Properties

Label 800.2.bq.c.223.6
Level $800$
Weight $2$
Character 800.223
Analytic conductor $6.388$
Analytic rank $0$
Dimension $64$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,2,Mod(63,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([10, 0, 19]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.63");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 800.bq (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.38803216170\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(8\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 223.6
Character \(\chi\) \(=\) 800.223
Dual form 800.2.bq.c.287.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.440304 + 0.864144i) q^{3} +(-2.21992 - 0.268223i) q^{5} +(-2.34980 - 2.34980i) q^{7} +(1.21048 - 1.66608i) q^{9} +(1.76565 + 2.43020i) q^{11} +(0.910159 + 5.74652i) q^{13} +(-0.745656 - 2.03643i) q^{15} +(3.39204 + 1.72833i) q^{17} +(0.0821413 + 0.252805i) q^{19} +(0.995939 - 3.06519i) q^{21} +(-1.20596 + 7.61411i) q^{23} +(4.85611 + 1.19087i) q^{25} +(4.84645 + 0.767602i) q^{27} +(3.49891 + 1.13687i) q^{29} +(-2.21186 + 0.718676i) q^{31} +(-1.32263 + 2.59580i) q^{33} +(4.58609 + 5.84663i) q^{35} +(10.1766 - 1.61182i) q^{37} +(-4.56507 + 3.31672i) q^{39} +(-1.02740 - 0.746453i) q^{41} +(-2.20292 + 2.20292i) q^{43} +(-3.13405 + 3.37389i) q^{45} +(-4.22246 + 2.15145i) q^{47} +4.04308i q^{49} +3.69220i q^{51} +(5.44391 - 2.77381i) q^{53} +(-3.26776 - 5.86845i) q^{55} +(-0.182293 + 0.182293i) q^{57} +(-9.55473 - 6.94192i) q^{59} +(-5.05755 + 3.67453i) q^{61} +(-6.75932 + 1.07057i) q^{63} +(-0.479132 - 13.0009i) q^{65} +(-6.95421 + 13.6484i) q^{67} +(-7.11068 + 2.31040i) q^{69} +(8.86316 + 2.87981i) q^{71} +(-5.17821 - 0.820148i) q^{73} +(1.10908 + 4.72073i) q^{75} +(1.56157 - 9.85939i) q^{77} +(3.72879 - 11.4760i) q^{79} +(-0.438568 - 1.34977i) q^{81} +(7.11391 + 3.62472i) q^{83} +(-7.06648 - 4.74658i) q^{85} +(0.558168 + 3.52413i) q^{87} +(4.48956 + 6.17934i) q^{89} +(11.3645 - 15.6418i) q^{91} +(-1.59493 - 1.59493i) q^{93} +(-0.114539 - 0.583240i) q^{95} +(-1.61088 - 3.16152i) q^{97} +6.18619 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 2 q^{5} - 4 q^{7} + 4 q^{13} - 22 q^{15} + 8 q^{17} + 18 q^{19} - 16 q^{21} - 8 q^{23} + 40 q^{25} - 18 q^{27} + 20 q^{31} + 44 q^{33} - 38 q^{35} - 10 q^{37} + 36 q^{39} - 16 q^{41} - 32 q^{43}+ \cdots - 132 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{11}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.440304 + 0.864144i 0.254209 + 0.498914i 0.982478 0.186378i \(-0.0596748\pi\)
−0.728269 + 0.685292i \(0.759675\pi\)
\(4\) 0 0
\(5\) −2.21992 0.268223i −0.992780 0.119953i
\(6\) 0 0
\(7\) −2.34980 2.34980i −0.888139 0.888139i 0.106205 0.994344i \(-0.466130\pi\)
−0.994344 + 0.106205i \(0.966130\pi\)
\(8\) 0 0
\(9\) 1.21048 1.66608i 0.403492 0.555360i
\(10\) 0 0
\(11\) 1.76565 + 2.43020i 0.532362 + 0.732734i 0.987488 0.157693i \(-0.0504057\pi\)
−0.455126 + 0.890427i \(0.650406\pi\)
\(12\) 0 0
\(13\) 0.910159 + 5.74652i 0.252433 + 1.59380i 0.709724 + 0.704480i \(0.248820\pi\)
−0.457292 + 0.889317i \(0.651180\pi\)
\(14\) 0 0
\(15\) −0.745656 2.03643i −0.192528 0.525805i
\(16\) 0 0
\(17\) 3.39204 + 1.72833i 0.822690 + 0.419181i 0.814059 0.580781i \(-0.197253\pi\)
0.00863008 + 0.999963i \(0.497253\pi\)
\(18\) 0 0
\(19\) 0.0821413 + 0.252805i 0.0188445 + 0.0579974i 0.960037 0.279875i \(-0.0902929\pi\)
−0.941192 + 0.337872i \(0.890293\pi\)
\(20\) 0 0
\(21\) 0.995939 3.06519i 0.217332 0.668879i
\(22\) 0 0
\(23\) −1.20596 + 7.61411i −0.251459 + 1.58765i 0.461950 + 0.886906i \(0.347150\pi\)
−0.713410 + 0.700747i \(0.752850\pi\)
\(24\) 0 0
\(25\) 4.85611 + 1.19087i 0.971222 + 0.238174i
\(26\) 0 0
\(27\) 4.84645 + 0.767602i 0.932699 + 0.147725i
\(28\) 0 0
\(29\) 3.49891 + 1.13687i 0.649732 + 0.211111i 0.615296 0.788296i \(-0.289036\pi\)
0.0344361 + 0.999407i \(0.489036\pi\)
\(30\) 0 0
\(31\) −2.21186 + 0.718676i −0.397261 + 0.129078i −0.500833 0.865544i \(-0.666973\pi\)
0.103572 + 0.994622i \(0.466973\pi\)
\(32\) 0 0
\(33\) −1.32263 + 2.59580i −0.230240 + 0.451871i
\(34\) 0 0
\(35\) 4.58609 + 5.84663i 0.775191 + 0.988262i
\(36\) 0 0
\(37\) 10.1766 1.61182i 1.67303 0.264981i 0.753339 0.657632i \(-0.228442\pi\)
0.919688 + 0.392651i \(0.128442\pi\)
\(38\) 0 0
\(39\) −4.56507 + 3.31672i −0.730997 + 0.531100i
\(40\) 0 0
\(41\) −1.02740 0.746453i −0.160454 0.116576i 0.504661 0.863317i \(-0.331617\pi\)
−0.665115 + 0.746741i \(0.731617\pi\)
\(42\) 0 0
\(43\) −2.20292 + 2.20292i −0.335942 + 0.335942i −0.854838 0.518895i \(-0.826343\pi\)
0.518895 + 0.854838i \(0.326343\pi\)
\(44\) 0 0
\(45\) −3.13405 + 3.37389i −0.467196 + 0.502950i
\(46\) 0 0
\(47\) −4.22246 + 2.15145i −0.615909 + 0.313822i −0.733967 0.679185i \(-0.762333\pi\)
0.118057 + 0.993007i \(0.462333\pi\)
\(48\) 0 0
\(49\) 4.04308i 0.577583i
\(50\) 0 0
\(51\) 3.69220i 0.517011i
\(52\) 0 0
\(53\) 5.44391 2.77381i 0.747779 0.381012i −0.0381964 0.999270i \(-0.512161\pi\)
0.785975 + 0.618258i \(0.212161\pi\)
\(54\) 0 0
\(55\) −3.26776 5.86845i −0.440625 0.791302i
\(56\) 0 0
\(57\) −0.182293 + 0.182293i −0.0241453 + 0.0241453i
\(58\) 0 0
\(59\) −9.55473 6.94192i −1.24392 0.903761i −0.246067 0.969253i \(-0.579138\pi\)
−0.997853 + 0.0654918i \(0.979138\pi\)
\(60\) 0 0
\(61\) −5.05755 + 3.67453i −0.647553 + 0.470475i −0.862437 0.506165i \(-0.831063\pi\)
0.214884 + 0.976640i \(0.431063\pi\)
\(62\) 0 0
\(63\) −6.75932 + 1.07057i −0.851594 + 0.134879i
\(64\) 0 0
\(65\) −0.479132 13.0009i −0.0594290 1.61257i
\(66\) 0 0
