Properties

Label 800.2.bq.d.223.6
Level $800$
Weight $2$
Character 800.223
Analytic conductor $6.388$
Analytic rank $0$
Dimension $64$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,2,Mod(63,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([10, 0, 19]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.63");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 800.bq (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.38803216170\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(8\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 223.6
Character \(\chi\) \(=\) 800.223
Dual form 800.2.bq.d.287.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.751816 + 1.47552i) q^{3} +(-0.850652 + 2.06794i) q^{5} +(0.0884893 + 0.0884893i) q^{7} +(0.151419 - 0.208410i) q^{9} +(1.38554 + 1.90703i) q^{11} +(0.276048 + 1.74290i) q^{13} +(-3.69083 + 0.299558i) q^{15} +(-0.750646 - 0.382473i) q^{17} +(1.22753 + 3.77794i) q^{19} +(-0.0640402 + 0.197096i) q^{21} +(-0.800533 + 5.05437i) q^{23} +(-3.55278 - 3.51820i) q^{25} +(5.32824 + 0.843910i) q^{27} +(-4.81698 - 1.56513i) q^{29} +(-1.45130 + 0.471555i) q^{31} +(-1.77220 + 3.47813i) q^{33} +(-0.258265 + 0.107717i) q^{35} +(-4.99237 + 0.790713i) q^{37} +(-2.36415 + 1.71766i) q^{39} +(-1.45307 - 1.05572i) q^{41} +(-1.67304 + 1.67304i) q^{43} +(0.302175 + 0.490409i) q^{45} +(-1.13972 + 0.580715i) q^{47} -6.98434i q^{49} -1.39514i q^{51} +(-8.95574 + 4.56318i) q^{53} +(-5.12225 + 1.24300i) q^{55} +(-4.65156 + 4.65156i) q^{57} +(7.48107 + 5.43532i) q^{59} +(8.45057 - 6.13970i) q^{61} +(0.0318410 - 0.00504312i) q^{63} +(-3.83904 - 0.911749i) q^{65} +(6.31654 - 12.3969i) q^{67} +(-8.05968 + 2.61875i) q^{69} +(4.67813 + 1.52002i) q^{71} +(3.90231 + 0.618064i) q^{73} +(2.52014 - 7.88725i) q^{75} +(-0.0461465 + 0.291358i) q^{77} +(-0.526155 + 1.61934i) q^{79} +(2.52183 + 7.76139i) q^{81} +(2.73237 + 1.39221i) q^{83} +(1.42947 - 1.22694i) q^{85} +(-1.31210 - 8.28425i) q^{87} +(-6.16660 - 8.48760i) q^{89} +(-0.129801 + 0.178655i) q^{91} +(-1.78690 - 1.78690i) q^{93} +(-8.85676 - 0.675253i) q^{95} +(6.36605 + 12.4941i) q^{97} +0.607241 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 2 q^{5} + 4 q^{7} + 4 q^{13} + 22 q^{15} + 8 q^{17} - 18 q^{19} - 16 q^{21} + 8 q^{23} + 40 q^{25} + 18 q^{27} - 20 q^{31} + 44 q^{33} + 38 q^{35} - 10 q^{37} - 36 q^{39} - 16 q^{41} + 32 q^{43}+ \cdots + 132 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{11}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.751816 + 1.47552i 0.434061 + 0.851893i 0.999630 + 0.0271920i \(0.00865653\pi\)
−0.565569 + 0.824701i \(0.691343\pi\)
\(4\) 0 0
\(5\) −0.850652 + 2.06794i −0.380423 + 0.924813i
\(6\) 0 0
\(7\) 0.0884893 + 0.0884893i 0.0334458 + 0.0334458i 0.723632 0.690186i \(-0.242471\pi\)
