Properties

Label 800.2.bq.d.223.1
Level $800$
Weight $2$
Character 800.223
Analytic conductor $6.388$
Analytic rank $0$
Dimension $64$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,2,Mod(63,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([10, 0, 19]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.63");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 800.bq (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.38803216170\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(8\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 223.1
Character \(\chi\) \(=\) 800.223
Dual form 800.2.bq.d.287.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.46455 - 2.87435i) q^{3} +(-1.81895 + 1.30054i) q^{5} +(-2.79469 - 2.79469i) q^{7} +(-4.35362 + 5.99224i) q^{9} +(-1.60428 - 2.20810i) q^{11} +(-0.689899 - 4.35585i) q^{13} +(6.40217 + 3.32360i) q^{15} +(4.55876 + 2.32280i) q^{17} +(0.743109 + 2.28705i) q^{19} +(-3.93994 + 12.1259i) q^{21} +(-0.877961 + 5.54323i) q^{23} +(1.61719 - 4.73125i) q^{25} +(14.0412 + 2.22390i) q^{27} +(-6.14797 - 1.99760i) q^{29} +(-3.04391 + 0.989025i) q^{31} +(-3.99731 + 7.84515i) q^{33} +(8.71801 + 1.44881i) q^{35} +(6.09192 - 0.964866i) q^{37} +(-11.5098 + 8.36239i) q^{39} +(5.32289 + 3.86731i) q^{41} +(2.82738 - 2.82738i) q^{43} +(0.125886 - 16.5617i) q^{45} +(1.10121 - 0.561093i) q^{47} +8.62056i q^{49} -16.5054i q^{51} +(-4.64134 + 2.36488i) q^{53} +(5.78984 + 1.93001i) q^{55} +(5.48547 - 5.48547i) q^{57} +(-0.214752 - 0.156027i) q^{59} +(0.418495 - 0.304055i) q^{61} +(28.9134 - 4.57944i) q^{63} +(6.91985 + 7.02585i) q^{65} +(-2.64400 + 5.18915i) q^{67} +(17.2190 - 5.59479i) q^{69} +(-2.21412 - 0.719412i) q^{71} +(-10.4754 - 1.65914i) q^{73} +(-15.9677 + 2.28079i) q^{75} +(-1.68749 + 10.6544i) q^{77} +(-3.73675 + 11.5005i) q^{79} +(-7.30530 - 22.4834i) q^{81} +(5.80791 + 2.95928i) q^{83} +(-11.3131 + 1.70377i) q^{85} +(3.26225 + 20.5970i) q^{87} +(7.20569 + 9.91778i) q^{89} +(-10.2452 + 14.1013i) q^{91} +(7.30077 + 7.30077i) q^{93} +(-4.32609 - 3.19361i) q^{95} +(-4.94401 - 9.70316i) q^{97} +20.2159 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 2 q^{5} + 4 q^{7} + 4 q^{13} + 22 q^{15} + 8 q^{17} - 18 q^{19} - 16 q^{21} + 8 q^{23} + 40 q^{25} + 18 q^{27} - 20 q^{31} + 44 q^{33} + 38 q^{35} - 10 q^{37} - 36 q^{39} - 16 q^{41} + 32 q^{43}+ \cdots + 132 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{11}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.46455 2.87435i −0.845561 1.65951i −0.747437 0.664333i \(-0.768716\pi\)
−0.0981245 0.995174i \(-0.531284\pi\)
\(4\) 0 0
\(5\) −1.81895 + 1.30054i −0.813461 + 0.581619i
\(6\) 0 0
\(7\) −2.79469 2.79469i −1.05629 1.05629i −0.998318 0.0579747i \(-0.981536\pi\)
−0.0579747 0.998318i \(-0.518464\pi\)
\(8\) 0 0
\(9\) −4.35362 + 5.99224i −1.45121 + 1.99741i
\(10\) 0 0
\(11\) −1.60428 2.20810i −0.483709 0.665768i 0.495504 0.868606i \(-0.334984\pi\)
−0.979212 + 0.202838i \(0.934984\pi\)
\(12\) 0 0
\(13\) −0.689899 4.35585i −0.191343 1.20809i −0.877116 0.480279i \(-0.840535\pi\)
0.685772 0.727816i \(-0.259465\pi\)
\(14\) 0 0
\(15\) 6.40217 + 3.32360i 1.65303 + 0.858150i
\(16\) 0 0
\(17\) 4.55876 + 2.32280i 1.10566 + 0.563363i 0.908869 0.417082i \(-0.136947\pi\)
0.196793 + 0.980445i \(0.436947\pi\)
\(18\) 0 0
\(19\) 0.743109 + 2.28705i 0.170481 + 0.524686i 0.999398 0.0346847i \(-0.0110427\pi\)
−0.828917 + 0.559371i \(0.811043\pi\)
\(20\) 0 0
\(21\) −3.93994 + 12.1259i −0.859765 + 2.64609i
\(22\) 0 0
\(23\) −0.877961 + 5.54323i −0.183067 + 1.15584i 0.709425 + 0.704781i \(0.248955\pi\)
−0.892493 + 0.451062i \(0.851045\pi\)
\(24\) 0 0
\(25\) 1.61719 4.73125i 0.323438 0.946249i
\(26\) 0 0
\(27\) 14.0412 + 2.22390i 2.70223 + 0.427990i
\(28\) 0 0
\(29\) −6.14797 1.99760i −1.14165 0.370944i −0.323658 0.946174i \(-0.604913\pi\)
−0.817992 + 0.575230i \(0.804913\pi\)
\(30\) 0 0
\(31\) −3.04391 + 0.989025i −0.546702 + 0.177634i −0.569329 0.822110i \(-0.692797\pi\)
0.0226272 + 0.999744i \(0.492797\pi\)
\(32\) 0 0
\(33\) −3.99731 + 7.84515i −0.695842 + 1.36567i
\(34\) 0 0
\(35\) 8.71801 + 1.44881i 1.47361 + 0.244893i
\(36\) 0 0
\(37\) 6.09192 0.964866i 1.00151 0.158623i 0.365914 0.930649i \(-0.380756\pi\)
0.635591 + 0.772026i \(0.280756\pi\)
\(38\) 0 0
\(39\) −11.5098 + 8.36239i −1.84305 + 1.33905i
\(40\) 0 0
\(41\) 5.32289 + 3.86731i 0.831296 + 0.603972i 0.919926 0.392093i \(-0.128249\pi\)
−0.0886296 + 0.996065i \(0.528249\pi\)
\(42\) 0 0
\(43\) 2.82738 2.82738i 0.431172 0.431172i −0.457855 0.889027i \(-0.651382\pi\)
0.889027 + 0.457855i \(0.151382\pi\)
\(44\) 0 0
\(45\) 0.125886 16.5617i 0.0187659 2.46887i
\(46\) 0 0
\(47\) 1.10121 0.561093i 0.160628 0.0818439i −0.371829 0.928301i \(-0.621269\pi\)
0.532456 + 0.846458i \(0.321269\pi\)
\(48\) 0 0
\(49\) 8.62056i 1.23151i
\(50\) 0 0
\(51\) 16.5054i 2.31121i
\(52\) 0 0
\(53\) −4.64134 + 2.36488i −0.637537 + 0.324842i −0.742711 0.669612i \(-0.766460\pi\)
0.105173 + 0.994454i \(0.466460\pi\)
\(54\) 0 0
\(55\) 5.78984 + 1.93001i 0.780702 + 0.260242i
\(56\) 0 0
\(57\) 5.48547 5.48547i 0.726569 0.726569i
\(58\) 0 0
\(59\) −0.214752 0.156027i −0.0279584 0.0203129i 0.573718 0.819053i \(-0.305500\pi\)
−0.601677 + 0.798740i \(0.705500\pi\)
\(60\) 0 0
\(61\) 0.418495 0.304055i 0.0535828 0.0389302i −0.560671 0.828038i \(-0.689457\pi\)
0.614254 + 0.789108i \(0.289457\pi\)
\(62\) 0 0
\(63\) 28.9134 4.57944i 3.64275 0.576955i
\(64\) 0 0
\(65\) 6.91985 + 7.02585i 0.858301 + 0.871449i
\(66\) 0 0
