.920196 + 0.391458i \(0.128029\pi\)
−0.514361 + 0.857574i \(0.671971\pi\)
\(420\) 0 0
\(421\) −2.41186 + 7.42295i −0.117547 + 0.361772i −0.992470 0.122490i \(-0.960912\pi\)
0.874923 + 0.484262i \(0.160912\pi\)
\(422\) 0 0
\(423\) −0.280701 + 1.77228i −0.0136482 + 0.0861712i
\(424\) 0 0
\(425\) 21.7243 1.19984i 1.05378 0.0582006i
\(426\) 0 0
\(427\) 30.7265 + 4.86659i 1.48696 + 0.235511i
\(428\) 0 0
\(429\) −9.31602 3.02696i −0.449782 0.146143i
\(430\) 0 0
\(431\) 13.8852 4.51156i 0.668825 0.217314i 0.0451287 0.998981i \(-0.485630\pi\)
0.623696 + 0.781667i \(0.285630\pi\)
\(432\) 0 0
\(433\) 1.29950 2.55042i 0.0624501 0.122565i −0.857671 0.514198i \(-0.828090\pi\)
0.920122 + 0.391633i \(0.128090\pi\)
\(434\) 0 0
\(435\) 2.68672 1.20074i 0.128818 0.0575709i
\(436\) 0 0
\(437\) 12.3038 1.94872i 0.588569 0.0932201i
\(438\) 0 0
\(439\) 16.0330 11.6486i 0.765212 0.555959i −0.135293 0.990806i \(-0.543198\pi\)
0.900504 + 0.434847i \(0.143198\pi\)
\(440\) 0 0
\(441\) −0.700639 0.509044i −0.0333638 0.0242402i
\(442\) 0 0
\(443\) −1.51430 + 1.51430i −0.0719466 + 0.0719466i −0.742164 0.670218i \(-0.766201\pi\)
0.670218 + 0.742164i \(0.266201\pi\)
\(444\) 0 0
\(445\) 21.2443 26.3102i 1.00708 1.24722i
\(446\) 0 0
\(447\) −0.142963 + 0.0728434i −0.00676193 + 0.00344537i
\(448\) 0 0
\(449\) 3.84719i 0.181560i 0.995871 + 0.0907801i \(0.0289360\pi\)
−0.995871 + 0.0907801i \(0.971064\pi\)
\(450\) 0 0
\(451\) 43.4304i 2.04506i
\(452\) 0 0
\(453\) −6.16386 + 3.14064i −0.289603 + 0.147560i
\(454\) 0 0
\(455\) −14.9736 5.72368i −0.701975 0.268330i
\(456\) 0 0
\(457\) 14.1536 14.1536i 0.662077 0.662077i −0.293792 0.955869i \(-0.594917\pi\)
0.955869 + 0.293792i \(0.0949173\pi\)
\(458\) 0 0
\(459\) −15.2057 11.0476i −0.709742 0.515658i
\(460\) 0 0
\(461\) −6.34755 + 4.61177i −0.295635 + 0.214791i −0.725708 0.688003i \(-0.758488\pi\)
0.430073 + 0.902794i \(0.358488\pi\)
\(462\) 0 0
\(463\) 17.7982 2.81895i 0.827151 0.131008i 0.271516 0.962434i \(-0.412475\pi\)
0.555635 + 0.831426i \(0.312475\pi\)
\(464\) 0 0
\(465\) 9.47603 16.4664i 0.439440 0.763612i
\(466\) 0 0
\(467\) −17.3481 + 34.0476i −0.802776 + 1.57554i 0.0149220 + 0.999889i \(0.495250\pi\)
−0.817698 + 0.575648i \(0.804750\pi\)
\(468\) 0 0
\(469\) 14.2777 4.63911i 0.659283 0.214214i
\(470\) 0 0
\(471\) 5.85507 + 1.90243i 0.269787 + 0.0876592i
\(472\) 0 0
\(473\) −12.2705 1.94345i −0.564197 0.0893600i
\(474\) 0 0
\(475\) 11.0257 + 9.87150i 0.505892 + 0.452935i
\(476\) 0 0
\(477\) −1.92070 + 12.1268i −0.0879426 + 0.555248i
\(478\) 0 0
\(479\) 0.417095 1.28369i 0.0190576 0.0586531i −0.941075 0.338197i \(-0.890183\pi\)
0.960133 + 0.279543i \(0.0901831\pi\)
\(480\) 0 0
\(481\) −2.86626 8.82145i −0.130690 0.402223i
\(482\) 0 0
\(483\) −7.79973 3.97416i −0.354900 0.180831i
\(484\) 0 0
\(485\) −18.9957 + 17.1522i −0.862549 + 0.778843i
\(486\) 0 0
\(487\) 2.41262 + 15.2327i 0.109326 + 0.690259i 0.980090 + 0.198556i \(0.0636252\pi\)
−0.870763 + 0.491702i \(0.836375\pi\)
\(488\) 0 0