\(67\) −6.95421 + 13.6484i −0.849592 + 1.66742i −0.110437 + 0.993883i \(0.535225\pi\)
−0.739155 + 0.673536i \(0.764775\pi\)
\(68\) 0 0
\(69\) −7.11068 + 2.31040i −0.856026 + 0.278140i
\(70\) 0 0
\(71\) 8.86316 + 2.87981i 1.05186 + 0.341771i 0.783399 0.621519i \(-0.213484\pi\)
0.268464 + 0.963290i \(0.413484\pi\)
\(72\) 0 0
\(73\) −5.17821 0.820148i −0.606064 0.0959911i −0.154142 0.988049i \(-0.549261\pi\)
−0.451922 + 0.892058i \(0.649261\pi\)
\(74\) 0 0
\(75\) 1.10908 + 4.72073i 0.128065 + 0.545103i
\(76\) 0 0
\(77\) 1.56157 9.85939i 0.177958 1.12358i
\(78\) 0 0
\(79\) 3.72879 11.4760i 0.419522 1.29116i −0.488621 0.872496i \(-0.662500\pi\)
0.908143 0.418660i \(-0.137500\pi\)
\(80\) 0 0
\(81\) −0.438568 1.34977i −0.0487298 0.149975i
\(82\) 0 0
\(83\) 7.11391 + 3.62472i 0.780853 + 0.397865i 0.798512 0.601980i \(-0.205621\pi\)
−0.0176584 + 0.999844i \(0.505621\pi\)
\(84\) 0 0
\(85\) −7.06648 4.74658i −0.766467 0.514839i
\(86\) 0 0
\(87\) 0.558168 + 3.52413i 0.0598419 + 0.377827i
\(88\) 0 0
\(89\) 4.48956 + 6.17934i 0.475892 + 0.655009i 0.977709 0.209965i \(-0.0673349\pi\)
−0.501817 + 0.864974i \(0.667335\pi\)
\(90\) 0 0
\(91\) 11.3645 15.6418i 1.19132 1.63971i
\(92\) 0 0
\(93\) −1.59493 1.59493i −0.165386 0.165386i
\(94\) 0 0
\(95\) −0.114539 0.583240i −0.0117515 0.0598391i
\(96\) 0 0
\(97\) −1.61088 3.16152i −0.163560 0.321004i 0.794651 0.607066i \(-0.207654\pi\)
−0.958211 + 0.286062i \(0.907654\pi\)
\(98\) 0 0
\(99\) 6.18619 0.621735
\(100\) 0 0
\(101\) 13.9341 1.38650 0.693249 0.720698i \(-0.256179\pi\)
0.693249 + 0.720698i \(0.256179\pi\)
\(102\) 0 0
\(103\) −8.27427 16.2392i −0.815288 1.60009i −0.799841 0.600212i \(-0.795083\pi\)
−0.0154471 0.999881i \(-0.504917\pi\)
\(104\) 0 0
\(105\) −3.03306 + 6.53734i −0.295997 + 0.637979i
\(106\) 0 0
\(107\) 5.81311 + 5.81311i 0.561974 + 0.561974i 0.929868 0.367894i \(-0.119921\pi\)
−0.367894 + 0.929868i \(0.619921\pi\)
\(108\) 0 0
\(109\) −7.07187 + 9.73360i −0.677362 + 0.932309i −0.999898 0.0142477i \(-0.995465\pi\)
0.322536 + 0.946557i \(0.395465\pi\)
\(110\) 0 0
\(111\) 5.87365 + 8.08438i 0.557502 + 0.767336i
\(112\) 0 0
\(113\) 2.22642 + 14.0571i 0.209444 + 1.32238i 0.838450 + 0.544978i \(0.183462\pi\)
−0.629006 + 0.777400i \(0.716538\pi\)
\(114\) 0 0
\(115\) 4.71942 16.5793i 0.440088 1.54603i
\(116\) 0 0
\(117\) 10.6759 + 5.43963i 0.986985 + 0.502894i
\(118\) 0 0
\(119\) −3.90937 12.0318i −0.358372 1.10295i
\(120\) 0 0
\(121\) 0.610803 1.87986i 0.0555275 0.170896i
\(122\) 0 0
\(123\) 0.192673 1.21649i 0.0173728 0.109687i
\(124\) 0 0
\(125\) −10.4608 3.94616i −0.935640 0.352956i
\(126\) 0 0
\(127\) 4.42038 + 0.700119i 0.392245 + 0.0621255i 0.349442 0.936958i \(-0.386371\pi\)
0.0428031 + 0.999084i \(0.486371\pi\)
\(128\) 0 0
\(129\) −2.87360 0.933688i −0.253006 0.0822067i
\(130\) 0 0
\(131\) 6.31482 2.05181i 0.551728 0.179267i −0.0198678 0.999803i \(-0.506325\pi\)
0.571596 + 0.820535i \(0.306325\pi\)
\(132\) 0 0
\(133\) 0.401025 0.787055i 0.0347733 0.0682464i
\(134\) 0 0
\(135\) −10.5528 3.00395i −0.908244 0.258539i
\(136\) 0 0
\(137\) −5.61256 + 0.888943i −0.479514 + 0.0759475i −0.391512 0.920173i \(-0.628048\pi\)
−0.0880013 + 0.996120i \(0.528048\pi\)
\(138\) 0 0
\(139\) −4.63268 + 3.36584i −0.392939 + 0.285487i −0.766659 0.642055i \(-0.778082\pi\)
0.373720 + 0.927542i \(0.378082\pi\)
\(140\) 0 0
\(141\) −3.71833 2.70153i −0.313140 0.227509i
\(142\) 0 0
\(143\) −12.3582 + 12.3582i −1.03344 + 1.03344i
\(144\) 0 0
\(145\) −7.46239 3.46225i −0.619717 0.287524i
\(146\) 0 0
\(147\) −3.49381 + 1.78018i −0.288164 + 0.146827i
\(148\) 0 0
\(149\) 2.53170i 0.207405i 0.994608 + 0.103703i \(0.0330690\pi\)
−0.994608 + 0.103703i \(0.966931\pi\)
\(150\) 0 0
\(151\) 10.2816i 0.836702i 0.908285 + 0.418351i \(0.137392\pi\)
−0.908285 + 0.418351i \(0.862608\pi\)
\(152\) 0 0
\(153\) 6.98552 3.55930i 0.564745 0.287752i
\(154\) 0 0
\(155\) 5.10292 1.00213i 0.409876 0.0804933i
\(156\) 0 0
\(157\) −9.52582 + 9.52582i −0.760243 + 0.760243i −0.976366 0.216123i \(-0.930659\pi\)
0.216123 + 0.976366i \(0.430659\pi\)
\(158\) 0 0
\(159\) 4.79395 + 3.48301i 0.380185 + 0.276220i
\(160\) 0 0
\(161\) 20.7254 15.0579i 1.63339 1.18673i
\(162\) 0 0
\(163\) −0.962613 + 0.152463i −0.0753977 + 0.0119418i −0.194019 0.980998i \(-0.562152\pi\)
0.118622 + 0.992940i \(0.462152\pi\)
\(164\) 0 0
\(165\) 3.63238 5.40772i 0.282781 0.420990i
\(166\) 0 0
\(167\) 11.1549 21.8927i 0.863192 1.69411i 0.155208 0.987882i \(-0.450395\pi\)
0.707984 0.706229i \(-0.249605\pi\)
\(168\) 0 0
\(169\) −19.8303 + 6.44326i −1.52541 + 0.495635i
\(170\) 0 0
\(171\) 0.520623 + 0.169161i 0.0398131 + 0.0129360i
\(172\) 0 0
\(173\) 11.6353 + 1.84285i 0.884616 + 0.140109i 0.582180 0.813060i \(-0.302200\pi\)
0.302436 + 0.953170i \(0.402200\pi\)
\(174\) 0 0
\(175\) −8.61257 14.2092i −0.651049 1.07411i
\(176\) 0 0
\(177\) 1.79184 11.3132i 0.134683 0.850354i
\(178\) 0 0
\(179\) −1.26429 + 3.89109i −0.0944977 + 0.290834i −0.987122 0.159966i \(-0.948861\pi\)
0.892625 + 0.450800i \(0.148861\pi\)
\(180\) 0 0
\(181\) −8.27653 25.4726i −0.615190 1.89336i −0.398729 0.917069i \(-0.630548\pi\)
−0.216461 0.976291i \(-0.569452\pi\)
\(182\) 0 0
\(183\) −5.40218 2.75255i −0.399341 0.203474i
\(184\) 0 0
\(185\) −23.0236 + 0.848504i −1.69273 + 0.0623833i
\(186\) 0 0
\(187\) 1.78895 + 11.2950i 0.130821 + 0.825969i
\(188\) 0 0
\(189\) −9.58445 13.1919i −0.697166 0.959567i
\(190\) 0 0
\(191\) 9.12058 12.5534i 0.659942 0.908332i −0.339538 0.940592i \(-0.610271\pi\)
0.999479 + 0.0322605i \(0.0102706\pi\)
\(192\) 0 0