\(67\) −2.64400 + 5.18915i −0.323017 + 0.633956i −0.994225 0.107313i \(-0.965775\pi\)
0.671209 + 0.741268i \(0.265775\pi\)
\(68\) 0 0
\(69\) 17.2190 5.59479i 2.07292 0.673534i
\(70\) 0 0
\(71\) −2.21412 0.719412i −0.262768 0.0853785i 0.174670 0.984627i \(-0.444114\pi\)
−0.437438 + 0.899249i \(0.644114\pi\)
\(72\) 0 0
\(73\) −10.4754 1.65914i −1.22605 0.194188i −0.490371 0.871514i \(-0.663139\pi\)
−0.735683 + 0.677326i \(0.763139\pi\)
\(74\) 0 0
\(75\) −15.9677 + 2.28079i −1.84379 + 0.263363i
\(76\) 0 0
\(77\) −1.68749 + 10.6544i −0.192308 + 1.21418i
\(78\) 0 0
\(79\) −3.73675 + 11.5005i −0.420418 + 1.29391i 0.486897 + 0.873459i \(0.338129\pi\)
−0.907314 + 0.420453i \(0.861871\pi\)
\(80\) 0 0
\(81\) −7.30530 22.4834i −0.811700 2.49816i
\(82\) 0 0
\(83\) 5.80791 + 2.95928i 0.637501 + 0.324823i 0.742696 0.669629i \(-0.233547\pi\)
−0.105195 + 0.994452i \(0.533547\pi\)
\(84\) 0 0
\(85\) −11.3131 + 1.70377i −1.22708 + 0.184800i
\(86\) 0 0
\(87\) 3.26225 + 20.5970i 0.349750 + 2.20823i
\(88\) 0 0
\(89\) 7.20569 + 9.91778i 0.763802 + 1.05128i 0.996888 + 0.0788270i \(0.0251175\pi\)
−0.233086 + 0.972456i \(0.574883\pi\)
\(90\) 0 0
\(91\) −10.2452 + 14.1013i −1.07399 + 1.47822i
\(92\) 0 0
\(93\) 7.30077 + 7.30077i 0.757055 + 0.757055i
\(94\) 0 0
\(95\) −4.32609 3.19361i −0.443847 0.327657i
\(96\) 0 0
\(97\) −4.94401 9.70316i −0.501988 0.985206i −0.993446 0.114305i \(-0.963536\pi\)
0.491458 0.870901i \(-0.336464\pi\)
\(98\) 0 0
\(99\) 20.2159 2.03177
\(100\) 0 0
\(101\) −5.20311 −0.517729 −0.258864 0.965914i \(-0.583348\pi\)
−0.258864 + 0.965914i \(0.583348\pi\)
\(102\) 0 0
\(103\) −3.77970 7.41808i −0.372425 0.730925i 0.626394 0.779506i \(-0.284530\pi\)
−0.998819 + 0.0485812i \(0.984530\pi\)
\(104\) 0 0
\(105\) −8.60363 27.1805i −0.839628 2.65254i
\(106\) 0 0
\(107\) −12.3186 12.3186i −1.19088 1.19088i −0.976819 0.214065i \(-0.931330\pi\)
−0.214065 0.976819i \(-0.568670\pi\)
\(108\) 0 0
\(109\) −3.85539 + 5.30648i −0.369279 + 0.508269i −0.952705 0.303898i \(-0.901712\pi\)
0.583426 + 0.812166i \(0.301712\pi\)
\(110\) 0 0
\(111\) −11.6953 16.0972i −1.11007 1.52788i
\(112\) 0 0
\(113\) 0.987363 + 6.23396i 0.0928833 + 0.586442i 0.989601 + 0.143839i \(0.0459448\pi\)
−0.896718 + 0.442603i \(0.854055\pi\)
\(114\) 0 0
\(115\) −5.61222 11.2247i −0.523342 1.04671i
\(116\) 0 0
\(117\) 29.1048 + 14.8297i 2.69074 + 1.37100i
\(118\) 0 0
\(119\) −6.24880 19.2318i −0.572827 1.76298i
\(120\) 0 0
\(121\) 1.09718 3.37679i 0.0997441 0.306981i
\(122\) 0 0
\(123\) 3.32033 20.9637i 0.299384 1.89024i
\(124\) 0 0
\(125\) 3.21157 + 10.7091i 0.287252 + 0.957855i
\(126\) 0 0
\(127\) 2.85861 + 0.452759i 0.253660 + 0.0401758i 0.281970 0.959423i \(-0.409012\pi\)
−0.0283092 + 0.999599i \(0.509012\pi\)
\(128\) 0 0
\(129\) −12.2677 3.98603i −1.08012 0.350951i
\(130\) 0 0
\(131\) 2.76968 0.899925i 0.241988 0.0786268i −0.185512 0.982642i \(-0.559394\pi\)
0.427500 + 0.904015i \(0.359394\pi\)
\(132\) 0 0
\(133\) 4.31485 8.46836i 0.374145 0.734300i
\(134\) 0 0
\(135\) −28.4325 + 14.2159i −2.44708 + 1.22351i
\(136\) 0 0
\(137\) −3.12844 + 0.495496i −0.267280 + 0.0423331i −0.288636 0.957439i \(-0.593202\pi\)
0.0213557 + 0.999772i \(0.493202\pi\)
\(138\) 0 0
\(139\) −18.4701 + 13.4193i −1.56661 + 1.13821i −0.636298 + 0.771444i \(0.719535\pi\)
−0.930313 + 0.366766i \(0.880465\pi\)
\(140\) 0 0
\(141\) −3.22556 2.34350i −0.271641 0.197359i
\(142\) 0 0
\(143\) −8.51137 + 8.51137i −0.711756 + 0.711756i
\(144\) 0 0
\(145\) 13.7808 4.36214i 1.14444 0.362256i
\(146\) 0 0
\(147\) 24.7785 12.6253i 2.04370 1.04132i
\(148\) 0 0
\(149\) 7.69000i 0.629989i 0.949094 + 0.314994i \(0.102003\pi\)
−0.949094 + 0.314994i \(0.897997\pi\)
\(150\) 0 0
\(151\) 7.50362i 0.610636i −0.952250 0.305318i \(-0.901237\pi\)
0.952250 0.305318i \(-0.0987627\pi\)
\(152\) 0 0
\(153\) −33.7659 + 17.2046i −2.72981 + 1.39091i
\(154\) 0 0
\(155\) 4.25046 5.75771i 0.341405 0.462471i
\(156\) 0 0
\(157\) −12.3164 + 12.3164i −0.982952 + 0.982952i −0.999857 0.0169050i \(-0.994619\pi\)
0.0169050 + 0.999857i \(0.494619\pi\)
\(158\) 0 0
\(159\) 13.5950 + 9.87735i 1.07815 + 0.783324i
\(160\) 0 0
\(161\) 17.9452 13.0380i 1.41428 1.02754i
\(162\) 0 0
\(163\) −13.1012 + 2.07502i −1.02616 + 0.162529i −0.646753 0.762700i \(-0.723874\pi\)
−0.379412 + 0.925228i \(0.623874\pi\)
\(164\) 0 0
\(165\) −2.93202 19.4686i −0.228257 1.51563i
\(166\) 0 0
\(167\) −2.99484 + 5.87769i −0.231747 + 0.454830i −0.977370 0.211539i \(-0.932152\pi\)
0.745622 + 0.666369i \(0.232152\pi\)
\(168\) 0 0
\(169\) −6.13372 + 1.99297i −0.471824 + 0.153305i
\(170\) 0 0
\(171\) −16.9398 5.50407i −1.29542 0.420907i
\(172\) 0 0
\(173\) 9.68291 + 1.53362i 0.736178 + 0.116599i 0.513254 0.858237i \(-0.328440\pi\)
0.222924 + 0.974836i \(0.428440\pi\)
\(174\) 0 0
\(175\) −17.7419 + 8.70281i −1.34116 + 0.657870i
\(176\) 0 0
\(177\) −0.133959 + 0.845783i −0.0100690 + 0.0635729i
\(178\) 0 0
\(179\) −4.31387 + 13.2767i −0.322433 + 0.992348i 0.650152 + 0.759804i \(0.274705\pi\)
−0.972586 + 0.232544i \(0.925295\pi\)
\(180\) 0 0
\(181\) 3.79297 + 11.6736i 0.281929 + 0.867688i 0.987302 + 0.158852i \(0.0507794\pi\)
−0.705373 + 0.708836i \(0.749221\pi\)
\(182\) 0 0
\(183\) −1.48687 0.757598i −0.109913 0.0560032i
\(184\) 0 0
\(185\) −9.82608 + 9.67783i −0.722428 + 0.711528i
\(186\) 0 0
\(187\) −2.18454 13.7926i −0.159749 1.00862i
\(188\) 0 0
\(189\) −33.0256 45.4558i −2.40226 3.30642i
\(190\) 0 0
\(191\) 5.62078 7.73634i 0.406705 0.559782i −0.555706 0.831379i \(-0.687552\pi\)
0.962411 + 0.271597i \(0.0875518\pi\)
\(192\) 0 0