\(489\) −10.6193 14.6162i −0.480221 0.660967i
\(490\) 0 0
\(491\) 24.7615 34.0812i 1.11747 1.53806i 0.307541 0.951535i \(-0.400494\pi\)
0.809928 0.586529i \(-0.199506\pi\)
\(492\) 0 0
\(493\) −5.01360 5.01360i −0.225801 0.225801i
\(494\) 0 0
\(495\) 5.94965 + 22.0801i 0.267417 + 0.992426i
\(496\) 0 0
\(497\) −0.687641 1.34957i −0.0308449 0.0605365i
\(498\) 0 0
\(499\) −24.0843 −1.07816 −0.539081 0.842254i \(-0.681228\pi\)
−0.539081 + 0.842254i \(0.681228\pi\)
\(500\) 0 0
\(501\) 8.97283 0.400877
\(502\) 0 0
\(503\) −9.76105 19.1571i −0.435224 0.854174i −0.999590 0.0286495i \(-0.990879\pi\)
0.564366 0.825525i \(-0.309121\pi\)
\(504\) 0 0
\(505\) 8.39244 + 31.1456i 0.373459 + 1.38596i
\(506\) 0 0
\(507\) 2.99818 + 2.99818i 0.133154 + 0.133154i
\(508\) 0 0
\(509\) 16.7370 23.0365i 0.741856 1.02108i −0.256654 0.966503i \(-0.582620\pi\)
0.998510 0.0545733i \(-0.0173799\pi\)
\(510\) 0 0
\(511\) 23.1233 + 31.8265i 1.02292 + 1.40792i
\(512\) 0 0
\(513\) −1.99990 12.6269i −0.0882976 0.557489i
\(514\) 0 0
\(515\) 30.5995 27.6299i 1.34837 1.21752i
\(516\) 0 0
\(517\) 2.96671 + 1.51161i 0.130476 + 0.0664807i
\(518\) 0 0
\(519\) 3.94646 + 12.1460i 0.173230 + 0.533148i
\(520\) 0 0
\(521\) −6.95785 + 21.4141i −0.304829 + 0.938167i 0.674912 + 0.737898i \(0.264182\pi\)
−0.979741 + 0.200269i \(0.935818\pi\)
\(522\) 0 0
\(523\) 1.25652 7.93336i 0.0549438 0.346902i −0.944867 0.327454i \(-0.893809\pi\)
0.999811 0.0194475i \(-0.00619071\pi\)
\(524\) 0 0
\(525\) −2.19080 10.1662i −0.0956146 0.443688i
\(526\) 0 0
\(527\) −45.2103 7.16061i −1.96939 0.311921i
\(528\) 0 0
\(529\) 5.02759 + 1.63356i 0.218591 + 0.0710244i
\(530\) 0 0
\(531\) −0.307918 + 0.100049i −0.0133625 + 0.00434174i
\(532\) 0 0
\(533\) −12.6007 + 24.7303i −0.545798 + 1.07119i
\(534\) 0 0
\(535\) 7.74907 13.4655i 0.335022 0.582165i
\(536\) 0 0
\(537\) −12.4260 + 1.96809i −0.536223 + 0.0849293i
\(538\) 0 0
\(539\) −1.30010 + 0.944576i −0.0559992 + 0.0406858i
\(540\) 0 0
\(541\) 25.5113 + 18.5351i 1.09682 + 0.796885i 0.980538 0.196332i \(-0.0629030\pi\)
0.116280 + 0.993216i \(0.462903\pi\)
\(542\) 0 0
\(543\) 1.81621 1.81621i 0.0779412 0.0779412i
\(544\) 0 0
\(545\) 16.3908 + 6.26540i 0.702106 + 0.268380i
\(546\) 0 0
\(547\) −12.7018 + 6.47188i −0.543089 + 0.276718i −0.703938 0.710261i \(-0.748577\pi\)
0.160849 + 0.986979i \(0.448577\pi\)
\(548\) 0 0
\(549\) 28.3614i 1.21043i
\(550\) 0 0
\(551\) 4.82271i 0.205454i
\(552\) 0 0
\(553\) −24.6031 + 12.5359i −1.04623 + 0.533081i
\(554\) 0 0
\(555\) 3.78027 4.68169i 0.160463 0.198727i
\(556\) 0 0
\(557\) −32.6995 + 32.6995i −1.38552 + 1.38552i −0.551045 + 0.834475i \(0.685771\pi\)
−0.834475 + 0.551045i \(0.814229\pi\)
\(558\) 0 0
\(559\) −6.42324 4.66675i −0.271674 0.197383i
\(560\) 0 0
\(561\) −12.3867 + 8.99946i −0.522967 + 0.379958i
\(562\) 0 0
\(563\) 31.4298 4.97800i 1.32461 0.209798i 0.546253 0.837620i \(-0.316054\pi\)
0.778356 + 0.627823i \(0.216054\pi\)
\(564\) 0 0
\(565\) 14.9120 6.66440i 0.627352 0.280373i
\(566\) 0 0