\(193\) 4.89168 + 4.89168i 0.352111 + 0.352111i 0.860894 0.508784i \(-0.169905\pi\)
−0.508784 + 0.860894i \(0.669905\pi\)
\(194\) 0 0
\(195\) 11.0237 6.13840i 0.789426 0.439580i
\(196\) 0 0
\(197\) −1.49942 2.94277i −0.106829 0.209664i 0.831404 0.555669i \(-0.187538\pi\)
−0.938232 + 0.346006i \(0.887538\pi\)
\(198\) 0 0
\(199\) 6.73535 0.477456 0.238728 0.971086i \(-0.423270\pi\)
0.238728 + 0.971086i \(0.423270\pi\)
\(200\) 0 0
\(201\) −14.8562 −1.04787
\(202\) 0 0
\(203\) −5.55033 10.8931i −0.389557 0.764548i
\(204\) 0 0
\(205\) 2.08054 + 1.93264i 0.145311 + 0.134981i
\(206\) 0 0
\(207\) 11.2259 + 11.2259i 0.780256 + 0.780256i
\(208\) 0 0
\(209\) −0.469335 + 0.645985i −0.0324646 + 0.0446837i
\(210\) 0 0
\(211\) −10.7152 14.7482i −0.737667 1.01531i −0.998749 0.0499945i \(-0.984080\pi\)
0.261083 0.965316i \(-0.415920\pi\)
\(212\) 0 0
\(213\) 1.41390 + 8.92704i 0.0968791 + 0.611671i
\(214\) 0 0
\(215\) 5.48119 4.29944i 0.373814 0.293219i
\(216\) 0 0
\(217\) 6.88616 + 3.50867i 0.467463 + 0.238184i
\(218\) 0 0
\(219\) −1.57126 4.83584i −0.106176 0.326776i
\(220\) 0 0
\(221\) −6.84458 + 21.0654i −0.460416 + 1.41701i
\(222\) 0 0
\(223\) −3.45959 + 21.8430i −0.231671 + 1.46271i 0.547976 + 0.836494i \(0.315398\pi\)
−0.779647 + 0.626219i \(0.784602\pi\)
\(224\) 0 0
\(225\) 7.86230 6.64915i 0.524153 0.443276i
\(226\) 0 0
\(227\) −12.3685 1.95898i −0.820925 0.130022i −0.268177 0.963370i \(-0.586421\pi\)
−0.552749 + 0.833348i \(0.686421\pi\)
\(228\) 0 0
\(229\) −6.47424 2.10361i −0.427830 0.139010i 0.0871839 0.996192i \(-0.472213\pi\)
−0.515014 + 0.857182i \(0.672213\pi\)
\(230\) 0 0
\(231\) 9.20751 2.99170i 0.605809 0.196839i
\(232\) 0 0
\(233\) −8.57788 + 16.8350i −0.561955 + 1.10290i 0.418876 + 0.908043i \(0.362424\pi\)
−0.980832 + 0.194856i \(0.937576\pi\)
\(234\) 0 0
\(235\) 9.95061 3.64349i 0.649106 0.237675i
\(236\) 0 0
\(237\) 11.5588 1.83073i 0.750822 0.118919i
\(238\) 0 0
\(239\) 7.61440 5.53218i 0.492534 0.357847i −0.313624 0.949547i \(-0.601543\pi\)
0.806158 + 0.591700i \(0.201543\pi\)
\(240\) 0 0
\(241\) −14.8665 10.8012i −0.957636 0.695764i −0.00503585 0.999987i \(-0.501603\pi\)
−0.952601 + 0.304224i \(0.901603\pi\)
\(242\) 0 0
\(243\) 11.3823 11.3823i 0.730176 0.730176i
\(244\) 0 0
\(245\) 1.08445 8.97532i 0.0692829 0.573412i
\(246\) 0 0
\(247\) −1.37799 + 0.702119i −0.0876792 + 0.0446748i
\(248\) 0 0
\(249\) 7.74342i 0.490720i
\(250\) 0 0
\(251\) 6.68014i 0.421647i 0.977524 + 0.210823i \(0.0676145\pi\)
−0.977524 + 0.210823i \(0.932386\pi\)
\(252\) 0 0
\(253\) −20.6331 + 10.5131i −1.29719 + 0.660954i
\(254\) 0 0
\(255\) 0.990334 8.19639i 0.0620171 0.513278i
\(256\) 0 0
\(257\) 12.2378 12.2378i 0.763371 0.763371i −0.213559 0.976930i \(-0.568506\pi\)
0.976930 + 0.213559i \(0.0685057\pi\)
\(258\) 0 0
\(259\) −27.7004 20.1255i −1.72122 1.25054i
\(260\) 0 0
\(261\) 6.12947 4.45332i 0.379404 0.275653i
\(262\) 0 0
\(263\) −3.59543 + 0.569460i −0.221704 + 0.0351144i −0.266298 0.963891i \(-0.585801\pi\)
0.0445942 + 0.999005i \(0.485801\pi\)
\(264\) 0 0
\(265\) −12.8291 + 4.69746i −0.788083 + 0.288563i
\(266\) 0 0
\(267\) −3.36308 + 6.60041i −0.205817 + 0.403939i
\(268\) 0 0
\(269\) −3.79488 + 1.23303i −0.231378 + 0.0751793i −0.422411 0.906404i \(-0.638816\pi\)
0.191033 + 0.981584i \(0.438816\pi\)
\(270\) 0 0
\(271\) −15.1903 4.93561i −0.922742 0.299817i −0.191151 0.981561i \(-0.561222\pi\)
−0.731591 + 0.681743i \(0.761222\pi\)
\(272\) 0 0
\(273\) 18.5206 + 2.93338i 1.12092 + 0.177536i
\(274\) 0 0
\(275\) 5.68012 + 13.9040i 0.342524 + 0.838443i
\(276\) 0 0
\(277\) −3.00189 + 18.9532i −0.180366 + 1.13879i 0.716860 + 0.697217i \(0.245579\pi\)
−0.897226 + 0.441571i \(0.854421\pi\)
\(278\) 0 0
\(279\) −1.48003 + 4.55507i −0.0886072 + 0.272705i
\(280\) 0 0
\(281\) −7.26446 22.3577i −0.433361 1.33375i −0.894757 0.446554i \(-0.852651\pi\)
0.461395 0.887195i \(-0.347349\pi\)
\(282\) 0 0
\(283\) −6.88753 3.50937i −0.409421 0.208611i 0.237135 0.971477i \(-0.423792\pi\)
−0.646557 + 0.762866i \(0.723792\pi\)
\(284\) 0 0
\(285\) 0.453571 0.355781i 0.0268673 0.0210746i
\(286\) 0 0
\(287\) 0.660178 + 4.16820i 0.0389691 + 0.246041i
\(288\) 0 0
\(289\) −1.47356 2.02818i −0.0866801 0.119305i
\(290\) 0 0
\(291\) 2.02274 2.78406i 0.118575 0.163204i
\(292\) 0 0
\(293\) −13.9853 13.9853i −0.817029 0.817029i 0.168647 0.985676i \(-0.446060\pi\)
−0.985676 + 0.168647i \(0.946060\pi\)
\(294\) 0 0
\(295\) 19.3488 + 17.9733i 1.12653 + 1.04645i
\(296\) 0 0
\(297\) 6.69168 + 13.1332i 0.388291 + 0.762063i
\(298\) 0 0
\(299\) −44.8522 −2.59387
\(300\) 0 0
\(301\) 10.3528 0.596727
\(302\) 0 0
\(303\) 6.13525 + 12.0411i 0.352461 + 0.691744i
\(304\) 0 0
\(305\) 12.2130 6.80061i 0.699313 0.389402i
\(306\) 0 0
\(307\) 11.1632 + 11.1632i 0.637116 + 0.637116i 0.949843 0.312727i \(-0.101242\pi\)
−0.312727 + 0.949843i \(0.601242\pi\)
\(308\) 0 0
\(309\) 10.3898 14.3003i 0.591055 0.813517i
\(310\) 0 0
\(311\) 18.2910 + 25.1754i 1.03719 + 1.42757i 0.899411 + 0.437103i \(0.143996\pi\)
0.137777 + 0.990463i \(0.456004\pi\)
\(312\) 0 0
\(313\) −1.20851 7.63026i −0.0683093 0.431288i −0.998015 0.0629835i \(-0.979938\pi\)
0.929705 0.368304i \(-0.120062\pi\)
\(314\) 0 0
\(315\) 15.2923 0.563577i 0.861625 0.0317540i
\(316\) 0 0
\(317\) −4.97480 2.53479i −0.279413 0.142368i 0.308669 0.951170i \(-0.400117\pi\)
−0.588081 + 0.808802i \(0.700117\pi\)
\(318\) 0 0
\(319\) 3.41503 + 10.5104i 0.191205 + 0.588468i
\(320\) 0 0
\(321\) −2.46383 + 7.58290i −0.137518 + 0.423236i
\(322\) 0 0
\(323\) −0.158304 + 0.999491i −0.00880826 + 0.0556132i
\(324\) 0 0
\(325\) −2.42352 + 28.9896i −0.134433 + 1.60805i