\(193\) −5.15678 5.15678i −0.371193 0.371193i 0.496719 0.867912i \(-0.334538\pi\)
−0.867912 + 0.496719i \(0.834538\pi\)
\(194\) 0 0
\(195\) 10.0603 30.1798i 0.720430 2.16122i
\(196\) 0 0
\(197\) −1.57698 3.09500i −0.112355 0.220510i 0.827981 0.560756i \(-0.189490\pi\)
−0.940336 + 0.340246i \(0.889490\pi\)
\(198\) 0 0
\(199\) −7.93232 −0.562307 −0.281154 0.959663i \(-0.590717\pi\)
−0.281154 + 0.959663i \(0.590717\pi\)
\(200\) 0 0
\(201\) 18.7877 1.32518
\(202\) 0 0
\(203\) 11.5990 + 22.7643i 0.814090 + 1.59774i
\(204\) 0 0
\(205\) −14.7117 0.111824i −1.02751 0.00781012i
\(206\) 0 0
\(207\) −29.3940 29.3940i −2.04303 2.04303i
\(208\) 0 0
\(209\) 3.85790 5.30994i 0.266856 0.367296i
\(210\) 0 0
\(211\) 12.3726 + 17.0295i 0.851768 + 1.17236i 0.983471 + 0.181068i \(0.0579555\pi\)
−0.131703 + 0.991289i \(0.542045\pi\)
\(212\) 0 0
\(213\) 1.17486 + 7.41778i 0.0805002 + 0.508258i
\(214\) 0 0
\(215\) −1.46576 + 8.82001i −0.0999638 + 0.601519i
\(216\) 0 0
\(217\) 11.2708 + 5.74275i 0.765111 + 0.389843i
\(218\) 0 0
\(219\) 10.5729 + 32.5399i 0.714448 + 2.19884i
\(220\) 0 0
\(221\) 6.97270 21.4598i 0.469035 1.44354i
\(222\) 0 0
\(223\) −1.07738 + 6.80229i −0.0721465 + 0.455515i 0.924996 + 0.379976i \(0.124068\pi\)
−0.997143 + 0.0755389i \(0.975932\pi\)
\(224\) 0 0
\(225\) 21.3101 + 30.2886i 1.42067 + 2.01924i
\(226\) 0 0
\(227\) −16.2657 2.57623i −1.07959 0.170991i −0.408791 0.912628i \(-0.634050\pi\)
−0.670801 + 0.741637i \(0.734050\pi\)
\(228\) 0 0
\(229\) −11.5696 3.75919i −0.764541 0.248414i −0.0993145 0.995056i \(-0.531665\pi\)
−0.665226 + 0.746642i \(0.731665\pi\)
\(230\) 0 0
\(231\) 33.0960 10.7535i 2.17756 0.707531i
\(232\) 0 0
\(233\) 12.0215 23.5935i 0.787552 1.54566i −0.0496507 0.998767i \(-0.515811\pi\)
0.837203 0.546892i \(-0.184189\pi\)
\(234\) 0 0
\(235\) −1.27332 + 2.45277i −0.0830624 + 0.160001i
\(236\) 0 0
\(237\) 38.5293 6.10244i 2.50275 0.396396i
\(238\) 0 0
\(239\) 17.2941 12.5649i 1.11866 0.812758i 0.134659 0.990892i \(-0.457006\pi\)
0.984006 + 0.178134i \(0.0570062\pi\)
\(240\) 0 0
\(241\) 11.6753 + 8.48263i 0.752075 + 0.546414i 0.896469 0.443106i \(-0.146123\pi\)
−0.144394 + 0.989520i \(0.546123\pi\)
\(242\) 0 0
\(243\) −23.7690 + 23.7690i −1.52479 + 1.52479i
\(244\) 0 0
\(245\) −11.2114 15.6804i −0.716269 1.00178i
\(246\) 0 0
\(247\) 9.44939 4.81471i 0.601250 0.306352i
\(248\) 0 0
\(249\) 21.0280i 1.33260i
\(250\) 0 0
\(251\) 8.72581i 0.550768i 0.961334 + 0.275384i \(0.0888050\pi\)
−0.961334 + 0.275384i \(0.911195\pi\)
\(252\) 0 0
\(253\) 13.6485 6.95426i 0.858074 0.437211i
\(254\) 0 0
\(255\) 21.4659 + 30.0225i 1.34424 + 1.88008i
\(256\) 0 0
\(257\) −11.5328 + 11.5328i −0.719397 + 0.719397i −0.968482 0.249084i \(-0.919870\pi\)
0.249084 + 0.968482i \(0.419870\pi\)
\(258\) 0 0
\(259\) −19.7215 14.3285i −1.22544 0.890331i
\(260\) 0 0
\(261\) 38.7360 28.1433i 2.39770 1.74203i
\(262\) 0 0
\(263\) 18.1552 2.87549i 1.11949 0.177311i 0.430860 0.902419i \(-0.358210\pi\)
0.688635 + 0.725108i \(0.258210\pi\)
\(264\) 0 0
\(265\) 5.36677 10.3379i 0.329678 0.635050i
\(266\) 0 0
\(267\) 17.9541 35.2368i 1.09877 2.15646i
\(268\) 0 0
\(269\) −11.0677 + 3.59613i −0.674812 + 0.219260i −0.626323 0.779564i \(-0.715441\pi\)
−0.0484895 + 0.998824i \(0.515441\pi\)
\(270\) 0 0
\(271\) −7.19982 2.33936i −0.437358 0.142106i 0.0820585 0.996628i \(-0.473851\pi\)
−0.519416 + 0.854521i \(0.673851\pi\)
\(272\) 0 0
\(273\) 55.5367 + 8.79615i 3.36123 + 0.532367i
\(274\) 0 0
\(275\) −13.0415 + 4.01932i −0.786433 + 0.242374i
\(276\) 0 0
\(277\) 3.99596 25.2295i 0.240094 1.51589i −0.513234 0.858249i \(-0.671553\pi\)
0.753328 0.657645i \(-0.228447\pi\)
\(278\) 0 0
\(279\) 7.32552 22.5456i 0.438568 1.34977i
\(280\) 0 0
\(281\) −4.41297 13.5817i −0.263256 0.810217i −0.992090 0.125527i \(-0.959938\pi\)
0.728835 0.684690i \(-0.240062\pi\)
\(282\) 0 0
\(283\) 1.41981 + 0.723431i 0.0843991 + 0.0430035i 0.495681 0.868505i \(-0.334919\pi\)
−0.411281 + 0.911508i \(0.634919\pi\)
\(284\) 0 0
\(285\) −2.84375 + 17.1119i −0.168449 + 1.01362i
\(286\) 0 0
\(287\) −4.06791 25.6837i −0.240121 1.51606i
\(288\) 0 0
\(289\) 5.39453 + 7.42494i 0.317325 + 0.436761i
\(290\) 0 0
\(291\) −20.6495 + 28.4216i −1.21050 + 1.66610i
\(292\) 0 0
\(293\) 12.2420 + 12.2420i 0.715187 + 0.715187i 0.967615 0.252429i \(-0.0812294\pi\)
−0.252429 + 0.967615i \(0.581229\pi\)
\(294\) 0 0
\(295\) 0.593543 + 0.00451154i 0.0345574 + 0.000262672i
\(296\) 0 0
\(297\) −17.6154 34.5721i −1.02215 2.00608i
\(298\) 0 0
\(299\) 24.7512 1.43140
\(300\) 0 0
\(301\) −15.8033 −0.910888
\(302\) 0 0
\(303\) 7.62024 + 14.9556i 0.437771 + 0.859175i
\(304\) 0 0
\(305\) −0.365789 + 1.09733i −0.0209450 + 0.0628330i
\(306\) 0 0
\(307\) 10.0589 + 10.0589i 0.574089 + 0.574089i 0.933269 0.359179i \(-0.116943\pi\)
−0.359179 + 0.933269i \(0.616943\pi\)
\(308\) 0 0
\(309\) −15.7866 + 21.7284i −0.898068 + 1.23608i
\(310\) 0 0
\(311\) 6.07301 + 8.35878i 0.344369 + 0.473983i 0.945711 0.325009i \(-0.105367\pi\)
−0.601342 + 0.798991i \(0.705367\pi\)
\(312\) 0 0
\(313\) 2.55644 + 16.1407i 0.144498 + 0.912326i 0.948288 + 0.317412i \(0.102814\pi\)
−0.803789 + 0.594914i \(0.797186\pi\)
\(314\) 0 0
\(315\) −46.6365 + 45.9329i −2.62767 + 2.58802i
\(316\) 0 0
\(317\) −29.7982 15.1829i −1.67363 0.852758i −0.992727 0.120387i \(-0.961586\pi\)
−0.680906 0.732371i \(-0.738414\pi\)
\(318\) 0 0
\(319\) 5.45217 + 16.7801i 0.305263 + 0.939503i
\(320\) 0 0
\(321\) −17.3667 + 53.4493i −0.969316 + 2.98325i
\(322\) 0 0
\(323\) −1.92472 + 12.1522i −0.107095 + 0.676168i
\(324\) 0 0