\(567\) 4.15504 8.15473i 0.174495 0.342467i
\(568\) 0 0
\(569\) 4.41879 1.43575i 0.185245 0.0601898i −0.214925 0.976630i \(-0.568951\pi\)
0.400171 + 0.916441i \(0.368951\pi\)
\(570\) 0 0
\(571\) −39.0676 12.6938i −1.63493 0.531221i −0.659533 0.751676i \(-0.729246\pi\)
−0.975397 + 0.220455i \(0.929246\pi\)
\(572\) 0 0
\(573\) 19.5661 + 3.09897i 0.817387 + 0.129461i
\(574\) 0 0
\(575\) −7.59669 19.6248i −0.316804 0.818410i
\(576\) 0 0
\(577\) −0.454561 + 2.86999i −0.0189236 + 0.119479i −0.995342 0.0964085i \(-0.969264\pi\)
0.976418 + 0.215888i \(0.0692645\pi\)
\(578\) 0 0
\(579\) 0.394377 1.21377i 0.0163897 0.0504424i
\(580\) 0 0
\(581\) 0.0431749 + 0.132879i 0.00179120 + 0.00551274i
\(582\) 0 0
\(583\) 20.2997 + 10.3432i 0.840726 + 0.428371i
\(584\) 0 0
\(585\) −3.01835 + 14.2991i −0.124793 + 0.591196i
\(586\) 0 0
\(587\) −6.09697 38.4948i −0.251649 1.58885i −0.712695 0.701474i \(-0.752526\pi\)
0.461046 0.887376i \(-0.347474\pi\)
\(588\) 0 0
\(589\) −18.3005 25.1884i −0.754058 1.03787i
\(590\) 0 0
\(591\) −2.93034 + 4.03326i −0.120538 + 0.165906i
\(592\) 0 0
\(593\) −18.0163 18.0163i −0.739841 0.739841i 0.232706 0.972547i \(-0.425242\pi\)
−0.972547 + 0.232706i \(0.925242\pi\)
\(594\) 0 0
\(595\) −20.9947 + 13.6761i −0.860698 + 0.560667i
\(596\) 0 0
\(597\) −4.01511 7.88010i −0.164328 0.322511i
\(598\) 0 0
\(599\) 18.6484 0.761954 0.380977 0.924584i \(-0.375588\pi\)
0.380977 + 0.924584i \(0.375588\pi\)
\(600\) 0 0
\(601\) 5.17725 0.211185 0.105592 0.994410i \(-0.466326\pi\)
0.105592 + 0.994410i \(0.466326\pi\)
\(602\) 0 0
\(603\) −6.21346 12.1946i −0.253032 0.496602i
\(604\) 0 0
\(605\) 17.8130 + 0.908408i 0.724201 + 0.0369320i
\(606\) 0 0
\(607\) 15.3417 + 15.3417i 0.622699 + 0.622699i 0.946221 0.323522i \(-0.104867\pi\)
−0.323522 + 0.946221i \(0.604867\pi\)
\(608\) 0 0
\(609\) −1.99201 + 2.74176i −0.0807201 + 0.111102i
\(610\) 0 0
\(611\) 1.25074 + 1.72150i 0.0505996 + 0.0696443i
\(612\) 0 0
\(613\) 6.85933 + 43.3081i 0.277046 + 1.74920i 0.597440 + 0.801914i \(0.296185\pi\)
−0.320394 + 0.947284i \(0.603815\pi\)
\(614\) 0 0
\(615\) −17.9049 + 1.90735i −0.721994 + 0.0769119i
\(616\) 0 0
\(617\) 8.27520 + 4.21643i 0.333147 + 0.169747i 0.612560 0.790424i \(-0.290140\pi\)
−0.279413 + 0.960171i \(0.590140\pi\)
\(618\) 0 0
\(619\) −0.484521 1.49120i −0.0194745 0.0599365i 0.940847 0.338832i \(-0.110032\pi\)
−0.960322 + 0.278895i \(0.910032\pi\)
\(620\) 0 0
\(621\) −5.61757 + 17.2891i −0.225425 + 0.693788i
\(622\) 0 0
\(623\) −6.09210 + 38.4640i −0.244075 + 1.54103i
\(624\) 0 0
\(625\) 12.3779 21.7206i 0.495118 0.868826i
\(626\) 0 0
\(627\) −10.2859 1.62913i −0.410781 0.0650613i
\(628\) 0 0
\(629\) −13.7884 4.48012i −0.549779 0.178634i
\(630\) 0 0
\(631\) 0.573929 0.186481i 0.0228477 0.00742368i −0.297571 0.954700i \(-0.596176\pi\)
0.320419 + 0.947276i \(0.396176\pi\)
\(632\) 0 0
\(633\) 4.61114 9.04986i 0.183276 0.359700i
\(634\) 0 0
\(635\) 1.16303 + 10.9177i 0.0461536 + 0.433257i
\(636\) 0 0
\(637\) −1.01436 + 0.160659i −0.0401905 + 0.00636555i