\(326\) 0 0
\(327\) −11.5250 1.82538i −0.637334 0.100944i
\(328\) 0 0
\(329\) 14.9774 + 4.86645i 0.825731 + 0.268296i
\(330\) 0 0
\(331\) −4.34883 + 1.41302i −0.239033 + 0.0776667i −0.426084 0.904684i \(-0.640107\pi\)
0.187051 + 0.982350i \(0.440107\pi\)
\(332\) 0 0
\(333\) 9.63315 18.9061i 0.527894 1.03605i
\(334\) 0 0
\(335\) 19.0986 28.4331i 1.04347 1.55347i
\(336\) 0 0
\(337\) 18.7668 2.97237i 1.02229 0.161915i 0.377289 0.926095i \(-0.376856\pi\)
0.645003 + 0.764180i \(0.276856\pi\)
\(338\) 0 0
\(339\) −11.1670 + 8.11333i −0.606511 + 0.440656i
\(340\) 0 0
\(341\) −5.65189 4.10634i −0.306067 0.222371i
\(342\) 0 0
\(343\) −6.94816 + 6.94816i −0.375165 + 0.375165i
\(344\) 0 0
\(345\) 16.4049 3.22166i 0.883208 0.173448i
\(346\) 0 0
\(347\) −16.9260 + 8.62424i −0.908637 + 0.462974i −0.844858 0.534991i \(-0.820315\pi\)
−0.0637787 + 0.997964i \(0.520315\pi\)
\(348\) 0 0
\(349\) 14.3317i 0.767161i 0.923507 + 0.383580i \(0.125309\pi\)
−0.923507 + 0.383580i \(0.874691\pi\)
\(350\) 0 0
\(351\) 28.5488i 1.52382i
\(352\) 0 0
\(353\) 1.48111 0.754662i 0.0788314 0.0401666i −0.414130 0.910218i \(-0.635914\pi\)
0.492962 + 0.870051i \(0.335914\pi\)
\(354\) 0 0
\(355\) −18.9031 8.77027i −1.00327 0.465478i
\(356\) 0 0
\(357\) 8.67591 8.67591i 0.459178 0.459178i
\(358\) 0 0
\(359\) 20.4682 + 14.8710i 1.08027 + 0.784864i 0.977730 0.209865i \(-0.0673025\pi\)
0.102542 + 0.994729i \(0.467302\pi\)
\(360\) 0 0
\(361\) 15.3142 11.1264i 0.806008 0.585599i
\(362\) 0 0
\(363\) 1.89341 0.299886i 0.0993781 0.0157400i
\(364\) 0 0
\(365\) 11.2752 + 3.20958i 0.590173 + 0.167997i
\(366\) 0 0
\(367\) 8.16520 16.0251i 0.426220 0.836503i −0.573629 0.819115i \(-0.694465\pi\)
0.999849 0.0173882i \(-0.00553511\pi\)
\(368\) 0 0
\(369\) −2.48730 + 0.808172i −0.129484 + 0.0420718i
\(370\) 0 0
\(371\) −19.3100 6.27419i −1.00252 0.325740i
\(372\) 0 0
\(373\) 19.3738 + 3.06851i 1.00314 + 0.158881i 0.636331 0.771416i \(-0.280451\pi\)
0.366806 + 0.930297i \(0.380451\pi\)
\(374\) 0 0
\(375\) −1.19586 10.7771i −0.0617540 0.556529i
\(376\) 0 0
\(377\) −3.34845 + 21.1413i −0.172454 + 1.08883i
\(378\) 0 0
\(379\) 2.80980 8.64766i 0.144330 0.444201i −0.852595 0.522573i \(-0.824972\pi\)
0.996924 + 0.0783722i \(0.0249723\pi\)
\(380\) 0 0
\(381\) 1.34130 + 4.12811i 0.0687171 + 0.211489i
\(382\) 0 0
\(383\) −2.26052 1.15179i −0.115507 0.0588540i 0.395282 0.918560i \(-0.370647\pi\)
−0.510790 + 0.859706i \(0.670647\pi\)
\(384\) 0 0
\(385\) −6.11109 + 21.4682i −0.311450 + 1.09412i
\(386\) 0 0
\(387\) 1.00366 + 6.33683i 0.0510187 + 0.322119i
\(388\) 0 0
\(389\) 5.19740 + 7.15360i 0.263518 + 0.362702i 0.920188 0.391476i \(-0.128035\pi\)
−0.656670 + 0.754178i \(0.728035\pi\)
\(390\) 0 0
\(391\) −17.2503 + 23.7431i −0.872387 + 1.20074i
\(392\) 0 0
\(393\) 4.55350 + 4.55350i 0.229693 + 0.229693i
\(394\) 0 0
\(395\) −11.3558 + 24.4758i −0.571371 + 1.23151i
\(396\) 0 0
\(397\) −2.32812 4.56918i −0.116845 0.229321i 0.825176 0.564876i \(-0.191076\pi\)
−0.942020 + 0.335555i \(0.891076\pi\)
\(398\) 0 0
\(399\) 0.856702 0.0428888
\(400\) 0 0
\(401\) −2.41447 −0.120573 −0.0602864 0.998181i \(-0.519201\pi\)
−0.0602864 + 0.998181i \(0.519201\pi\)
\(402\) 0 0
\(403\) −6.14303 12.0564i −0.306006 0.600570i
\(404\) 0 0
\(405\) 0.611546 + 3.11403i 0.0303880 + 0.154737i
\(406\) 0 0
\(407\) 21.8854 + 21.8854i 1.08482 + 1.08482i
\(408\) 0 0
\(409\) −7.39271 + 10.1752i −0.365546 + 0.503131i −0.951684 0.307081i \(-0.900648\pi\)
0.586137 + 0.810212i \(0.300648\pi\)
\(410\) 0 0
\(411\) −3.23941 4.45866i −0.159788 0.219930i
\(412\) 0 0
\(413\) 6.13958 + 38.7638i 0.302109 + 1.90744i
\(414\) 0 0
\(415\) −14.8201 9.95471i −0.727490 0.488658i
\(416\) 0 0
\(417\) −4.94836 2.52132i −0.242322 0.123469i
\(418\) 0 0
\(419\) 0.222461 + 0.684664i 0.0108679 + 0.0334480i 0.956343 0.292245i \(-0.0944023\pi\)
−0.945476 + 0.325693i \(0.894402\pi\)
\(420\) 0 0
\(421\) −2.82794 + 8.70352i −0.137826 + 0.424184i −0.996019 0.0891432i \(-0.971587\pi\)
0.858193 + 0.513327i \(0.171587\pi\)
\(422\) 0 0
\(423\) −1.52671 + 9.63924i −0.0742310 + 0.468676i
\(424\) 0 0
\(425\) 14.4139 + 12.4324i 0.699177 + 0.603062i
\(426\) 0 0
\(427\) 20.5186 + 3.24983i 0.992965 + 0.157270i
\(428\) 0 0
\(429\) −16.1206 5.23790i −0.778311 0.252888i
\(430\) 0 0
\(431\) 32.0198 10.4038i 1.54234 0.501136i 0.590317 0.807171i \(-0.299003\pi\)
0.952020 + 0.306036i \(0.0990027\pi\)
\(432\) 0 0
\(433\) 17.6056 34.5529i 0.846071 1.66051i 0.0996617 0.995021i \(-0.468224\pi\)
0.746410 0.665487i \(-0.231776\pi\)
\(434\) 0 0
\(435\) −0.293835 7.97302i −0.0140883 0.382277i
\(436\) 0 0
\(437\) −2.02395 + 0.320561i −0.0968184 + 0.0153345i
\(438\) 0 0
\(439\) 16.8861 12.2685i 0.805930 0.585542i −0.106718 0.994289i \(-0.534034\pi\)
0.912648 + 0.408747i \(0.134034\pi\)
\(440\) 0 0
\(441\) 6.73609 + 4.89406i 0.320766 + 0.233050i
\(442\) 0 0
\(443\) 8.09076 8.09076i 0.384404 0.384404i −0.488282 0.872686i \(-0.662376\pi\)
0.872686 + 0.488282i \(0.162376\pi\)
\(444\) 0 0
\(445\) −8.30902 14.9219i −0.393885 0.707364i
\(446\) 0 0
\(447\) −2.18776 + 1.11472i −0.103477 + 0.0527243i
\(448\) 0 0
\(449\) 16.5890i 0.782883i −0.920203 0.391442i \(-0.871976\pi\)
0.920203 0.391442i \(-0.128024\pi\)
\(450\) 0 0
\(451\) 3.81477i 0.179631i
\(452\) 0 0
\(453\) −8.88476 + 4.52701i −0.417442 + 0.212697i
\(454\) 0 0
\(455\) −29.4237 + 31.6754i −1.37940 + 1.48497i
\(456\) 0 0
\(457\) −8.69369 + 8.69369i −0.406674 + 0.406674i −0.880577 0.473903i \(-0.842845\pi\)
0.473903 + 0.880577i \(0.342845\pi\)
\(458\) 0 0