\(325\) −21.7243 3.78016i −1.20505 0.209686i
\(326\) 0 0
\(327\) 20.8991 + 3.31009i 1.15572 + 0.183049i
\(328\) 0 0
\(329\) −4.64561 1.50945i −0.256121 0.0832187i
\(330\) 0 0
\(331\) −3.88228 + 1.26143i −0.213390 + 0.0693345i −0.413761 0.910386i \(-0.635785\pi\)
0.200371 + 0.979720i \(0.435785\pi\)
\(332\) 0 0
\(333\) −20.7402 + 40.7049i −1.13655 + 2.23061i
\(334\) 0 0
\(335\) −1.93937 12.8775i −0.105959 0.703571i
\(336\) 0 0
\(337\) −28.5845 + 4.52734i −1.55710 + 0.246620i −0.874811 0.484465i \(-0.839014\pi\)
−0.682286 + 0.731085i \(0.739014\pi\)
\(338\) 0 0
\(339\) 16.4726 11.9680i 0.894666 0.650013i
\(340\) 0 0
\(341\) 7.06715 + 5.13458i 0.382708 + 0.278053i
\(342\) 0 0
\(343\) 4.52896 4.52896i 0.244541 0.244541i
\(344\) 0 0
\(345\) −24.0443 + 32.5707i −1.29450 + 1.75355i
\(346\) 0 0
\(347\) 23.8682 12.1615i 1.28131 0.652862i 0.325141 0.945666i \(-0.394588\pi\)
0.956173 + 0.292804i \(0.0945883\pi\)
\(348\) 0 0
\(349\) 9.07661i 0.485860i −0.970044 0.242930i \(-0.921892\pi\)
0.970044 0.242930i \(-0.0781085\pi\)
\(350\) 0 0
\(351\) 62.6955i 3.34644i
\(352\) 0 0
\(353\) −2.80378 + 1.42860i −0.149230 + 0.0760364i −0.527011 0.849859i \(-0.676687\pi\)
0.377781 + 0.925895i \(0.376687\pi\)
\(354\) 0 0
\(355\) 4.96301 1.57098i 0.263409 0.0833788i
\(356\) 0 0
\(357\) −46.1273 + 46.1273i −2.44132 + 2.44132i
\(358\) 0 0
\(359\) −16.3120 11.8514i −0.860914 0.625490i 0.0672196 0.997738i \(-0.478587\pi\)
−0.928133 + 0.372248i \(0.878587\pi\)
\(360\) 0 0
\(361\) 10.6929 7.76886i 0.562785 0.408887i
\(362\) 0 0
\(363\) −11.3130 + 1.79180i −0.593776 + 0.0940449i
\(364\) 0 0
\(365\) 21.2121 10.6058i 1.11029 0.555132i
\(366\) 0 0
\(367\) −15.3915 + 30.2076i −0.803431 + 1.57682i 0.0133758 + 0.999911i \(0.495742\pi\)
−0.816807 + 0.576911i \(0.804258\pi\)
\(368\) 0 0
\(369\) −46.3477 + 15.0593i −2.41276 + 0.783954i
\(370\) 0 0
\(371\) 19.5802 + 6.36200i 1.01655 + 0.330298i
\(372\) 0 0
\(373\) −0.0157471 0.00249409i −0.000815354 0.000129139i 0.156027 0.987753i \(-0.450131\pi\)
−0.156842 + 0.987624i \(0.550131\pi\)
\(374\) 0 0
\(375\) 26.0783 24.9153i 1.34668 1.28662i
\(376\) 0 0
\(377\) −4.45975 + 28.1578i −0.229689 + 1.45020i
\(378\) 0 0
\(379\) 9.53680 29.3513i 0.489873 1.50767i −0.334925 0.942245i \(-0.608711\pi\)
0.824798 0.565428i \(-0.191289\pi\)
\(380\) 0 0
\(381\) −2.88520 8.87973i −0.147813 0.454922i
\(382\) 0 0
\(383\) 18.6404 + 9.49776i 0.952480 + 0.485313i 0.859939 0.510396i \(-0.170501\pi\)
0.0925405 + 0.995709i \(0.470501\pi\)
\(384\) 0 0
\(385\) −10.7870 21.5746i −0.549758 1.09954i
\(386\) 0 0
\(387\) 4.63301 + 29.2517i 0.235509 + 1.48695i
\(388\) 0 0
\(389\) 20.0307 + 27.5699i 1.01560 + 1.39785i 0.915245 + 0.402898i \(0.131997\pi\)
0.100353 + 0.994952i \(0.468003\pi\)
\(390\) 0 0
\(391\) −16.8782 + 23.2309i −0.853570 + 1.17484i
\(392\) 0 0
\(393\) −6.64305 6.64305i −0.335098 0.335098i
\(394\) 0 0
\(395\) −8.15993 25.7788i −0.410571 1.29707i
\(396\) 0 0
\(397\) 0.451213 + 0.885556i 0.0226457 + 0.0444448i 0.902052 0.431627i \(-0.142060\pi\)
−0.879406 + 0.476072i \(0.842060\pi\)
\(398\) 0 0
\(399\) −30.6604 −1.53494
\(400\) 0 0
\(401\) 18.8940 0.943521 0.471761 0.881727i \(-0.343619\pi\)
0.471761 + 0.881727i \(0.343619\pi\)
\(402\) 0 0
\(403\) 6.40803 + 12.5765i 0.319207 + 0.626478i
\(404\) 0 0
\(405\) 42.5286 + 31.3955i 2.11326 + 1.56005i
\(406\) 0 0
\(407\) −11.9037 11.9037i −0.590043 0.590043i
\(408\) 0 0
\(409\) 22.9396 31.5737i 1.13429 1.56122i 0.354638 0.935004i \(-0.384604\pi\)
0.779652 0.626213i \(-0.215396\pi\)
\(410\) 0 0
\(411\) 6.00600 + 8.26654i 0.296254 + 0.407759i
\(412\) 0 0
\(413\) 0.164120 + 1.03621i 0.00807580 + 0.0509886i
\(414\) 0 0
\(415\) −14.4130 + 2.17063i −0.707506 + 0.106552i
\(416\) 0 0
\(417\) 65.6222 + 33.4362i 3.21353 + 1.63738i
\(418\) 0 0
\(419\) 4.82220 + 14.8412i 0.235580 + 0.725041i 0.997044 + 0.0768334i \(0.0244810\pi\)
−0.761464 + 0.648207i \(0.775519\pi\)
\(420\) 0 0
\(421\) −4.85470 + 14.9412i −0.236604 + 0.728192i 0.760301 + 0.649571i \(0.225052\pi\)
−0.996905 + 0.0786205i \(0.974948\pi\)
\(422\) 0 0
\(423\) −1.43203 + 9.04148i −0.0696277 + 0.439612i
\(424\) 0 0
\(425\) 18.3622 17.8122i 0.890695 0.864019i
\(426\) 0 0
\(427\) −2.01930 0.319826i −0.0977209 0.0154775i
\(428\) 0 0
\(429\) 36.9300 + 11.9993i 1.78300 + 0.579331i
\(430\) 0 0
\(431\) −34.4523 + 11.1942i −1.65951 + 0.539207i −0.980769 0.195173i \(-0.937473\pi\)
−0.678738 + 0.734380i \(0.737473\pi\)
\(432\) 0 0
\(433\) −4.66192 + 9.14954i −0.224038 + 0.439699i −0.975476 0.220104i \(-0.929360\pi\)
0.751439 + 0.659803i \(0.229360\pi\)
\(434\) 0 0
\(435\) −32.7211 33.2223i −1.56886 1.59289i
\(436\) 0 0
\(437\) −13.3301 + 2.11128i −0.637664 + 0.100996i
\(438\) 0 0
\(439\) 5.27551 3.83288i 0.251786 0.182933i −0.454732 0.890628i \(-0.650265\pi\)
0.706518 + 0.707695i \(0.250265\pi\)
\(440\) 0 0
\(441\) −51.6565 37.5306i −2.45983 1.78717i
\(442\) 0 0
\(443\) 21.4275 21.4275i 1.01805 1.01805i 0.0182176 0.999834i \(-0.494201\pi\)
0.999834 0.0182176i \(-0.00579917\pi\)
\(444\) 0 0
\(445\) −26.0053 8.66871i −1.23277 0.410936i
\(446\) 0 0
\(447\) 22.1037 11.2624i 1.04547 0.532694i
\(448\) 0 0
\(449\) 26.5999i 1.25533i −0.778485 0.627663i \(-0.784012\pi\)
0.778485 0.627663i \(-0.215988\pi\)
\(450\) 0 0
\(451\) 17.9577i 0.845597i
\(452\) 0 0
\(453\) −21.5680 + 10.9895i −1.01335 + 0.516330i
\(454\) 0 0
\(455\) 0.296241 38.9739i 0.0138880 1.82712i
\(456\) 0 0
\(457\) −28.1522 + 28.1522i −1.31690 + 1.31690i −0.400687 + 0.916215i \(0.631229\pi\)
−0.916215 + 0.400687i \(0.868771\pi\)