\(638\) 0 0
\(639\) −1.11714 + 0.811648i −0.0441933 + 0.0321083i
\(640\) 0 0
\(641\) 2.49965 + 1.81610i 0.0987304 + 0.0717318i 0.636055 0.771644i \(-0.280565\pi\)
−0.537325 + 0.843375i \(0.680565\pi\)
\(642\) 0 0
\(643\) 4.70888 4.70888i 0.185700 0.185700i −0.608134 0.793834i \(-0.708082\pi\)
0.793834 + 0.608134i \(0.208082\pi\)
\(644\) 0 0
\(645\) 0.262331 5.14405i 0.0103293 0.202547i
\(646\) 0 0
\(647\) −26.7468 + 13.6282i −1.05152 + 0.535778i −0.892290 0.451462i \(-0.850902\pi\)
−0.159234 + 0.987241i \(0.550902\pi\)
\(648\) 0 0
\(649\) 0.600773i 0.0235824i
\(650\) 0 0
\(651\) 21.8788i 0.857499i
\(652\) 0 0
\(653\) −17.5241 + 8.92896i −0.685770 + 0.349417i −0.761913 0.647680i \(-0.775739\pi\)
0.0761430 + 0.997097i \(0.475739\pi\)
\(654\) 0 0
\(655\) 3.31909 + 5.09524i 0.129688 + 0.199088i
\(656\) 0 0
\(657\) 25.3601 25.3601i 0.989392 0.989392i
\(658\) 0 0
\(659\) 8.34120 + 6.06024i 0.324927 + 0.236073i 0.738275 0.674500i \(-0.235641\pi\)
−0.413348 + 0.910573i \(0.635641\pi\)
\(660\) 0 0
\(661\) 19.0061 13.8088i 0.739252 0.537098i −0.153224 0.988191i \(-0.548966\pi\)
0.892477 + 0.451093i \(0.148966\pi\)
\(662\) 0 0
\(663\) −9.66435 + 1.53068i −0.375332 + 0.0594468i
\(664\) 0 0
\(665\) −16.6754 3.51994i −0.646642 0.136497i
\(666\) 0 0
\(667\) −3.11336 + 6.11030i −0.120550 + 0.236592i
\(668\) 0 0
\(669\) −22.4233 + 7.28577i −0.866935 + 0.281684i
\(670\) 0 0
\(671\) −50.0513 16.2626i −1.93221 0.627812i
\(672\) 0 0
\(673\) 27.6047 + 4.37215i 1.06408 + 0.168534i 0.663839 0.747875i \(-0.268926\pi\)
0.400243 + 0.916409i \(0.368926\pi\)
\(674\) 0 0
\(675\) −20.1401 + 7.79617i −0.775194 + 0.300075i
\(676\) 0 0
\(677\) −5.47504 + 34.5680i −0.210423 + 1.32856i 0.625721 + 0.780047i \(0.284805\pi\)
−0.836144 + 0.548510i \(0.815195\pi\)
\(678\) 0 0
\(679\) 9.10799 28.0315i 0.349533 1.07575i
\(680\) 0 0
\(681\) 5.75073 + 17.6989i 0.220369 + 0.678225i
\(682\) 0 0
\(683\) −0.589867 0.300552i −0.0225706 0.0115003i 0.442669 0.896685i \(-0.354032\pi\)
−0.465239 + 0.885185i \(0.654032\pi\)
\(684\) 0 0
\(685\) −9.32205 20.8586i −0.356177 0.796967i
\(686\) 0 0
\(687\) 0.895110 + 5.65150i 0.0341506 + 0.215618i
\(688\) 0 0
\(689\) 8.55818 + 11.7793i 0.326041 + 0.448757i
\(690\) 0 0
\(691\) 1.36289 1.87586i 0.0518468 0.0713610i −0.782306 0.622894i \(-0.785957\pi\)
0.834153 + 0.551533i \(0.185957\pi\)
\(692\) 0 0
\(693\) −18.6215 18.6215i −0.707371 0.707371i
\(694\) 0 0
\(695\) 40.1653 + 32.4317i 1.52356 + 1.23021i
\(696\) 0 0
\(697\) 19.6956 + 38.6548i 0.746024 + 1.46415i
\(698\) 0 0
\(699\) 11.8116 0.446755
\(700\) 0 0
\(701\) 37.6668 1.42265 0.711327 0.702861i \(-0.248094\pi\)
0.711327 + 0.702861i \(0.248094\pi\)
\(702\) 0 0
\(703\) −4.47693 8.78646i −0.168850 0.331388i
\(704\) 0 0
\(705\) −0.492896 + 1.28946i −0.0185635 + 0.0485638i
\(706\) 0 0
\(707\) −26.2670 26.2670i −0.987872 0.987872i
\(708\) 0 0
\(709\) −0.151208 + 0.208120i −0.00567875 + 0.00781612i −0.811847 0.583870i \(-0.801538\pi\)
0.806168 + 0.591686i \(0.201538\pi\)