\(459\) 15.1126 + 10.9800i 0.705398 + 0.512502i
\(460\) 0 0
\(461\) 26.1698 19.0135i 1.21885 0.885546i 0.222846 0.974854i \(-0.428465\pi\)
0.996004 + 0.0893072i \(0.0284653\pi\)
\(462\) 0 0
\(463\) −22.3507 + 3.54000i −1.03872 + 0.164518i −0.652423 0.757855i \(-0.726247\pi\)
−0.386301 + 0.922373i \(0.626247\pi\)
\(464\) 0 0
\(465\) 3.11282 + 3.96842i 0.144354 + 0.184031i
\(466\) 0 0
\(467\) −7.00038 + 13.7390i −0.323939 + 0.635766i −0.994341 0.106231i \(-0.966122\pi\)
0.670402 + 0.741998i \(0.266122\pi\)
\(468\) 0 0
\(469\) 48.4120 15.7300i 2.23546 0.726344i
\(470\) 0 0
\(471\) −12.4259 4.03743i −0.572557 0.186035i
\(472\) 0 0
\(473\) −9.24313 1.46397i −0.425000 0.0673133i
\(474\) 0 0
\(475\) 0.0978295 + 1.32547i 0.00448873 + 0.0608167i
\(476\) 0 0
\(477\) 1.96834 12.4276i 0.0901242 0.569022i
\(478\) 0 0
\(479\) −2.17387 + 6.69048i −0.0993265 + 0.305696i −0.988357 0.152152i \(-0.951380\pi\)
0.889031 + 0.457848i \(0.151380\pi\)
\(480\) 0 0
\(481\) 18.5247 + 57.0131i 0.844653 + 2.59957i
\(482\) 0 0
\(483\) 22.1376 + 11.2797i 1.00730 + 0.513243i
\(484\) 0 0
\(485\) 2.72802 + 7.45041i 0.123873 + 0.338306i
\(486\) 0 0
\(487\) −6.08231 38.4022i −0.275616 1.74017i −0.605227 0.796053i \(-0.706918\pi\)
0.329612 0.944117i \(-0.393082\pi\)
\(488\) 0 0
\(489\) −0.555592 0.764707i −0.0251247 0.0345812i
\(490\) 0 0
\(491\) 21.8195 30.0319i 0.984698 1.35532i 0.0504384 0.998727i \(-0.483938\pi\)
0.934260 0.356593i \(-0.116062\pi\)
\(492\) 0 0
\(493\) 9.90357 + 9.90357i 0.446034 + 0.446034i
\(494\) 0 0
\(495\) −13.7329 1.65928i −0.617246 0.0745791i
\(496\) 0 0
\(497\) −14.0596 27.5936i −0.630661 1.23774i
\(498\) 0 0
\(499\) 22.3039 0.998461 0.499230 0.866469i \(-0.333616\pi\)
0.499230 + 0.866469i \(0.333616\pi\)
\(500\) 0 0
\(501\) 23.8300 1.06465
\(502\) 0 0
\(503\) −0.820826 1.61096i −0.0365988 0.0718292i 0.871983 0.489536i \(-0.162834\pi\)
−0.908582 + 0.417707i \(0.862834\pi\)
\(504\) 0 0
\(505\) −30.9327 3.73746i −1.37649 0.166315i
\(506\) 0 0
\(507\) −14.2993 14.2993i −0.635053 0.635053i
\(508\) 0 0
\(509\) −19.5393 + 26.8936i −0.866066 + 1.19204i 0.114023 + 0.993478i \(0.463626\pi\)
−0.980089 + 0.198559i \(0.936374\pi\)
\(510\) 0 0
\(511\) 10.2406 + 14.0949i 0.453016 + 0.623523i
\(512\) 0 0
\(513\) 0.204040 + 1.28826i 0.00900858 + 0.0568780i
\(514\) 0 0
\(515\) 14.0125 + 38.2690i 0.617465 + 1.68634i
\(516\) 0 0
\(517\) −12.6838 6.46274i −0.557835 0.284231i
\(518\) 0 0
\(519\) 3.53058 + 10.8660i 0.154975 + 0.476965i
\(520\) 0 0
\(521\) −5.80407 + 17.8631i −0.254281 + 0.782596i 0.739690 + 0.672948i \(0.234972\pi\)
−0.993970 + 0.109648i \(0.965028\pi\)
\(522\) 0 0
\(523\) 0.568623 3.59014i 0.0248641 0.156986i −0.972132 0.234433i \(-0.924677\pi\)
0.996996 + 0.0774467i \(0.0246768\pi\)
\(524\) 0 0
\(525\) 8.48663 13.6989i 0.370387 0.597867i
\(526\) 0 0
\(527\) −8.74481 1.38504i −0.380930 0.0603334i
\(528\) 0 0
\(529\) −34.6461 11.2572i −1.50635 0.489444i
\(530\) 0 0
\(531\) −23.1316 + 7.51590i −1.00382 + 0.326162i
\(532\) 0 0
\(533\) 3.35440 6.58338i 0.145295 0.285158i
\(534\) 0 0
\(535\) −11.3454 14.4639i −0.490506 0.625327i
\(536\) 0 0
\(537\) −3.91914 + 0.620731i −0.169123 + 0.0267865i
\(538\) 0 0
\(539\) −9.82551 + 7.13865i −0.423215 + 0.307483i
\(540\) 0 0
\(541\) −21.4786 15.6051i −0.923438 0.670917i 0.0209391 0.999781i \(-0.493334\pi\)
−0.944377 + 0.328864i \(0.893334\pi\)
\(542\) 0 0
\(543\) 18.3678 18.3678i 0.788237 0.788237i
\(544\) 0 0
\(545\) 18.3098 19.7110i 0.784305 0.844326i
\(546\) 0 0
\(547\) 0.211164 0.107594i 0.00902874 0.00460037i −0.449470 0.893295i \(-0.648387\pi\)
0.458499 + 0.888695i \(0.348387\pi\)
\(548\) 0 0
\(549\) 12.8742i 0.549458i
\(550\) 0 0
\(551\) 0.977927i 0.0416611i
\(552\) 0 0
\(553\) −35.7283 + 18.2045i −1.51932 + 0.774133i
\(554\) 0 0
\(555\) −10.8706 19.5222i −0.461432 0.828669i
\(556\) 0 0
\(557\) −3.46747 + 3.46747i −0.146922 + 0.146922i −0.776741 0.629820i \(-0.783129\pi\)
0.629820 + 0.776741i \(0.283129\pi\)
\(558\) 0 0
\(559\) −14.6641 10.6541i −0.620227 0.450621i
\(560\) 0 0
\(561\) −8.97280 + 6.51912i −0.378832 + 0.275237i
\(562\) 0 0
\(563\) −37.7197 + 5.97421i −1.58970 + 0.251783i −0.887708 0.460407i \(-0.847704\pi\)
−0.701987 + 0.712190i \(0.747704\pi\)
\(564\) 0 0
\(565\) −1.17205 31.8028i −0.0493084 1.33795i
\(566\) 0 0
\(567\) −2.14115 + 4.20224i −0.0899197 + 0.176477i
\(568\) 0 0
\(569\) 24.1916 7.86033i 1.01416 0.329522i 0.245653 0.969358i \(-0.420998\pi\)
0.768512 + 0.639836i \(0.220998\pi\)
\(570\) 0 0
\(571\) −13.7756 4.47597i −0.576492 0.187314i 0.00623640 0.999981i \(-0.498015\pi\)
−0.582728 + 0.812667i \(0.698015\pi\)
\(572\) 0 0
\(573\) 14.8638 + 2.35419i 0.620943 + 0.0983477i
\(574\) 0 0
\(575\) −14.9237 + 35.5389i −0.622361 + 1.48207i
\(576\) 0 0
\(577\) −2.43032 + 15.3444i −0.101175 + 0.638797i 0.884031 + 0.467427i \(0.154819\pi\)
−0.985207 + 0.171369i \(0.945181\pi\)
\(578\) 0 0
\(579\) −2.07329 + 6.38094i −0.0861632 + 0.265183i
\(580\) 0 0
\(581\) −8.19889 25.2336i −0.340147 1.04687i
\(582\) 0 0
\(583\) 16.3530 + 8.33225i 0.677270 + 0.345086i
\(584\) 0 0
\(585\) −22.2406 14.9391i −0.919535 0.617655i
\(586\) 0 0
\(587\) 0.427595 + 2.69973i 0.0176487 + 0.111430i 0.994940 0.100471i \(-0.0320348\pi\)
−0.977291 + 0.211900i \(0.932035\pi\)
\(588\) 0 0
\(589\) −0.363370 0.500136i −0.0149724 0.0206077i
\(590\) 0 0
\(591\) 1.88278 2.59142i 0.0774472 0.106597i
\(592\) 0 0
\(593\) −18.8643 18.8643i −0.774662 0.774662i 0.204255 0.978918i \(-0.434523\pi\)
−0.978918 + 0.204255i \(0.934523\pi\)
\(594\) 0 0
\(595\) 5.45129 + 27.7583i 0.223481 + 1.13798i
\(596\) 0 0