\(458\) 0 0
\(459\) 58.8447 + 42.7532i 2.74663 + 1.99555i
\(460\) 0 0
\(461\) −1.83986 + 1.33674i −0.0856908 + 0.0622580i −0.629806 0.776753i \(-0.716866\pi\)
0.544115 + 0.839011i \(0.316866\pi\)
\(462\) 0 0
\(463\) 32.0023 5.06867i 1.48728 0.235561i 0.640684 0.767805i \(-0.278651\pi\)
0.846591 + 0.532244i \(0.178651\pi\)
\(464\) 0 0
\(465\) −22.7747 3.78483i −1.05615 0.175517i
\(466\) 0 0
\(467\) −11.7289 + 23.0192i −0.542747 + 1.06520i 0.442929 + 0.896556i \(0.353939\pi\)
−0.985677 + 0.168645i \(0.946061\pi\)
\(468\) 0 0
\(469\) 21.8912 7.11289i 1.01084 0.328443i
\(470\) 0 0
\(471\) 53.4395 + 17.3635i 2.46236 + 0.800070i
\(472\) 0 0
\(473\) −10.7791 1.70724i −0.495622 0.0784988i
\(474\) 0 0
\(475\) 12.0224 + 0.182775i 0.551624 + 0.00838630i
\(476\) 0 0
\(477\) 6.03568 38.1078i 0.276355 1.74484i
\(478\) 0 0
\(479\) −2.02478 + 6.23165i −0.0925148 + 0.284731i −0.986598 0.163170i \(-0.947828\pi\)
0.894083 + 0.447901i \(0.147828\pi\)
\(480\) 0 0
\(481\) −8.40562 25.8698i −0.383263 1.17956i
\(482\) 0 0
\(483\) −63.7574 32.4860i −2.90106 1.47817i
\(484\) 0 0
\(485\) 21.6123 + 11.2197i 0.981362 + 0.509462i
\(486\) 0 0
\(487\) −3.57636 22.5803i −0.162061 1.02321i −0.925890 0.377792i \(-0.876683\pi\)
0.763830 0.645418i \(-0.223317\pi\)
\(488\) 0 0
\(489\) 25.1518 + 34.6184i 1.13740 + 1.56550i
\(490\) 0 0
\(491\) −10.8187 + 14.8906i −0.488239 + 0.672004i −0.980062 0.198692i \(-0.936331\pi\)
0.491823 + 0.870695i \(0.336331\pi\)
\(492\) 0 0
\(493\) −23.3871 23.3871i −1.05330 1.05330i
\(494\) 0 0
\(495\) −36.7718 + 26.2916i −1.65277 + 1.18172i
\(496\) 0 0
\(497\) 4.17725 + 8.19831i 0.187375 + 0.367745i
\(498\) 0 0
\(499\) −26.3658 −1.18030 −0.590148 0.807295i \(-0.700931\pi\)
−0.590148 + 0.807295i \(0.700931\pi\)
\(500\) 0 0
\(501\) 21.2807 0.950750
\(502\) 0 0
\(503\) 3.47288 + 6.81591i 0.154848 + 0.303907i 0.955378 0.295387i \(-0.0954484\pi\)
−0.800530 + 0.599293i \(0.795448\pi\)
\(504\) 0 0
\(505\) 9.46422 6.76685i 0.421152 0.301121i
\(506\) 0 0
\(507\) 14.7116 + 14.7116i 0.653367 + 0.653367i
\(508\) 0 0
\(509\) −15.3150 + 21.0793i −0.678824 + 0.934321i −0.999919 0.0127257i \(-0.995949\pi\)
0.321095 + 0.947047i \(0.395949\pi\)
\(510\) 0 0
\(511\) 24.6387 + 33.9123i 1.08995 + 1.50019i
\(512\) 0 0
\(513\) 5.34794 + 33.7655i 0.236117 + 1.49079i
\(514\) 0 0
\(515\) 16.5226 + 8.57750i 0.728073 + 0.377970i
\(516\) 0 0
\(517\) −3.00560 1.53143i −0.132186 0.0673521i
\(518\) 0 0
\(519\) −9.77299 30.0782i −0.428987 1.32028i
\(520\) 0 0
\(521\) −6.19545 + 19.0676i −0.271428 + 0.835368i 0.718715 + 0.695305i \(0.244731\pi\)
−0.990143 + 0.140063i \(0.955269\pi\)
\(522\) 0 0
\(523\) 1.37408 8.67559i 0.0600843 0.379357i −0.939262 0.343201i \(-0.888489\pi\)
0.999346 0.0361559i \(-0.0115113\pi\)
\(524\) 0 0
\(525\) 50.9989 + 38.2507i 2.22578 + 1.66940i
\(526\) 0 0
\(527\) −16.1738 2.56167i −0.704540 0.111588i
\(528\) 0 0
\(529\) −8.08224 2.62608i −0.351402 0.114177i
\(530\) 0 0
\(531\) 1.86990 0.607566i 0.0811466 0.0263661i
\(532\) 0 0
\(533\) 13.1731 25.8538i 0.570592 1.11985i
\(534\) 0 0
\(535\) 38.4278 + 6.38615i 1.66138 + 0.276097i
\(536\) 0 0
\(537\) 44.4798 7.04491i 1.91945 0.304010i
\(538\) 0 0
\(539\) 19.0351 13.8298i 0.819899 0.595692i
\(540\) 0 0
\(541\) −17.8972 13.0031i −0.769461 0.559046i 0.132336 0.991205i \(-0.457752\pi\)
−0.901798 + 0.432159i \(0.857752\pi\)
\(542\) 0 0
\(543\) 27.9989 27.9989i 1.20155 1.20155i
\(544\) 0 0
\(545\) 0.111479 14.6663i 0.00477524 0.628237i
\(546\) 0 0
\(547\) 2.19922 1.12056i 0.0940320 0.0479117i −0.406342 0.913721i \(-0.633196\pi\)
0.500374 + 0.865809i \(0.333196\pi\)
\(548\) 0 0
\(549\) 3.83146i 0.163523i
\(550\) 0 0
\(551\) 15.5452i 0.662247i
\(552\) 0 0
\(553\) 42.5835 21.6974i 1.81083 0.922666i
\(554\) 0 0
\(555\) 42.2083 + 14.0699i 1.79164 + 0.597234i
\(556\) 0 0
\(557\) 7.90748 7.90748i 0.335051 0.335051i −0.519450 0.854501i \(-0.673863\pi\)
0.854501 + 0.519450i \(0.173863\pi\)
\(558\) 0 0
\(559\) −14.2663 10.3650i −0.603398 0.438395i
\(560\) 0 0
\(561\) −36.4455 + 26.4792i −1.53873 + 1.11795i
\(562\) 0 0
\(563\) −15.7185 + 2.48957i −0.662457 + 0.104923i −0.478604 0.878031i \(-0.658857\pi\)
−0.183853 + 0.982954i \(0.558857\pi\)
\(564\) 0 0
\(565\) −9.90349 10.0552i −0.416643 0.423025i
\(566\) 0 0
\(567\) −42.4181 + 83.2501i −1.78139 + 3.49618i
\(568\) 0 0
\(569\) −40.4687 + 13.1491i −1.69654 + 0.551238i −0.988002 0.154439i \(-0.950643\pi\)
−0.708533 + 0.705677i \(0.750643\pi\)
\(570\) 0 0
\(571\) −16.6012 5.39406i −0.694739 0.225734i −0.0597020 0.998216i \(-0.519015\pi\)
−0.635037 + 0.772482i \(0.719015\pi\)
\(572\) 0 0
\(573\) −30.4689 4.82580i −1.27286 0.201601i
\(574\) 0 0
\(575\) 24.8065 + 13.1183i 1.03450 + 0.547071i
\(576\) 0 0
\(577\) 5.79961 36.6173i 0.241441 1.52440i −0.507437 0.861689i \(-0.669407\pi\)
0.748877 0.662709i \(-0.230593\pi\)
\(578\) 0 0
\(579\) −7.27001 + 22.3748i −0.302131 + 0.929864i
\(580\) 0 0
\(581\) −7.96104 24.5016i −0.330280 1.01650i
\(582\) 0 0
\(583\) 12.6679 + 6.45463i 0.524652 + 0.267323i
\(584\) 0 0
\(585\) −72.2269 + 10.8775i −2.98622 + 0.449730i
\(586\) 0 0
\(587\) 3.95971 + 25.0006i 0.163435 + 1.03189i 0.923935 + 0.382549i \(0.124954\pi\)
−0.760501 + 0.649337i \(0.775046\pi\)
\(588\) 0 0
\(589\) −4.52391 6.22663i −0.186404 0.256564i
\(590\) 0 0
\(591\) −6.58655 + 9.06560i −0.270934 + 0.372909i
\(592\) 0 0
\(593\) −16.2733 16.2733i −0.668266 0.668266i 0.289049 0.957314i \(-0.406661\pi\)
−0.957314 + 0.289049i \(0.906661\pi\)
\(594\) 0 0
\(595\) 36.3780 + 26.8550i 1.49135 + 1.10095i