\(710\) 0 0
\(711\) 14.7966 + 20.3658i 0.554916 + 0.763776i
\(712\) 0 0
\(713\) 6.92575 + 43.7275i 0.259371 + 1.63761i
\(714\) 0 0
\(715\) 23.5039 + 13.5259i 0.878997 + 0.505841i
\(716\) 0 0
\(717\) 4.66314 + 2.37599i 0.174148 + 0.0887329i
\(718\) 0 0
\(719\) −9.84670 30.3050i −0.367220 1.13019i −0.948579 0.316539i \(-0.897479\pi\)
0.581360 0.813647i \(-0.302521\pi\)
\(720\) 0 0
\(721\) −14.6717 + 45.1550i −0.546404 + 1.68166i
\(722\) 0 0
\(723\) 0.921517 5.81823i 0.0342716 0.216382i
\(724\) 0 0
\(725\) −7.96417 + 1.71628i −0.295782 + 0.0637409i
\(726\) 0 0
\(727\) −44.0672 6.97956i −1.63436 0.258858i −0.729318 0.684175i \(-0.760163\pi\)
−0.905044 + 0.425317i \(0.860163\pi\)
\(728\) 0 0
\(729\) 2.01843 + 0.655829i 0.0747568 + 0.0242900i
\(730\) 0 0
\(731\) −11.8026 + 3.83489i −0.436534 + 0.141838i
\(732\) 0 0
\(733\) 9.81751 19.2679i 0.362618 0.711678i −0.635558 0.772053i \(-0.719230\pi\)
0.998176 + 0.0603754i \(0.0192298\pi\)
\(734\) 0 0
\(735\) −0.446514 0.494503i −0.0164699 0.0182400i
\(736\) 0 0
\(737\) −25.0835 + 3.97284i −0.923963 + 0.146341i
\(738\) 0 0
\(739\) 42.7220 31.0394i 1.57155 1.14180i 0.645906 0.763417i \(-0.276480\pi\)
0.925649 0.378385i \(-0.123520\pi\)
\(740\) 0 0
\(741\) −5.38439 3.91199i −0.197800 0.143710i
\(742\) 0 0
\(743\) −7.89430 + 7.89430i −0.289614 + 0.289614i −0.836927 0.547314i \(-0.815650\pi\)
0.547314 + 0.836927i \(0.315650\pi\)
\(744\) 0 0
\(745\) 0.428900 0.115571i 0.0157137 0.00423418i
\(746\) 0 0
\(747\) 0.113492 0.0578270i 0.00415245 0.00211578i
\(748\) 0 0
\(749\) 17.8915i 0.653742i
\(750\) 0 0
\(751\) 45.8639i 1.67360i 0.547511 + 0.836798i \(0.315575\pi\)
−0.547511 + 0.836798i \(0.684425\pi\)
\(752\) 0 0
\(753\) −6.46084 + 3.29196i −0.235446 + 0.119966i
\(754\) 0 0
\(755\) 18.4921 4.98283i 0.672995 0.181344i
\(756\) 0 0
\(757\) −25.5537 + 25.5537i −0.928765 + 0.928765i −0.997626 0.0688610i \(-0.978064\pi\)
0.0688610 + 0.997626i \(0.478064\pi\)
\(758\) 0 0
\(759\) 11.9804 + 8.70429i 0.434862 + 0.315946i
\(760\) 0 0
\(761\) 33.5597 24.3825i 1.21654 0.883867i 0.220730 0.975335i \(-0.429156\pi\)
0.995808 + 0.0914685i \(0.0291561\pi\)
\(762\) 0 0
\(763\) −19.9592 + 3.16122i −0.722571 + 0.114444i
\(764\) 0 0
\(765\) 15.3087 + 16.9540i 0.553487 + 0.612973i
\(766\) 0 0
\(767\) −0.174306 + 0.342094i −0.00629382 + 0.0123523i
\(768\) 0 0
\(769\) −12.5753 + 4.08596i −0.453476 + 0.147343i −0.526845 0.849961i \(-0.676625\pi\)
0.0733684 + 0.997305i \(0.476625\pi\)
\(770\) 0 0
\(771\) −18.2029 5.91447i −0.655560 0.213004i
\(772\) 0 0
\(773\) 35.2872 + 5.58894i 1.26919 + 0.201020i 0.754468 0.656337i \(-0.227895\pi\)
0.514723 + 0.857357i \(0.327895\pi\)
\(774\) 0 0
\(775\) −35.0832 + 39.1851i −1.26023 + 1.40757i
\(776\) 0 0
\(777\) −1.08404 + 6.84438i −0.0388898 + 0.245541i
\(778\) 0 0
\(779\) −9.11866 + 28.0643i −0.326710 + 1.00551i
\(780\) 0 0
\(781\) 0.791796 + 2.43690i 0.0283327 + 0.0871990i
\(782\) 0 0
\(783\) 6.27076 + 3.19511i 0.224099 + 0.114184i
\(784\) 0 0