\(597\) 2.96560 + 5.82031i 0.121374 + 0.238210i
\(598\) 0 0
\(599\) 20.6640 0.844310 0.422155 0.906524i \(-0.361274\pi\)
0.422155 + 0.906524i \(0.361274\pi\)
\(600\) 0 0
\(601\) 39.7005 1.61942 0.809709 0.586832i \(-0.199625\pi\)
0.809709 + 0.586832i \(0.199625\pi\)
\(602\) 0 0
\(603\) 14.3214 + 28.1074i 0.583213 + 1.14462i
\(604\) 0 0
\(605\) −1.86016 + 4.00931i −0.0756261 + 0.163002i
\(606\) 0 0
\(607\) −6.86425 6.86425i −0.278611 0.278611i 0.553943 0.832554i \(-0.313122\pi\)
−0.832554 + 0.553943i \(0.813122\pi\)
\(608\) 0 0
\(609\) 6.96941 9.59258i 0.282415 0.388711i
\(610\) 0 0
\(611\) −16.2065 22.3063i −0.655643 0.902416i
\(612\) 0 0
\(613\) −6.01483 37.9762i −0.242937 1.53384i −0.743851 0.668345i \(-0.767003\pi\)
0.500914 0.865497i \(-0.332997\pi\)
\(614\) 0 0
\(615\) −0.754011 + 2.64884i −0.0304047 + 0.106811i
\(616\) 0 0
\(617\) 19.3631 + 9.86600i 0.779530 + 0.397190i 0.798014 0.602639i \(-0.205884\pi\)
−0.0184841 + 0.999829i \(0.505884\pi\)
\(618\) 0 0
\(619\) −0.474342 1.45988i −0.0190654 0.0586774i 0.941071 0.338209i \(-0.109821\pi\)
−0.960137 + 0.279531i \(0.909821\pi\)
\(620\) 0 0
\(621\) −11.6892 + 35.9757i −0.469072 + 1.44365i
\(622\) 0 0
\(623\) 3.97066 25.0697i 0.159081 1.00440i
\(624\) 0 0
\(625\) 22.1637 + 11.5660i 0.886546 + 0.462640i
\(626\) 0 0
\(627\) −0.764874 0.121144i −0.0305461 0.00483803i
\(628\) 0 0
\(629\) 37.3052 + 12.1212i 1.48746 + 0.483304i
\(630\) 0 0
\(631\) −0.101312 + 0.0329182i −0.00403316 + 0.00131045i −0.311033 0.950399i \(-0.600675\pi\)
0.307000 + 0.951710i \(0.400675\pi\)
\(632\) 0 0
\(633\) 8.02666 15.7532i 0.319031 0.626134i
\(634\) 0 0
\(635\) −9.62511 2.73986i −0.381961 0.108728i
\(636\) 0 0
\(637\) −23.2336 + 3.67984i −0.920550 + 0.145801i
\(638\) 0 0
\(639\) 15.5266 11.2808i 0.614225 0.446260i
\(640\) 0 0
\(641\) −20.2967 14.7464i −0.801671 0.582448i 0.109733 0.993961i \(-0.465000\pi\)
−0.911404 + 0.411513i \(0.865000\pi\)
\(642\) 0 0
\(643\) 30.4402 30.4402i 1.20045 1.20045i 0.226415 0.974031i \(-0.427299\pi\)
0.974031 0.226415i \(-0.0727007\pi\)
\(644\) 0 0
\(645\) 6.12873 + 2.84348i 0.241318 + 0.111962i
\(646\) 0 0
\(647\) 18.0050 9.17400i 0.707849 0.360667i −0.0627133 0.998032i \(-0.519975\pi\)
0.770563 + 0.637364i \(0.219975\pi\)
\(648\) 0 0
\(649\) 35.4769i 1.39259i
\(650\) 0 0
\(651\) 7.49552i 0.293772i
\(652\) 0 0
\(653\) −18.8330 + 9.59589i −0.736992 + 0.375516i −0.781841 0.623478i \(-0.785719\pi\)
0.0448491 + 0.998994i \(0.485719\pi\)
\(654\) 0 0
\(655\) −14.5687 + 2.86107i −0.569248 + 0.111791i
\(656\) 0 0
\(657\) −7.63454 + 7.63454i −0.297852 + 0.297852i
\(658\) 0 0
\(659\) 29.9609 + 21.7679i 1.16711 + 0.847957i 0.990660 0.136352i \(-0.0435378\pi\)
0.176452 + 0.984309i \(0.443538\pi\)
\(660\) 0 0
\(661\) −25.7181 + 18.6853i −1.00032 + 0.726774i −0.962157 0.272497i \(-0.912150\pi\)
−0.0381625 + 0.999272i \(0.512150\pi\)
\(662\) 0 0
\(663\) −21.2173 + 3.36049i −0.824011 + 0.130510i
\(664\) 0 0
\(665\) −1.10135 + 1.63964i −0.0427085 + 0.0635824i
\(666\) 0 0
\(667\) −12.8758 + 25.2701i −0.498552 + 0.978463i
\(668\) 0 0
\(669\) −20.3987 + 6.62795i −0.788661 + 0.256251i
\(670\) 0 0
\(671\) −17.8597 5.80297i −0.689466 0.224021i
\(672\) 0 0
\(673\) 18.3183 + 2.90134i 0.706120 + 0.111838i 0.499159 0.866511i \(-0.333642\pi\)
0.206962 + 0.978349i \(0.433642\pi\)
\(674\) 0 0
\(675\) 22.6208 + 9.49905i 0.870674 + 0.365618i
\(676\) 0 0
\(677\) 1.55283 9.80421i 0.0596803 0.376807i −0.939713 0.341965i \(-0.888907\pi\)
0.999393 0.0348412i \(-0.0110925\pi\)
\(678\) 0 0
\(679\) −3.64370 + 11.2142i −0.139832 + 0.430360i
\(680\) 0 0
\(681\) −3.75305 11.5507i −0.143817 0.442624i
\(682\) 0 0
\(683\) 14.1779 + 7.22400i 0.542503 + 0.276419i 0.703693 0.710505i \(-0.251533\pi\)
−0.161190 + 0.986923i \(0.551533\pi\)
\(684\) 0 0
\(685\) 12.6979 0.467963i 0.485161 0.0178800i
\(686\) 0 0
\(687\) −1.03281 6.52091i −0.0394042 0.248788i
\(688\) 0 0
\(689\) 20.8946 + 28.7589i 0.796020 + 1.09563i
\(690\) 0 0
\(691\) 25.2263 34.7210i 0.959654 1.32085i 0.0125509 0.999921i \(-0.496005\pi\)
0.947103 0.320929i \(-0.103995\pi\)
\(692\) 0 0
\(693\) −14.5363 14.5363i −0.552188 0.552188i
\(694\) 0 0
\(695\) 11.1870 6.22931i 0.424347 0.236291i
\(696\) 0 0
\(697\) −2.19488 4.30769i −0.0831368 0.163165i
\(698\) 0 0
\(699\) −18.3248 −0.693107
\(700\) 0 0
\(701\) −35.1505 −1.32762 −0.663808 0.747903i \(-0.731061\pi\)
−0.663808 + 0.747903i \(0.731061\pi\)
\(702\) 0 0
\(703\) 1.24340 + 2.44030i 0.0468956 + 0.0920378i
\(704\) 0 0
\(705\) 7.52979 + 6.99452i 0.283588 + 0.263429i
\(706\) 0 0
\(707\) −32.7424 32.7424i −1.23140 1.23140i
\(708\) 0 0
\(709\) −5.21053 + 7.17168i −0.195686 + 0.269338i −0.895573 0.444915i \(-0.853234\pi\)
0.699887 + 0.714254i \(0.253234\pi\)
\(710\) 0 0
\(711\) −14.6064 20.1040i −0.547782 0.753957i
\(712\) 0 0
\(713\) −2.80468 17.7080i −0.105036 0.663171i
\(714\) 0 0
\(715\) 30.7490 24.1195i 1.14995 0.902017i
\(716\) 0 0
\(717\) 8.13325 + 4.14410i 0.303742 + 0.154764i
\(718\) 0 0
\(719\) 7.06433 + 21.7418i 0.263455 + 0.810831i 0.992045 + 0.125881i \(0.0401759\pi\)
−0.728590 + 0.684950i \(0.759824\pi\)
\(720\) 0 0
\(721\) −18.7159 + 57.6016i −0.697016 + 2.14519i
\(722\) 0 0
\(723\) 2.78798 17.6026i 0.103686 0.654648i
\(724\) 0 0
\(725\) 15.6373 + 9.68750i 0.580753 + 0.359785i
\(726\) 0 0
\(727\) −31.3330 4.96266i −1.16208 0.184055i −0.454536 0.890728i \(-0.650195\pi\)
−0.707540 + 0.706673i \(0.750195\pi\)
\(728\) 0 0
\(729\) 10.7983 + 3.50858i 0.399938 + 0.129948i
\(730\) 0 0
\(731\) −11.2798 + 3.66502i −0.417197 + 0.135556i
\(732\) 0 0