\(596\) 0 0
\(597\) 11.6173 + 22.8003i 0.475465 + 0.933153i
\(598\) 0 0
\(599\) −12.7517 −0.521019 −0.260509 0.965471i \(-0.583890\pi\)
−0.260509 + 0.965471i \(0.583890\pi\)
\(600\) 0 0
\(601\) 5.60928 0.228807 0.114404 0.993434i \(-0.463504\pi\)
0.114404 + 0.993434i \(0.463504\pi\)
\(602\) 0 0
\(603\) −19.5836 38.4351i −0.797508 1.56520i
\(604\) 0 0
\(605\) 2.39592 + 7.56916i 0.0974079 + 0.307730i
\(606\) 0 0
\(607\) −8.41059 8.41059i −0.341375 0.341375i 0.515509 0.856884i \(-0.327603\pi\)
−0.856884 + 0.515509i \(0.827603\pi\)
\(608\) 0 0
\(609\) 48.4453 66.6792i 1.96310 2.70198i
\(610\) 0 0
\(611\) −3.20376 4.40959i −0.129610 0.178393i
\(612\) 0 0
\(613\) 2.17512 + 13.7332i 0.0878523 + 0.554677i 0.991877 + 0.127198i \(0.0405984\pi\)
−0.904025 + 0.427479i \(0.859402\pi\)
\(614\) 0 0
\(615\) 21.2247 + 42.4503i 0.855861 + 1.71176i
\(616\) 0 0
\(617\) −30.4274 15.5035i −1.22496 0.624149i −0.282758 0.959191i \(-0.591249\pi\)
−0.942203 + 0.335042i \(0.891249\pi\)
\(618\) 0 0
\(619\) 3.44153 + 10.5920i 0.138327 + 0.425727i 0.996093 0.0883143i \(-0.0281480\pi\)
−0.857766 + 0.514041i \(0.828148\pi\)
\(620\) 0 0
\(621\) −24.6552 + 75.8809i −0.989379 + 3.04500i
\(622\) 0 0
\(623\) 7.57945 47.8548i 0.303664 1.91726i
\(624\) 0 0
\(625\) −19.7694 15.3027i −0.790775 0.612107i
\(626\) 0 0
\(627\) −20.9127 3.31225i −0.835174 0.132279i
\(628\) 0 0
\(629\) 30.0128 + 9.75175i 1.19669 + 0.388828i
\(630\) 0 0
\(631\) 30.9083 10.0427i 1.23044 0.399794i 0.379565 0.925165i \(-0.376074\pi\)
0.850873 + 0.525371i \(0.176074\pi\)
\(632\) 0 0
\(633\) 30.8283 60.5039i 1.22531 2.40481i
\(634\) 0 0
\(635\) −5.78851 + 2.89418i −0.229710 + 0.114852i
\(636\) 0 0
\(637\) 37.5499 5.94731i 1.48778 0.235641i
\(638\) 0 0
\(639\) 13.9503 10.1355i 0.551866 0.400954i
\(640\) 0 0
\(641\) 27.5141 + 19.9901i 1.08674 + 0.789563i 0.978846 0.204599i \(-0.0655890\pi\)
0.107895 + 0.994162i \(0.465589\pi\)
\(642\) 0 0
\(643\) −20.5380 + 20.5380i −0.809941 + 0.809941i −0.984625 0.174684i \(-0.944110\pi\)
0.174684 + 0.984625i \(0.444110\pi\)
\(644\) 0 0
\(645\) 27.4985 8.70428i 1.08275 0.342731i
\(646\) 0 0
\(647\) −2.67176 + 1.36133i −0.105038 + 0.0535193i −0.505720 0.862698i \(-0.668773\pi\)
0.400682 + 0.916217i \(0.368773\pi\)
\(648\) 0 0
\(649\) 0.724506i 0.0284393i
\(650\) 0 0
\(651\) 40.8068i 1.59934i
\(652\) 0 0
\(653\) −14.3147 + 7.29369i −0.560177 + 0.285424i −0.711065 0.703127i \(-0.751787\pi\)
0.150888 + 0.988551i \(0.451787\pi\)
\(654\) 0 0
\(655\) −3.86754 + 5.23901i −0.151117 + 0.204705i
\(656\) 0 0
\(657\) 55.5479 55.5479i 2.16713 2.16713i
\(658\) 0 0
\(659\) 1.06188 + 0.771504i 0.0413651 + 0.0300535i 0.608276 0.793726i \(-0.291862\pi\)
−0.566911 + 0.823779i \(0.691862\pi\)
\(660\) 0 0
\(661\) 34.8370 25.3105i 1.35500 0.984466i 0.356256 0.934388i \(-0.384053\pi\)
0.998745 0.0500779i \(-0.0159469\pi\)
\(662\) 0 0
\(663\) −71.8948 + 11.3870i −2.79216 + 0.442235i
\(664\) 0 0
\(665\) 3.16493 + 21.0152i 0.122731 + 0.814934i
\(666\) 0 0
\(667\) 16.4708 32.3258i 0.637752 1.25166i
\(668\) 0 0
\(669\) 21.1300 6.86556i 0.816934 0.265438i
\(670\) 0 0
\(671\) −1.34277 0.436292i −0.0518370 0.0168429i
\(672\) 0 0
\(673\) −46.9047 7.42897i −1.80804 0.286366i −0.841010 0.541019i \(-0.818039\pi\)
−0.967032 + 0.254653i \(0.918039\pi\)
\(674\) 0 0
\(675\) 33.2291 62.8358i 1.27899 2.41855i
\(676\) 0 0
\(677\) 5.40918 34.1522i 0.207892 1.31258i −0.634170 0.773194i \(-0.718658\pi\)
0.842061 0.539382i \(-0.181342\pi\)
\(678\) 0 0
\(679\) −13.3003 + 40.9342i −0.510420 + 1.57091i
\(680\) 0 0
\(681\) 16.4170 + 50.5264i 0.629101 + 1.93617i
\(682\) 0 0
\(683\) 24.9863 + 12.7312i 0.956074 + 0.487144i 0.861156 0.508341i \(-0.169741\pi\)
0.0949182 + 0.995485i \(0.469741\pi\)
\(684\) 0 0
\(685\) 5.04607 4.96994i 0.192801 0.189892i
\(686\) 0 0
\(687\) 6.13908 + 38.7606i 0.234221 + 1.47881i
\(688\) 0 0
\(689\) 13.5031 + 18.5855i 0.514428 + 0.708049i
\(690\) 0 0
\(691\) −8.46130 + 11.6460i −0.321883 + 0.443034i −0.939041 0.343805i \(-0.888284\pi\)
0.617158 + 0.786839i \(0.288284\pi\)
\(692\) 0 0
\(693\) −56.4971 56.4971i −2.14615 2.14615i
\(694\) 0 0
\(695\) 16.1439 48.4301i 0.612373 1.83706i
\(696\) 0 0
\(697\) 15.2828 + 29.9942i 0.578877 + 1.13611i
\(698\) 0 0
\(699\) −85.4220 −3.23096
\(700\) 0 0
\(701\) 23.6691 0.893968 0.446984 0.894542i \(-0.352498\pi\)
0.446984 + 0.894542i \(0.352498\pi\)
\(702\) 0 0
\(703\) 6.73366 + 13.2156i 0.253965 + 0.498434i
\(704\) 0 0
\(705\) 8.91496 + 0.0677629i 0.335757 + 0.00255210i
\(706\) 0 0
\(707\) 14.5411 + 14.5411i 0.546873 + 0.546873i
\(708\) 0 0
\(709\) −10.7394 + 14.7815i −0.403326 + 0.555131i −0.961575 0.274543i \(-0.911474\pi\)
0.558249 + 0.829674i \(0.311474\pi\)
\(710\) 0 0
\(711\) −52.6456 72.4605i −1.97436 2.71748i
\(712\) 0 0
\(713\) −2.80996 17.7414i −0.105234 0.664420i
\(714\) 0 0
\(715\) 4.41242 26.5512i 0.165015 0.992958i
\(716\) 0 0
\(717\) −61.4442 31.3074i −2.29468 1.16920i
\(718\) 0 0
\(719\) 8.20814 + 25.2621i 0.306112 + 0.942116i 0.979260 + 0.202608i \(0.0649417\pi\)
−0.673148 + 0.739508i \(0.735058\pi\)
\(720\) 0 0
\(721\) −10.1681 + 31.2943i −0.378681 + 1.16546i
\(722\) 0 0
\(723\) 7.28288 45.9823i 0.270853 1.71010i
\(724\) 0 0
\(725\) −19.3936 + 25.8571i −0.720259 + 0.960307i
\(726\) 0 0
\(727\) −14.2659 2.25950i −0.529094 0.0838002i −0.113828 0.993500i \(-0.536311\pi\)
−0.415266 + 0.909700i \(0.636311\pi\)
\(728\) 0 0
\(729\) 35.6815 + 11.5936i 1.32154 + 0.429393i
\(730\) 0 0
\(731\) 19.4568 6.32191i 0.719637 0.233824i
\(732\) 0 0