\(785\) −14.7721 8.50098i −0.527238 0.303413i
\(786\) 0 0
\(787\) 5.52431 + 34.8791i 0.196921 + 1.24331i 0.865972 + 0.500092i \(0.166700\pi\)
−0.669052 + 0.743216i \(0.733300\pi\)
\(788\) 0 0
\(789\) −10.9823 15.1158i −0.390980 0.538138i
\(790\) 0 0
\(791\) −11.0562 + 15.2175i −0.393112 + 0.541072i
\(792\) 0 0
\(793\) −23.7820 23.7820i −0.844524 0.844524i
\(794\) 0 0
\(795\) −3.37264 + 8.82311i −0.119615 + 0.312923i
\(796\) 0 0
\(797\) 3.73955 + 7.33928i 0.132462 + 0.259971i 0.947705 0.319148i \(-0.103397\pi\)
−0.815243 + 0.579119i \(0.803397\pi\)
\(798\) 0 0
\(799\) 3.32600 0.117666
\(800\) 0 0
\(801\) 35.5033 1.25445
\(802\) 0 0
\(803\) −30.2130 59.2964i −1.06619 2.09253i
\(804\) 0 0
\(805\) 18.8551 + 15.2247i 0.664555 + 0.536600i
\(806\) 0 0
\(807\) 8.38490 + 8.38490i 0.295162 + 0.295162i
\(808\) 0 0
\(809\) 27.9073 38.4111i 0.981168 1.35046i 0.0449695 0.998988i \(-0.485681\pi\)
0.936198 0.351473i \(-0.114319\pi\)
\(810\) 0 0
\(811\) −23.5003 32.3454i −0.825208 1.13580i −0.988796 0.149273i \(-0.952307\pi\)
0.163588 0.986529i \(-0.447693\pi\)
\(812\) 0 0
\(813\) −0.443532 2.80035i −0.0155553 0.0982126i
\(814\) 0 0
\(815\) 20.4077 + 45.6634i 0.714850 + 1.59952i
\(816\) 0 0
\(817\) −7.52102 3.83215i −0.263127 0.134070i
\(818\) 0 0
\(819\) −5.20075 16.0063i −0.181729 0.559304i
\(820\) 0 0
\(821\) −3.52278 + 10.8420i −0.122946 + 0.378388i −0.993521 0.113647i \(-0.963747\pi\)
0.870575 + 0.492035i \(0.163747\pi\)
\(822\) 0 0
\(823\) 3.45526 21.8156i 0.120443 0.760446i −0.851348 0.524601i \(-0.824214\pi\)
0.971791 0.235844i \(-0.0757856\pi\)
\(824\) 0 0
\(825\) 0.970164 + 17.5658i 0.0337768 + 0.611564i
\(826\) 0 0
\(827\) −38.4843 6.09531i −1.33823 0.211955i −0.554047 0.832485i \(-0.686917\pi\)
−0.784182 + 0.620531i \(0.786917\pi\)
\(828\) 0 0
\(829\) 36.3940 + 11.8251i 1.26402 + 0.410704i 0.862924 0.505334i \(-0.168631\pi\)
0.401092 + 0.916038i \(0.368631\pi\)
\(830\) 0 0
\(831\) 9.16491 2.97786i 0.317927 0.103301i
\(832\) 0 0
\(833\) −0.728775 + 1.43030i −0.0252506 + 0.0495570i
\(834\) 0 0
\(835\) −24.3051 5.13047i −0.841112 0.177547i
\(836\) 0 0
\(837\) 44.8757 7.10762i 1.55113 0.245675i
\(838\) 0 0
\(839\) −29.4360 + 21.3865i −1.01624 + 0.738344i −0.965509 0.260368i \(-0.916156\pi\)
−0.0507337 + 0.998712i \(0.516156\pi\)
\(840\) 0 0
\(841\) −21.3136 15.4852i −0.734952 0.533974i
\(842\) 0 0
\(843\) 14.9237 14.9237i 0.514001 0.514001i
\(844\) 0 0
\(845\) −6.40700 9.83559i −0.220408 0.338355i
\(846\) 0 0
\(847\) −18.3016 + 9.32515i −0.628851 + 0.320416i
\(848\) 0 0
\(849\) 10.0903i 0.346298i
\(850\) 0 0
\(851\) 14.0225i 0.480684i
\(852\) 0 0
\(853\) −22.7774 + 11.6057i −0.779884 + 0.397371i −0.798147 0.602462i \(-0.794186\pi\)
0.0182632 + 0.999833i \(0.494186\pi\)
\(854\) 0 0
\(855\) −0.791326 + 15.5171i −0.0270628 + 0.530675i
\(856\) 0 0
\(857\) 0.101626 0.101626i 0.00347146 0.00347146i −0.705369 0.708840i \(-0.749219\pi\)
0.708840 + 0.705369i \(0.249219\pi\)
\(858\) 0 0
\(859\) −8.75247 6.35904i −0.298630 0.216968i 0.428372 0.903602i \(-0.359087\pi\)