\(733\) 2.18971 4.29754i 0.0808787 0.158733i −0.847025 0.531553i \(-0.821609\pi\)
0.927904 + 0.372819i \(0.121609\pi\)
\(734\) 0 0
\(735\) 8.23346 3.01475i 0.303696 0.111201i
\(736\) 0 0
\(737\) −45.4471 + 7.19811i −1.67407 + 0.265146i
\(738\) 0 0
\(739\) 18.5519 13.4787i 0.682443 0.495824i −0.191724 0.981449i \(-0.561408\pi\)
0.874167 + 0.485625i \(0.161408\pi\)
\(740\) 0 0
\(741\) −1.21346 0.881634i −0.0445777 0.0323876i
\(742\) 0 0
\(743\) 22.3520 22.3520i 0.820015 0.820015i −0.166095 0.986110i \(-0.553116\pi\)
0.986110 + 0.166095i \(0.0531159\pi\)
\(744\) 0 0
\(745\) 0.679062 5.62018i 0.0248789 0.205908i
\(746\) 0 0
\(747\) 14.6503 7.46470i 0.536026 0.273119i
\(748\) 0 0
\(749\) 27.3192i 0.998223i
\(750\) 0 0
\(751\) 13.9720i 0.509844i 0.966962 + 0.254922i \(0.0820498\pi\)
−0.966962 + 0.254922i \(0.917950\pi\)
\(752\) 0 0
\(753\) −5.77261 + 2.94129i −0.210365 + 0.107187i
\(754\) 0 0
\(755\) 2.75776 22.8243i 0.100365 0.830660i
\(756\) 0 0
\(757\) −14.0489 + 14.0489i −0.510617 + 0.510617i −0.914715 0.404098i \(-0.867585\pi\)
0.404098 + 0.914715i \(0.367585\pi\)
\(758\) 0 0
\(759\) −18.1697 13.2011i −0.659518 0.479168i
\(760\) 0 0
\(761\) −15.3727 + 11.1689i −0.557260 + 0.404873i −0.830455 0.557086i \(-0.811919\pi\)
0.273195 + 0.961959i \(0.411919\pi\)
\(762\) 0 0
\(763\) 39.4894 6.25451i 1.42961 0.226428i
\(764\) 0 0
\(765\) −16.4620 + 6.02769i −0.595184 + 0.217931i
\(766\) 0 0
\(767\) 31.1955 61.2247i 1.12641 2.21069i
\(768\) 0 0
\(769\) 5.80830 1.88723i 0.209453 0.0680553i −0.202411 0.979301i \(-0.564878\pi\)
0.411864 + 0.911245i \(0.364878\pi\)
\(770\) 0 0
\(771\) 15.9635 + 5.18686i 0.574912 + 0.186800i
\(772\) 0 0
\(773\) −41.7576 6.61375i −1.50192 0.237880i −0.649346 0.760493i \(-0.724957\pi\)
−0.852570 + 0.522613i \(0.824957\pi\)
\(774\) 0 0
\(775\) −11.5969 + 0.855937i −0.416572 + 0.0307461i
\(776\) 0 0
\(777\) 5.19478 32.7985i 0.186362 1.17664i
\(778\) 0 0
\(779\) 0.104315 0.321047i 0.00373746 0.0115027i
\(780\) 0 0
\(781\) 8.65067 + 26.6240i 0.309545 + 0.952682i
\(782\) 0 0
\(783\) 16.0846 + 8.19553i 0.574818 + 0.292884i
\(784\) 0 0
\(785\) 23.7016 18.5915i 0.845947 0.663560i
\(786\) 0 0
\(787\) −5.48304 34.6186i −0.195449 1.23402i −0.868975 0.494855i \(-0.835221\pi\)
0.673526 0.739163i \(-0.264779\pi\)
\(788\) 0 0
\(789\) −2.07518 2.85624i −0.0738783 0.101685i
\(790\) 0 0
\(791\) 27.7996 38.2629i 0.988441 1.36047i
\(792\) 0 0
\(793\) −25.7189 25.7189i −0.913305 0.913305i
\(794\) 0 0
\(795\) −9.70797 9.01786i −0.344306 0.319830i
\(796\) 0 0
\(797\) −1.29027 2.53229i −0.0457036 0.0896983i 0.867025 0.498264i \(-0.166029\pi\)
−0.912729 + 0.408566i \(0.866029\pi\)
\(798\) 0 0
\(799\) −18.0412 −0.638250
\(800\) 0 0
\(801\) 15.7298 0.555784
\(802\) 0 0
\(803\) −7.14976 14.0322i −0.252310 0.495186i
\(804\) 0 0
\(805\) −50.0476 + 27.8683i −1.76395 + 0.982227i
\(806\) 0 0
\(807\) −2.73642 2.73642i −0.0963265 0.0963265i
\(808\) 0 0
\(809\) 33.2152 45.7168i 1.16778 1.60732i 0.490926 0.871202i \(-0.336659\pi\)
0.676858 0.736114i \(-0.263341\pi\)
\(810\) 0 0
\(811\) 10.9494 + 15.0706i 0.384486 + 0.529200i 0.956766 0.290858i \(-0.0939408\pi\)
−0.572280 + 0.820058i \(0.693941\pi\)
\(812\) 0 0
\(813\) −2.42324 15.2997i −0.0849868 0.536585i
\(814\) 0 0
\(815\) 2.17782 0.0802606i 0.0762857 0.00281140i
\(816\) 0 0
\(817\) −0.737861 0.375959i −0.0258145 0.0131531i
\(818\) 0 0
\(819\) −12.3041 37.8681i −0.429940 1.32322i
\(820\) 0 0
\(821\) 5.19540 15.9898i 0.181321 0.558048i −0.818545 0.574443i \(-0.805219\pi\)
0.999866 + 0.0163947i \(0.00521882\pi\)
\(822\) 0 0
\(823\) −3.90298 + 24.6425i −0.136049 + 0.858982i 0.821394 + 0.570361i \(0.193197\pi\)
−0.957443 + 0.288621i \(0.906803\pi\)
\(824\) 0 0
\(825\) −9.51409 + 11.0304i −0.331238 + 0.384030i
\(826\) 0 0
\(827\) 32.6419 + 5.16997i 1.13507 + 0.179778i 0.695566 0.718462i \(-0.255154\pi\)
0.439505 + 0.898240i \(0.355154\pi\)
\(828\) 0 0
\(829\) −4.83283 1.57028i −0.167851 0.0545382i 0.223886 0.974615i \(-0.428126\pi\)
−0.391737 + 0.920077i \(0.628126\pi\)
\(830\) 0 0
\(831\) −17.7001 + 5.75110i −0.614008 + 0.199503i
\(832\) 0 0
\(833\) −6.98777 + 13.7143i −0.242112 + 0.475171i
\(834\) 0 0
\(835\) −30.6352 + 45.6082i −1.06017 + 1.57834i
\(836\) 0 0
\(837\) −11.2713 + 1.78520i −0.389593 + 0.0617055i
\(838\) 0 0
\(839\) 22.9677 16.6870i 0.792931 0.576098i −0.115900 0.993261i \(-0.536975\pi\)
0.908832 + 0.417162i \(0.136975\pi\)
\(840\) 0 0
\(841\) −12.5116 9.09018i −0.431433 0.313454i
\(842\) 0 0
\(843\) 16.1217 16.1217i 0.555261 0.555261i
\(844\) 0 0
\(845\) 45.7500 8.98458i 1.57385 0.309079i
\(846\) 0 0
\(847\) −5.85255 + 2.98202i −0.201096 + 0.102463i
\(848\) 0 0
\(849\) 7.49701i 0.257297i
\(850\) 0 0
\(851\) 79.4298i 2.72282i
\(852\) 0 0
\(853\) −3.49866 + 1.78265i −0.119792 + 0.0610369i −0.512859 0.858473i \(-0.671414\pi\)
0.393068 + 0.919510i \(0.371414\pi\)
\(854\) 0 0
\(855\) −1.11037 0.515167i −0.0379739 0.0176183i
\(856\) 0 0
\(857\) −18.6347 + 18.6347i −0.636549 + 0.636549i −0.949703 0.313154i \(-0.898615\pi\)
0.313154 + 0.949703i \(0.398615\pi\)
\(858\) 0 0
\(859\) 33.1025 + 24.0504i 1.12944 + 0.820588i 0.985614 0.169014i \(-0.0540584\pi\)
0.143829 + 0.989603i \(0.454058\pi\)
\(860\) 0 0
\(861\) −3.31125 + 2.40576i −0.112847 + 0.0819882i
\(862\) 0 0
\(863\) −32.3520 + 5.12405i −1.10127 + 0.174425i −0.680505 0.732743i \(-0.738240\pi\)
−0.420769 + 0.907168i \(0.638240\pi\)
\(864\) 0 0
\(865\) −25.3352 7.21185i −0.861422 0.245210i
\(866\) 0 0
\(867\) 1.10383 2.16639i 0.0374880 0.0735743i
\(868\) 0 0
\(869\) 34.4729 11.2009i 1.16941 0.379965i