\(733\) 20.1391 39.5251i 0.743853 1.45989i −0.139024 0.990289i \(-0.544396\pi\)
0.882877 0.469605i \(-0.155604\pi\)
\(734\) 0 0
\(735\) −28.6513 + 55.1903i −1.05682 + 2.03572i
\(736\) 0 0
\(737\) 15.6999 2.48662i 0.578313 0.0915959i
\(738\) 0 0
\(739\) −18.5363 + 13.4674i −0.681870 + 0.495408i −0.873978 0.485966i \(-0.838468\pi\)
0.192108 + 0.981374i \(0.438468\pi\)
\(740\) 0 0
\(741\) −27.6783 20.1095i −1.01679 0.738740i
\(742\) 0 0
\(743\) −16.8830 + 16.8830i −0.619377 + 0.619377i −0.945372 0.325994i \(-0.894301\pi\)
0.325994 + 0.945372i \(0.394301\pi\)
\(744\) 0 0
\(745\) −10.0011 13.9878i −0.366414 0.512472i
\(746\) 0 0
\(747\) −43.0181 + 21.9188i −1.57395 + 0.801968i
\(748\) 0 0
\(749\) 68.8533i 2.51585i
\(750\) 0 0
\(751\) 14.8477i 0.541801i 0.962607 + 0.270900i \(0.0873214\pi\)
−0.962607 + 0.270900i \(0.912679\pi\)
\(752\) 0 0
\(753\) 25.0810 12.7794i 0.914003 0.465708i
\(754\) 0 0
\(755\) 9.75876 + 13.6487i 0.355158 + 0.496729i
\(756\) 0 0
\(757\) −6.81120 + 6.81120i −0.247557 + 0.247557i −0.819967 0.572410i \(-0.806009\pi\)
0.572410 + 0.819967i \(0.306009\pi\)
\(758\) 0 0
\(759\) −39.9780 29.0457i −1.45111 1.05429i
\(760\) 0 0
\(761\) 0.259631 0.188633i 0.00941163 0.00683795i −0.583069 0.812422i \(-0.698148\pi\)
0.592481 + 0.805584i \(0.298148\pi\)
\(762\) 0 0
\(763\) 25.6046 4.05536i 0.926947 0.146814i
\(764\) 0 0
\(765\) 39.0434 75.2082i 1.41162 2.71916i
\(766\) 0 0
\(767\) −0.531471 + 1.04307i −0.0191903 + 0.0376631i
\(768\) 0 0
\(769\) 6.96700 2.26371i 0.251236 0.0816316i −0.180691 0.983540i \(-0.557834\pi\)
0.431928 + 0.901908i \(0.357834\pi\)
\(770\) 0 0
\(771\) 50.0398 + 16.2589i 1.80214 + 0.585551i
\(772\) 0 0
\(773\) −22.7703 3.60646i −0.818991 0.129715i −0.267140 0.963658i \(-0.586078\pi\)
−0.551851 + 0.833942i \(0.686078\pi\)
\(774\) 0 0
\(775\) −0.243261 + 16.0009i −0.00873818 + 0.574770i
\(776\) 0 0
\(777\) −12.3020 + 77.6715i −0.441330 + 2.78645i
\(778\) 0 0
\(779\) −4.88925 + 15.0476i −0.175176 + 0.539135i
\(780\) 0 0
\(781\) 1.96354 + 6.04315i 0.0702609 + 0.216241i
\(782\) 0 0
\(783\) −81.8823 41.7211i −2.92623 1.49099i
\(784\) 0 0
\(785\) 6.38498 38.4208i 0.227890 1.37130i
\(786\) 0 0
\(787\) −5.09483 32.1675i −0.181611 1.14665i −0.895062 0.445942i \(-0.852869\pi\)
0.713451 0.700705i \(-0.247131\pi\)
\(788\) 0 0
\(789\) −34.8544 47.9730i −1.24085 1.70788i
\(790\) 0 0
\(791\) 14.6626 20.1814i 0.521342 0.717566i
\(792\) 0 0
\(793\) −1.61314 1.61314i −0.0572841 0.0572841i
\(794\) 0 0
\(795\) −37.5746 0.285605i −1.33263 0.0101294i
\(796\) 0 0
\(797\) −24.3883 47.8648i −0.863879 1.69546i −0.706255 0.707958i \(-0.749617\pi\)
−0.157624 0.987499i \(-0.550383\pi\)
\(798\) 0 0
\(799\) 6.32345 0.223708
\(800\) 0 0
\(801\) −90.8005 −3.20828
\(802\) 0 0
\(803\) 13.1419 + 25.7925i 0.463769 + 0.910198i
\(804\) 0 0
\(805\) −15.6851 + 47.0539i −0.552829 + 1.65843i
\(806\) 0 0
\(807\) 26.5458 + 26.5458i 0.934458 + 0.934458i
\(808\) 0 0
\(809\) −22.6777 + 31.2132i −0.797307 + 1.09740i 0.195852 + 0.980633i \(0.437253\pi\)
−0.993159 + 0.116766i \(0.962747\pi\)
\(810\) 0 0
\(811\) −20.6446 28.4149i −0.724931 0.997782i −0.999346 0.0361702i \(-0.988484\pi\)
0.274415 0.961611i \(-0.411516\pi\)
\(812\) 0 0
\(813\) 3.82038 + 24.1209i 0.133987 + 0.845958i
\(814\) 0 0
\(815\) 21.1318 20.8130i 0.740215 0.729048i
\(816\) 0 0
\(817\) 8.56743 + 4.36533i 0.299737 + 0.152723i
\(818\) 0 0
\(819\) −39.8947 122.783i −1.39403 4.29039i
\(820\) 0 0
\(821\) 1.41608 4.35825i 0.0494216 0.152104i −0.923300 0.384079i \(-0.874519\pi\)
0.972722 + 0.231975i \(0.0745189\pi\)
\(822\) 0 0
\(823\) 5.97979 37.7549i 0.208442 1.31605i −0.632345 0.774687i \(-0.717907\pi\)
0.840787 0.541366i \(-0.182093\pi\)
\(824\) 0 0
\(825\) 30.6529 + 31.5994i 1.06720 + 1.10015i
\(826\) 0 0
\(827\) 6.05062 + 0.958323i 0.210401 + 0.0333242i 0.260745 0.965408i \(-0.416032\pi\)
−0.0503443 + 0.998732i \(0.516032\pi\)
\(828\) 0 0
\(829\) 6.18322 + 2.00905i 0.214752 + 0.0697772i 0.414417 0.910087i \(-0.363985\pi\)
−0.199665 + 0.979864i \(0.563985\pi\)
\(830\) 0 0
\(831\) −78.3707 + 25.4642i −2.71865 + 0.883343i
\(832\) 0 0
\(833\) −20.0239 + 39.2991i −0.693786 + 1.36163i
\(834\) 0 0
\(835\) −2.19671 14.5862i −0.0760202 0.504775i
\(836\) 0 0
\(837\) −44.9395 + 7.11772i −1.55334 + 0.246024i
\(838\) 0 0
\(839\) −9.69717 + 7.04541i −0.334783 + 0.243234i −0.742458 0.669893i \(-0.766340\pi\)
0.407674 + 0.913127i \(0.366340\pi\)
\(840\) 0 0
\(841\) 10.3456 + 7.51655i 0.356747 + 0.259192i
\(842\) 0 0
\(843\) −32.5756 + 32.5756i −1.12196 + 1.12196i
\(844\) 0 0
\(845\) 8.56502 11.6023i 0.294646 0.399130i
\(846\) 0 0
\(847\) −12.5034 + 6.37078i −0.429620 + 0.218903i
\(848\) 0 0
\(849\) 5.14055i 0.176423i
\(850\) 0 0
\(851\) 34.6160i 1.18662i
\(852\) 0 0
\(853\) 39.4367 20.0940i 1.35029 0.688006i 0.378884 0.925444i \(-0.376308\pi\)
0.971403 + 0.237438i \(0.0763078\pi\)
\(854\) 0 0
\(855\) 37.9710 12.0192i 1.29858 0.411048i
\(856\) 0 0
\(857\) 12.1177 12.1177i 0.413934 0.413934i −0.469173 0.883106i \(-0.655448\pi\)
0.883106 + 0.469173i \(0.155448\pi\)
\(858\) 0 0
\(859\) −16.2646 11.8169i −0.554941 0.403188i 0.274663 0.961541i \(-0.411434\pi\)
−0.829604 + 0.558352i \(0.811434\pi\)
\(860\) 0 0
\(861\) −67.8664 + 49.3078i −2.31288 + 1.68041i
\(862\) 0 0
\(863\) −8.81063 + 1.39547i −0.299917 + 0.0475023i −0.304580 0.952487i \(-0.598516\pi\)
0.00466216 + 0.999989i \(0.498516\pi\)
\(864\) 0 0
\(865\) −19.6073 + 9.80342i −0.666669 + 0.333326i
\(866\) 0 0
\(867\) 13.4413 26.3800i 0.456490 0.895912i
\(868\) 0 0
\(869\) 31.3892 10.1990i 1.06481 0.345976i