−0.690186 + 0.723632i \(0.742471\pi\)
\(8\) 0 0
\(9\) 0.151419 0.208410i 0.0504729 0.0694700i
\(10\) 0 0
\(11\) 1.38554 + 1.90703i 0.417756 + 0.574992i 0.965089 0.261923i \(-0.0843567\pi\)
−0.547333 + 0.836915i \(0.684357\pi\)
\(12\) 0 0
\(13\) 0.276048 + 1.74290i 0.0765620 + 0.483394i 0.995940 + 0.0900186i \(0.0286926\pi\)
−0.919378 + 0.393375i \(0.871307\pi\)
\(14\) 0 0
\(15\) −3.69083 + 0.299558i −0.952968 + 0.0773456i
\(16\) 0 0
\(17\) −0.750646 0.382473i −0.182058 0.0927634i 0.360586 0.932726i \(-0.382577\pi\)
−0.542644 + 0.839963i \(0.682577\pi\)
\(18\) 0 0
\(19\) 1.22753 + 3.77794i 0.281614 + 0.866718i 0.987393 + 0.158287i \(0.0505970\pi\)
−0.705779 + 0.708432i \(0.749403\pi\)
\(20\) 0 0
\(21\) −0.0640402 + 0.197096i −0.0139747 + 0.0430098i
\(22\) 0 0
\(23\) −0.800533 + 5.05437i −0.166923 + 1.05391i 0.751911 + 0.659264i \(0.229132\pi\)
−0.918834 + 0.394644i \(0.870868\pi\)
\(24\) 0 0
\(25\) −3.55278 3.51820i −0.710557 0.703640i
\(26\) 0 0
\(27\) 5.32824 + 0.843910i 1.02542 + 0.162411i
\(28\) 0 0
\(29\) −4.81698 1.56513i −0.894491 0.290638i −0.174529 0.984652i \(-0.555840\pi\)
−0.719961 + 0.694014i \(0.755840\pi\)
\(30\) 0 0
\(31\) −1.45130 + 0.471555i −0.260661 + 0.0846938i −0.436432 0.899737i \(-0.643758\pi\)
0.175771 + 0.984431i \(0.443758\pi\)
\(32\) 0 0
\(33\) −1.77220 + 3.47813i −0.308500 + 0.605465i
\(34\) 0 0
\(35\) −0.258265 + 0.107717i −0.0436547 + 0.0182076i
\(36\) 0 0
\(37\) −4.99237 + 0.790713i −0.820740 + 0.129992i −0.552663 0.833405i \(-0.686388\pi\)
−0.268077 + 0.963397i \(0.586388\pi\)
\(38\) 0 0
\(39\) −2.36415 + 1.71766i −0.378567 + 0.275045i
\(40\) 0 0
\(41\) −1.45307 1.05572i −0.226931 0.164875i 0.468510 0.883458i \(-0.344791\pi\)
−0.695441 + 0.718583i \(0.744791\pi\)
\(42\) 0 0
\(43\) −1.67304 + 1.67304i −0.255136 + 0.255136i −0.823073 0.567936i \(-0.807742\pi\)
0.567936 + 0.823073i \(0.307742\pi\)
\(44\) 0 0
\(45\) 0.302175 + 0.490409i 0.0450457 + 0.0731059i
\(46\) 0 0
\(47\) −1.13972 + 0.580715i −0.166245 + 0.0847059i −0.535133 0.844768i \(-0.679739\pi\)
0.368888 + 0.929474i \(0.379739\pi\)
\(48\) 0 0
\(49\) 6.98434i 0.997763i
\(50\) 0 0
\(51\) 1.39514i 0.195359i
\(52\) 0 0
\(53\) −8.95574 + 4.56318i −1.23017 + 0.626801i −0.943545 0.331244i \(-0.892532\pi\)
−0.286620 + 0.958044i \(0.592532\pi\)
\(54\) 0 0
\(55\) −5.12225 + 1.24300i −0.690684 + 0.167606i
\(56\) 0 0
\(57\) −4.65156 + 4.65156i −0.616114 + 0.616114i
\(58\) 0 0
\(59\) 7.48107 + 5.43532i 0.973952 + 0.707618i 0.956349 0.292227i \(-0.0943963\pi\)
0.0176035 + 0.999845i \(0.494396\pi\)
\(60\) 0 0
\(61\) 8.45057 6.13970i 1.08199 0.786108i 0.103957 0.994582i \(-0.466850\pi\)
0.978028 + 0.208474i \(0.0668495\pi\)
\(62\) 0 0
\(63\) 0.0318410 0.00504312i 0.00401159 0.000635373i
\(64\) 0 0
\(65\) −3.83904 0.911749i −0.476175 0.113089i
\(66\) 0 0