−0.727003 + 0.686635i \(0.759087\pi\)
\(860\) 0 0
\(861\) 16.7759 12.1884i 0.571723 0.415381i
\(862\) 0 0
\(863\) −30.0412 + 4.75806i −1.02261 + 0.161966i −0.645149 0.764057i \(-0.723205\pi\)
−0.377466 + 0.926023i \(0.623205\pi\)
\(864\) 0 0
\(865\) −3.74514 35.1567i −0.127339 1.19536i
\(866\) 0 0
\(867\) −0.709697 + 1.39286i −0.0241026 + 0.0473040i
\(868\) 0 0
\(869\) 44.4254 14.4347i 1.50703 0.489663i
\(870\) 0 0
\(871\) −15.4358 5.01540i −0.523022 0.169940i
\(872\) 0 0
\(873\) −26.5396 4.20346i −0.898230 0.142266i
\(874\) 0 0
\(875\) 0.121532 + 28.7901i 0.00410853 + 0.973285i
\(876\) 0 0
\(877\) 2.74744 17.3467i 0.0927746 0.585756i −0.896879 0.442277i \(-0.854171\pi\)
0.989653 0.143479i \(-0.0458290\pi\)
\(878\) 0 0
\(879\) 1.81850 5.59677i 0.0613365 0.188774i
\(880\) 0 0
\(881\) 9.30614 + 28.6414i 0.313532 + 0.964952i 0.976355 + 0.216175i \(0.0693583\pi\)
−0.662823 + 0.748776i \(0.730642\pi\)
\(882\) 0 0
\(883\) −7.71075 3.92883i −0.259488 0.132215i 0.319408 0.947617i \(-0.396516\pi\)
−0.578895 + 0.815402i \(0.696516\pi\)
\(884\) 0 0
\(885\) −0.247678 + 0.0263844i −0.00832561 + 0.000886903i
\(886\) 0 0
\(887\) −1.11688 7.05168i −0.0375010 0.236772i 0.961817 0.273693i \(-0.0882452\pi\)
−0.999318 + 0.0369206i \(0.988245\pi\)
\(888\) 0 0
\(889\) −7.43206 10.2294i −0.249263 0.343081i
\(890\) 0 0
\(891\) −9.10046 + 12.5257i −0.304877 + 0.419627i
\(892\) 0 0
\(893\) 1.59968 + 1.59968i 0.0535313 + 0.0535313i
\(894\) 0 0
\(895\) 34.7842 + 1.77389i 1.16271 + 0.0592945i
\(896\) 0 0
\(897\) 4.29652 + 8.43239i 0.143456 + 0.281549i
\(898\) 0 0
\(899\) 17.1399 0.571647
\(900\) 0 0
\(901\) 22.7581 0.758183
\(902\) 0 0
\(903\) 2.69292 + 5.28516i 0.0896148 + 0.175879i
\(904\) 0 0
\(905\) −5.95812 + 3.88118i −0.198055 + 0.129015i
\(906\) 0 0
\(907\) −26.0275 26.0275i −0.864228 0.864228i 0.127598 0.991826i \(-0.459273\pi\)
−0.991826 + 0.127598i \(0.959273\pi\)
\(908\) 0 0
\(909\) −19.9057 + 27.3979i −0.660232 + 0.908731i
\(910\) 0 0
\(911\) −18.2290 25.0901i −0.603954 0.831271i 0.392109 0.919919i \(-0.371746\pi\)
−0.996063 + 0.0886475i \(0.971746\pi\)
\(912\) 0 0
\(913\) −0.0369741 0.233445i −0.00122366 0.00772591i
\(914\) 0 0
\(915\) 4.50641 21.3486i 0.148977 0.705764i
\(916\) 0 0
\(917\) −6.23964 3.17925i −0.206051 0.104988i
\(918\) 0 0
\(919\) 15.3051 + 47.1042i 0.504868 + 1.55383i 0.800992 + 0.598675i \(0.204306\pi\)
−0.296123 + 0.955150i \(0.595694\pi\)
\(920\) 0 0
\(921\) −3.23530 + 9.95724i −0.106607 + 0.328102i
\(922\) 0 0
\(923\) −0.256164 + 1.61736i −0.00843174 + 0.0532359i
\(924\) 0 0
\(925\) −12.9166 + 10.5200i −0.424697 + 0.345896i
\(926\) 0 0
\(927\) 42.7517 + 6.77120i 1.40415 + 0.222395i
\(928\) 0 0
\(929\) −26.4817 8.60443i −0.868837 0.282302i −0.159522 0.987194i \(-0.550995\pi\)
−0.709315 + 0.704892i \(0.750995\pi\)
\(930\) 0 0
\(931\) −1.03844 + 0.337408i −0.0340333 + 0.0110581i
\(932\) 0 0
\(933\) −3.63485 + 7.13380i −0.119000 + 0.233550i
\(934\) 0 0
\(935\) 38.6980 17.2948i 1.26556 0.565599i