\(870\) 0 0
\(871\) 24.4272 + 7.93689i 0.827686 + 0.268931i
\(872\) 0 0
\(873\) 79.6679 + 12.6182i 2.69635 + 0.427060i
\(874\) 0 0
\(875\) 20.9534 38.9041i 0.708353 1.31520i
\(876\) 0 0
\(877\) 0.402784 2.54308i 0.0136011 0.0858737i −0.979954 0.199223i \(-0.936158\pi\)
0.993555 + 0.113350i \(0.0361580\pi\)
\(878\) 0 0
\(879\) 17.2588 53.1170i 0.582123 1.79159i
\(880\) 0 0
\(881\) 10.1043 + 31.0979i 0.340423 + 1.04771i 0.963989 + 0.265944i \(0.0856835\pi\)
−0.623565 + 0.781771i \(0.714316\pi\)
\(882\) 0 0
\(883\) −32.7812 16.7029i −1.10317 0.562096i −0.195049 0.980793i \(-0.562487\pi\)
−0.908126 + 0.418698i \(0.862487\pi\)
\(884\) 0 0
\(885\) −0.856309 1.71266i −0.0287845 0.0575704i
\(886\) 0 0
\(887\) 3.43852 + 21.7100i 0.115454 + 0.728949i 0.975707 + 0.219081i \(0.0703058\pi\)
−0.860253 + 0.509868i \(0.829694\pi\)
\(888\) 0 0
\(889\) −6.72359 9.25423i −0.225502 0.310377i
\(890\) 0 0
\(891\) −37.9259 + 52.2005i −1.27057 + 1.74878i
\(892\) 0 0
\(893\) 2.10157 + 2.10157i 0.0703263 + 0.0703263i
\(894\) 0 0
\(895\) −9.42017 29.7601i −0.314882 0.994770i
\(896\) 0 0
\(897\) −36.2494 71.1435i −1.21033 2.37541i
\(898\) 0 0
\(899\) 20.6895 0.690034
\(900\) 0 0
\(901\) −26.6519 −0.887905
\(902\) 0 0
\(903\) 23.1448 + 45.4242i 0.770211 + 1.51162i
\(904\) 0 0
\(905\) −22.0812 16.3008i −0.734002 0.541856i
\(906\) 0 0
\(907\) −37.9456 37.9456i −1.25996 1.25996i −0.951109 0.308854i \(-0.900054\pi\)
−0.308854 0.951109i \(-0.599946\pi\)
\(908\) 0 0
\(909\) 22.6523 31.1783i 0.751331 1.03412i
\(910\) 0 0
\(911\) −33.3609 45.9174i −1.10530 1.52131i −0.828170 0.560478i \(-0.810618\pi\)
−0.277127 0.960833i \(-0.589382\pi\)
\(912\) 0 0
\(913\) −2.78313 17.5720i −0.0921081 0.581548i
\(914\) 0 0
\(915\) 3.68983 0.555697i 0.121982 0.0183708i
\(916\) 0 0
\(917\) −10.2554 5.22539i −0.338664 0.172558i
\(918\) 0 0
\(919\) 1.38497 + 4.26249i 0.0456859 + 0.140607i 0.971297 0.237868i \(-0.0764486\pi\)
−0.925612 + 0.378475i \(0.876449\pi\)
\(920\) 0 0
\(921\) 14.1809 43.6444i 0.467278 1.43813i
\(922\) 0 0
\(923\) −1.60613 + 10.1407i −0.0528664 + 0.333785i
\(924\) 0 0
\(925\) 5.28679 30.3828i 0.173829 0.998979i
\(926\) 0 0
\(927\) 60.9063 + 9.64661i 2.00042 + 0.316836i
\(928\) 0 0
\(929\) 19.4161 + 6.30868i 0.637022 + 0.206981i 0.609683 0.792645i \(-0.291297\pi\)
0.0273390 + 0.999626i \(0.491297\pi\)
\(930\) 0 0
\(931\) −19.7157 + 6.40602i −0.646156 + 0.209949i
\(932\) 0 0
\(933\) 15.1318 29.6978i 0.495393 0.972263i
\(934\) 0 0
\(935\) 21.9115 + 22.2471i 0.716582 + 0.727558i
\(936\) 0 0
\(937\) −48.4276 + 7.67018i −1.58206 + 0.250574i −0.884705 0.466151i \(-0.845640\pi\)
−0.697356 + 0.716725i \(0.745640\pi\)
\(938\) 0 0
\(939\) 42.6500 30.9870i 1.39183 1.01122i
\(940\) 0 0
\(941\) −21.1187 15.3436i −0.688450 0.500189i 0.187700 0.982226i \(-0.439897\pi\)
−0.876150 + 0.482038i \(0.839897\pi\)
\(942\) 0 0
\(943\) −26.1107 + 26.1107i −0.850280 + 0.850280i
\(944\) 0 0
\(945\) 119.189 + 39.7310i 3.87722 + 1.29245i
\(946\) 0 0
\(947\) −35.0327 + 17.8501i −1.13841 + 0.580049i −0.918480 0.395467i \(-0.870583\pi\)
−0.219930 + 0.975516i \(0.570583\pi\)
\(948\) 0 0
\(949\) 46.7740i 1.51835i
\(950\) 0 0
\(951\) 107.887i 3.49846i
\(952\) 0 0
\(953\) −28.6513 + 14.5986i −0.928106 + 0.472894i −0.851610 0.524176i \(-0.824373\pi\)
−0.0764965 + 0.997070i \(0.524373\pi\)
\(954\) 0 0
\(955\) −0.162526 + 21.3821i −0.00525921 + 0.691909i
\(956\) 0 0
\(957\) 40.2468 40.2468i 1.30099 1.30099i
\(958\) 0 0
\(959\) 10.1278 + 7.35825i 0.327042 + 0.237610i
\(960\) 0 0
\(961\) −16.7923 + 12.2003i −0.541688 + 0.393559i
\(962\) 0 0
\(963\) 127.446 20.1855i 4.10691 0.650470i
\(964\) 0 0
\(965\) 16.0865 + 2.67335i 0.517844 + 0.0860582i
\(966\) 0 0
\(967\) −11.7698 + 23.0996i −0.378492 + 0.742832i −0.999149 0.0412505i \(-0.986866\pi\)
0.620657 + 0.784082i \(0.286866\pi\)
\(968\) 0 0
\(969\) 37.7486 12.2653i 1.21266 0.394018i
\(970\) 0 0
\(971\) −41.7528 13.5663i −1.33991 0.435364i −0.450625 0.892714i \(-0.648799\pi\)
−0.889287 + 0.457350i \(0.848799\pi\)
\(972\) 0 0
\(973\) 89.1208 + 14.1154i 2.85708 + 0.452517i
\(974\) 0 0
\(975\) 20.9509 + 67.9795i 0.670966 + 2.17709i
\(976\) 0 0
\(977\) 1.09435 6.90944i 0.0350113 0.221052i −0.963979 0.265978i \(-0.914305\pi\)
0.998990 + 0.0449257i \(0.0143051\pi\)
\(978\) 0 0
\(979\) 10.3395 31.8218i 0.330453 1.01703i
\(980\) 0 0
\(981\) −15.0128 46.2048i −0.479323 1.47520i
\(982\) 0 0
\(983\) 2.60540 + 1.32752i 0.0830993 + 0.0423412i 0.495046 0.868867i \(-0.335151\pi\)
−0.411947 + 0.911208i \(0.635151\pi\)
\(984\) 0 0
\(985\) 6.89363 + 3.57874i 0.219649 + 0.114028i
\(986\) 0 0
\(987\) 2.46506 + 15.5638i 0.0784638 + 0.495401i
\(988\) 0 0
\(989\) 13.1905 + 18.1552i 0.419433 + 0.577300i
\(990\) 0 0
\(991\) 11.1499 15.3466i 0.354189 0.487499i −0.594329 0.804222i \(-0.702582\pi\)
0.948518 + 0.316722i \(0.102582\pi\)
\(992\) 0 0
\(993\) 9.31161 + 9.31161i 0.295495 + 0.295495i
\(994\) 0 0
\(995\) 14.4285 10.3163i 0.457415 0.327049i
\(996\) 0 0
\(997\) 27.4234 + 53.8214i 0.868508 + 1.70454i 0.694112 + 0.719867i \(0.255797\pi\)
0.174395 + 0.984676i \(0.444203\pi\)
\(998\) 0 0
\(999\) 87.6835 2.77418
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.2.bq.d.223.1 yes 64
4.3 odd 2 800.2.bq.c.223.8 64
25.12 odd 20 800.2.bq.c.287.8 yes 64
100.87 even 20 inner 800.2.bq.d.287.1 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
800.2.bq.c.223.8 64 4.3 odd 2
800.2.bq.c.287.8 yes 64 25.12 odd 20
800.2.bq.d.223.1 yes 64 1.1 even 1 trivial
800.2.bq.d.287.1 yes 64 100.87 even 20 inner