\(67\) 6.31654 12.3969i 0.771688 1.51452i −0.0836745 0.996493i \(-0.526666\pi\)
0.855363 0.518030i \(-0.173334\pi\)
\(68\) 0 0
\(69\) −8.05968 + 2.61875i −0.970271 + 0.315260i
\(70\) 0 0
\(71\) 4.67813 + 1.52002i 0.555192 + 0.180393i 0.573157 0.819446i \(-0.305719\pi\)
−0.0179646 + 0.999839i \(0.505719\pi\)
\(72\) 0 0
\(73\) 3.90231 + 0.618064i 0.456730 + 0.0723390i 0.380561 0.924756i \(-0.375731\pi\)
0.0761695 + 0.997095i \(0.475731\pi\)
\(74\) 0 0
\(75\) 2.52014 7.88725i 0.291001 0.910741i
\(76\) 0 0
\(77\) −0.0461465 + 0.291358i −0.00525888 + 0.0332033i
\(78\) 0 0
\(79\) −0.526155 + 1.61934i −0.0591971 + 0.182190i −0.976282 0.216501i \(-0.930535\pi\)
0.917085 + 0.398691i \(0.130535\pi\)
\(80\) 0 0
\(81\) 2.52183 + 7.76139i 0.280203 + 0.862377i
\(82\) 0 0
\(83\) 2.73237 + 1.39221i 0.299916 + 0.152815i 0.597473 0.801889i \(-0.296172\pi\)
−0.297557 + 0.954704i \(0.596172\pi\)
\(84\) 0 0
\(85\) 1.42947 1.22694i 0.155048 0.133081i
\(86\) 0 0
\(87\) −1.31210 8.28425i −0.140671 0.888165i
\(88\) 0 0
\(89\) −6.16660 8.48760i −0.653658 0.899683i 0.345593 0.938385i \(-0.387678\pi\)
−0.999251 + 0.0387013i \(0.987678\pi\)
\(90\) 0 0
\(91\) −0.129801 + 0.178655i −0.0136068 + 0.0187282i
\(92\) 0 0
\(93\) −1.78690 1.78690i −0.185293 0.185293i
\(94\) 0 0
\(95\) −8.85676 0.675253i −0.908685 0.0692795i
\(96\) 0 0
\(97\) 6.36605 + 12.4941i 0.646374 + 1.26858i 0.948941 + 0.315452i \(0.102156\pi\)
−0.302567 + 0.953128i \(0.597844\pi\)
\(98\) 0 0
\(99\) 0.607241 0.0610300
\(100\) 0 0
\(101\) 18.5616 1.84694 0.923472 0.383665i \(-0.125338\pi\)
0.923472 + 0.383665i \(0.125338\pi\)
\(102\) 0 0
\(103\) 4.58370 + 8.99601i 0.451645 + 0.886403i 0.998781 + 0.0493595i \(0.0157180\pi\)
−0.547136 + 0.837044i \(0.684282\pi\)
\(104\) 0 0
\(105\) −0.353107 0.300091i −0.0344597 0.0292859i
\(106\) 0 0
\(107\) 11.1361 + 11.1361i 1.07657 + 1.07657i 0.996814 + 0.0797564i \(0.0254142\pi\)
0.0797564 + 0.996814i \(0.474586\pi\)
\(108\) 0 0
\(109\) 4.32607 5.95432i 0.414362 0.570321i −0.549913 0.835222i \(-0.685339\pi\)
0.964276 + 0.264901i \(0.0853393\pi\)
\(110\) 0 0
\(111\) −4.92005 6.77187i −0.466991 0.642758i
\(112\) 0 0
\(113\) 2.06649 + 13.0473i 0.194399 + 1.22739i 0.871090 + 0.491123i \(0.163413\pi\)
−0.676691 + 0.736267i \(0.736587\pi\)
\(114\) 0 0
\(115\) −9.77117 5.95496i −0.911166 0.555303i
\(116\) 0 0
\(117\) 0.405037 + 0.206376i 0.0374456 + 0.0190795i
\(118\) 0 0
\(119\) −0.0325794 0.100269i −0.00298655 0.00919164i
\(120\) 0 0
\(121\) 1.68214 5.17708i 0.152921 0.470644i
\(122\) 0 0
\(123\) 0.465292 2.93774i 0.0419540 0.264887i
\(124\) 0 0
\(125\) 10.2976 4.35420i 0.921047 0.389451i
\(126\) 0 0
\(127\) −6.35597 1.00669i −0.564001 0.0893290i −0.132078 0.991239i \(-0.542165\pi\)
−0.431923 + 0.901910i \(0.642165\pi\)
\(128\) 0 0
\(129\) −3.72643 1.21079i −0.328093 0.106604i
\(130\) 0 0