\(936\) 0 0
\(937\) −30.3876 + 4.81293i −0.992720 + 0.157231i −0.631606 0.775290i \(-0.717604\pi\)
−0.361115 + 0.932521i \(0.617604\pi\)
\(938\) 0 0
\(939\) −5.73702 + 4.16819i −0.187221 + 0.136024i
\(940\) 0 0
\(941\) −20.7455 15.0725i −0.676284 0.491349i 0.195839 0.980636i \(-0.437257\pi\)
−0.872123 + 0.489287i \(0.837257\pi\)
\(942\) 0 0
\(943\) 29.6705 29.6705i 0.966203 0.966203i
\(944\) 0 0
\(945\) 15.6245 19.3502i 0.508264 0.629463i
\(946\) 0 0
\(947\) 5.43776 2.77067i 0.176703 0.0900348i −0.363401 0.931633i \(-0.618385\pi\)
0.540105 + 0.841598i \(0.318385\pi\)
\(948\) 0 0
\(949\) 42.5307i 1.38060i
\(950\) 0 0
\(951\) 5.94609i 0.192815i
\(952\) 0 0
\(953\) −31.2327 + 15.9139i −1.01173 + 0.515501i −0.879591 0.475731i \(-0.842184\pi\)
−0.132137 + 0.991232i \(0.542184\pi\)
\(954\) 0 0
\(955\) −51.2277 19.5818i −1.65769 0.633652i
\(956\) 0 0
\(957\) 4.05390 4.05390i 0.131044 0.131044i
\(958\) 0 0
\(959\) 21.2860 + 15.4652i 0.687360 + 0.499396i
\(960\) 0 0
\(961\) 64.4400 46.8184i 2.07871 1.51027i
\(962\) 0 0
\(963\) 16.1102 2.55161i 0.519145 0.0822245i
\(964\) 0 0
\(965\) −1.76227 + 3.06228i −0.0567294 + 0.0985784i
\(966\) 0 0
\(967\) 23.9185 46.9427i 0.769167 1.50958i −0.0889017 0.996040i \(-0.528336\pi\)
0.858069 0.513535i \(-0.171664\pi\)
\(968\) 0 0
\(969\) −9.89370 + 3.21466i −0.317831 + 0.103270i
\(970\) 0 0
\(971\) 45.8073 + 14.8837i 1.47003 + 0.477640i 0.931116 0.364723i \(-0.118836\pi\)
0.538910 + 0.842363i \(0.318836\pi\)
\(972\) 0 0
\(973\) −58.7194 9.30024i −1.88246 0.298152i
\(974\) 0 0
\(975\) −4.54405 + 10.2839i −0.145526 + 0.329348i
\(976\) 0 0
\(977\) −7.09392 + 44.7893i −0.226955 + 1.43294i 0.566377 + 0.824146i \(0.308344\pi\)
−0.793332 + 0.608789i \(0.791656\pi\)
\(978\) 0 0
\(979\) 20.3579 62.6552i 0.650641 2.00247i
\(980\) 0 0
\(981\) 5.69298 + 17.5212i 0.181763 + 0.559408i
\(982\) 0 0
\(983\) −23.3773 11.9113i −0.745619 0.379912i 0.0395305 0.999218i \(-0.487414\pi\)
−0.785149 + 0.619307i \(0.787414\pi\)
\(984\) 0 0
\(985\) 10.2437 9.24956i 0.326390 0.294716i
\(986\) 0 0
\(987\) −0.248692 1.57018i −0.00791595 0.0499794i
\(988\) 0 0
\(989\) 7.05514 + 9.71057i 0.224340 + 0.308778i
\(990\) 0 0
\(991\) −23.5809 + 32.4563i −0.749072 + 1.03101i 0.248973 + 0.968510i \(0.419907\pi\)
−0.998045 + 0.0624985i \(0.980093\pi\)
\(992\) 0 0
\(993\) −15.0516 15.0516i −0.477647 0.477647i
\(994\) 0 0
\(995\) 6.37023 + 23.6409i 0.201950 + 0.749467i
\(996\) 0 0
\(997\) 13.4228 + 26.3437i 0.425105 + 0.834315i 0.999872 + 0.0159979i \(0.00509251\pi\)
−0.574767 + 0.818317i \(0.694907\pi\)
\(998\) 0 0
\(999\) 14.3907 0.455301
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.2.bq.c.223.5 64
4.3 odd 2 800.2.bq.d.223.4 yes 64
25.12 odd 20 800.2.bq.d.287.4 yes 64
100.87 even 20 inner 800.2.bq.c.287.5 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
800.2.bq.c.223.5 64 1.1 even 1 trivial
800.2.bq.c.287.5 yes 64 100.87 even 20 inner
800.2.bq.d.223.4 yes 64 4.3 odd 2
800.2.bq.d.287.4 yes 64 25.12 odd 20