\(870\) 0 0
\(871\) −84.7602 27.5403i −2.87199 0.933166i
\(872\) 0 0
\(873\) −7.21727 1.14310i −0.244268 0.0386882i
\(874\) 0 0
\(875\) 15.3080 + 33.8534i 0.517505 + 1.14445i
\(876\) 0 0
\(877\) 6.73915 42.5493i 0.227565 1.43679i −0.564036 0.825750i \(-0.690752\pi\)
0.791601 0.611038i \(-0.209248\pi\)
\(878\) 0 0
\(879\) 5.92753 18.2431i 0.199931 0.615324i
\(880\) 0 0
\(881\) −7.53878 23.2020i −0.253988 0.781695i −0.994027 0.109131i \(-0.965193\pi\)
0.740039 0.672564i \(-0.234807\pi\)
\(882\) 0 0
\(883\) 23.9869 + 12.2219i 0.807223 + 0.411301i 0.808353 0.588699i \(-0.200359\pi\)
−0.00112935 + 0.999999i \(0.500359\pi\)
\(884\) 0 0
\(885\) −7.01221 + 24.6339i −0.235713 + 0.828058i
\(886\) 0 0
\(887\) −1.89438 11.9606i −0.0636070 0.401599i −0.998865 0.0476319i \(-0.984833\pi\)
0.935258 0.353967i \(-0.115167\pi\)
\(888\) 0 0
\(889\) −8.74185 12.0321i −0.293192 0.403544i
\(890\) 0 0
\(891\) 2.50587 3.44903i 0.0839498 0.115547i
\(892\) 0 0
\(893\) −0.890737 0.890737i −0.0298074 0.0298074i
\(894\) 0 0
\(895\) 3.85031 8.29881i 0.128702 0.277399i
\(896\) 0 0
\(897\) −19.7486 38.7588i −0.659387 1.29412i
\(898\) 0 0
\(899\) −8.55614 −0.285363
\(900\) 0 0
\(901\) 23.2600 0.774903
\(902\) 0 0
\(903\) 4.55839 + 8.94634i 0.151694 + 0.297716i
\(904\) 0 0
\(905\) 11.5409 + 58.7671i 0.383634 + 1.95348i
\(906\) 0 0
\(907\) −34.0838 34.0838i −1.13173 1.13173i −0.989889 0.141844i \(-0.954697\pi\)
−0.141844 0.989889i \(-0.545303\pi\)
\(908\) 0 0
\(909\) 16.8670 23.2154i 0.559442 0.770005i
\(910\) 0 0
\(911\) 9.58213 + 13.1887i 0.317470 + 0.436960i 0.937693 0.347466i \(-0.112958\pi\)
−0.620223 + 0.784426i \(0.712958\pi\)
\(912\) 0 0
\(913\) 3.75185 + 23.6882i 0.124168 + 0.783966i
\(914\) 0 0
\(915\) 11.2541 + 7.55944i 0.372050 + 0.249907i
\(916\) 0 0
\(917\) −19.6599 10.0172i −0.649226 0.330797i
\(918\) 0 0
\(919\) −7.75909 23.8800i −0.255949 0.787729i −0.993641 0.112592i \(-0.964085\pi\)
0.737693 0.675137i \(-0.235915\pi\)
\(920\) 0 0
\(921\) −4.73141 + 14.5618i −0.155905 + 0.479827i
\(922\) 0 0
\(923\) −8.48202 + 53.5533i −0.279189 + 1.76273i
\(924\) 0 0
\(925\) 51.3383 + 4.29187i 1.68799 + 0.141116i
\(926\) 0 0
\(927\) −37.0716 5.87156i −1.21759 0.192847i
\(928\) 0 0
\(929\) −25.9648 8.43646i −0.851876 0.276791i −0.149645 0.988740i \(-0.547813\pi\)
−0.702232 + 0.711949i \(0.747813\pi\)
\(930\) 0 0
\(931\) −1.02211 + 0.332104i −0.0334983 + 0.0108843i
\(932\) 0 0
\(933\) −13.7016 + 26.8909i −0.448570 + 0.880368i
\(934\) 0 0
\(935\) −0.941749 25.5538i −0.0307985 0.835698i
\(936\) 0 0
\(937\) 24.3542 3.85733i 0.795619 0.126014i 0.254625 0.967040i \(-0.418048\pi\)
0.540994 + 0.841026i \(0.318048\pi\)
\(938\) 0 0
\(939\) 6.06153 4.40396i 0.197811 0.143718i
\(940\) 0 0
\(941\) −1.54129 1.11981i −0.0502446 0.0365049i 0.562379 0.826879i \(-0.309886\pi\)
−0.612624 + 0.790374i \(0.709886\pi\)
\(942\) 0 0
\(943\) 6.92258 6.92258i 0.225430 0.225430i
\(944\) 0 0
\(945\) 17.7384 + 31.8557i 0.577029 + 1.03627i
\(946\) 0 0
\(947\) 44.2985 22.5712i 1.43951 0.733466i 0.452145 0.891945i \(-0.350659\pi\)
0.987362 + 0.158479i \(0.0506590\pi\)
\(948\) 0 0
\(949\) 30.5031i 0.990174i
\(950\) 0 0
\(951\) 5.41502i 0.175594i
\(952\) 0 0
\(953\) −18.2256 + 9.28640i −0.590384 + 0.300816i −0.723544 0.690279i \(-0.757488\pi\)
0.133159 + 0.991095i \(0.457488\pi\)
\(954\) 0 0
\(955\) −23.6141 + 25.4212i −0.764134 + 0.822611i
\(956\) 0 0
\(957\) −7.57884 + 7.57884i −0.244989 + 0.244989i
\(958\) 0 0
\(959\) 15.2772 + 11.0995i 0.493327 + 0.358423i
\(960\) 0 0
\(961\) −20.7037 + 15.0421i −0.667861 + 0.485230i
\(962\) 0 0
\(963\) 16.7217 2.64846i 0.538850 0.0853455i
\(964\) 0 0
\(965\) −9.54709 12.1712i −0.307332 0.391805i
\(966\) 0 0
\(967\) −2.90353 + 5.69850i −0.0933713 + 0.183252i −0.932969 0.359958i \(-0.882791\pi\)
0.839597 + 0.543209i \(0.182791\pi\)
\(968\) 0 0
\(969\) −0.933406 + 0.303282i −0.0299853 + 0.00974282i
\(970\) 0 0
\(971\) −19.6727 6.39206i −0.631329 0.205131i −0.0241650 0.999708i \(-0.507693\pi\)
−0.607164 + 0.794577i \(0.707693\pi\)
\(972\) 0 0
\(973\) 18.7949 + 2.97682i 0.602537 + 0.0954324i
\(974\) 0 0
\(975\) −26.1183 + 10.6700i −0.836455 + 0.341712i
\(976\) 0 0
\(977\) −4.11816 + 26.0011i −0.131752 + 0.831848i 0.829968 + 0.557812i \(0.188359\pi\)
−0.961719 + 0.274036i \(0.911641\pi\)
\(978\) 0 0
\(979\) −7.09010 + 21.8211i −0.226600 + 0.697404i
\(980\) 0 0
\(981\) 7.65660 + 23.5646i 0.244456 + 0.752360i
\(982\) 0 0
\(983\) −22.4815 11.4549i −0.717048 0.365354i 0.0570915 0.998369i \(-0.481817\pi\)
−0.774140 + 0.633015i \(0.781817\pi\)
\(984\) 0 0
\(985\) 2.53927 + 6.93489i 0.0809077 + 0.220964i
\(986\) 0 0
\(987\) 2.38928 + 15.0854i 0.0760518 + 0.480172i
\(988\) 0 0
\(989\) −14.1167 19.4299i −0.448884 0.617836i
\(990\) 0 0
\(991\) −4.69642 + 6.46407i −0.149187 + 0.205338i −0.877069 0.480364i \(-0.840505\pi\)
0.727882 + 0.685702i \(0.240505\pi\)
\(992\) 0 0
\(993\) −3.13586 3.13586i −0.0995135 0.0995135i
\(994\) 0 0
\(995\) −14.9520 1.80658i −0.474009 0.0572724i
\(996\) 0 0
\(997\) 23.0303 + 45.1996i 0.729378 + 1.43149i 0.895354 + 0.445356i \(0.146923\pi\)
−0.165975 + 0.986130i \(0.553077\pi\)
\(998\) 0 0
\(999\) 50.5577 1.59957
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.2.bq.c.223.6 64
4.3 odd 2 800.2.bq.d.223.3 yes 64
25.12 odd 20 800.2.bq.d.287.3 yes 64
100.87 even 20 inner 800.2.bq.c.287.6 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
800.2.bq.c.223.6 64 1.1 even 1 trivial
800.2.bq.c.287.6 yes 64 100.87 even 20 inner
800.2.bq.d.223.3 yes 64 4.3 odd 2
800.2.bq.d.287.3 yes 64 25.12 odd 20