\(131\) −6.16164 + 2.00204i −0.538345 + 0.174919i −0.565555 0.824711i \(-0.691338\pi\)
0.0272096 + 0.999630i \(0.491338\pi\)
\(132\) 0 0
\(133\) −0.225684 + 0.442930i −0.0195693 + 0.0384069i
\(134\) 0 0
\(135\) −6.27763 + 10.3006i −0.540293 + 0.886536i
\(136\) 0 0
\(137\) 6.99200 1.10742i 0.597366 0.0946136i 0.149573 0.988751i \(-0.452210\pi\)
0.447793 + 0.894137i \(0.352210\pi\)
\(138\) 0 0
\(139\) −6.09420 + 4.42770i −0.516903 + 0.375552i −0.815436 0.578847i \(-0.803503\pi\)
0.298533 + 0.954399i \(0.403503\pi\)
\(140\) 0 0
\(141\) −1.71371 1.24509i −0.144321 0.104855i
\(142\) 0 0
\(143\) −2.94129 + 2.94129i −0.245963 + 0.245963i
\(144\) 0 0
\(145\) 7.33417 8.62986i 0.609070 0.716671i
\(146\) 0 0
\(147\) 10.3055 5.25094i 0.849987 0.433090i
\(148\) 0 0
\(149\) 4.13678i 0.338898i 0.985539 + 0.169449i \(0.0541988\pi\)
−0.985539 + 0.169449i \(0.945801\pi\)
\(150\) 0 0
\(151\) 16.8476i 1.37104i −0.728054 0.685520i \(-0.759575\pi\)
0.728054 0.685520i \(-0.240425\pi\)
\(152\) 0 0
\(153\) −0.193373 + 0.0985285i −0.0156333 + 0.00796556i
\(154\) 0 0
\(155\) 0.259399 3.40233i 0.0208354 0.273282i
\(156\) 0 0
\(157\) 15.7245 15.7245i 1.25495 1.25495i 0.301482 0.953472i \(-0.402519\pi\)
0.953472 0.301482i \(-0.0974812\pi\)
\(158\) 0 0
\(159\) −13.4661 9.78372i −1.06793 0.775899i
\(160\) 0 0
\(161\) −0.518096 + 0.376419i −0.0408317 + 0.0296660i
\(162\) 0 0
\(163\) 1.72689 0.273513i 0.135261 0.0214232i −0.0884370 0.996082i \(-0.528187\pi\)
0.223698 + 0.974659i \(0.428187\pi\)
\(164\) 0 0
\(165\) −5.68506 6.62348i −0.442581 0.515637i
\(166\) 0 0
\(167\) 3.14209 6.16669i 0.243142 0.477193i −0.736895 0.676007i \(-0.763709\pi\)
0.980037 + 0.198814i \(0.0637090\pi\)
\(168\) 0 0
\(169\) 9.40223 3.05497i 0.723249 0.234998i
\(170\) 0 0
\(171\) 0.973230 + 0.316222i 0.0744248 + 0.0241821i
\(172\) 0 0
\(173\) −7.07140 1.12000i −0.537629 0.0851521i −0.118285 0.992980i \(-0.537740\pi\)
−0.419344 + 0.907828i \(0.637740\pi\)
\(174\) 0 0
\(175\) −0.00306035 0.625707i −0.000231341 0.0472990i
\(176\) 0 0
\(177\) −2.39554 + 15.1248i −0.180060 + 1.13685i
\(178\) 0 0
\(179\) −5.75913 + 17.7248i −0.430458 + 1.32481i 0.467212 + 0.884145i \(0.345258\pi\)
−0.897670 + 0.440668i \(0.854742\pi\)
\(180\) 0 0
\(181\) 1.65404 + 5.09060i 0.122944 + 0.378381i 0.993521 0.113650i \(-0.0362544\pi\)
−0.870577 + 0.492032i \(0.836254\pi\)
\(182\) 0 0
\(183\) 15.4125 + 7.85308i 1.13933 + 0.580516i
\(184\) 0 0
\(185\) 2.61161 10.9966i 0.192010 0.808483i
\(186\) 0 0
\(187\) −0.310661 1.96144i −0.0227178 0.143435i
\(188\) 0 0
\(189\) 0.396815 + 0.546169i 0.0288641 + 0.0397280i
\(190\) 0 0
\(191\) 13.9854 19.2493i 1.01195 1.39283i 0.0942529 0.995548i \(-0.469954\pi\)
0.917697 0.397281i \(-0.130046\pi\)
\(192\) 0 0
\(193\) −2.31934 2.31934i −0.166949 0.166949i 0.618688 0.785637i \(-0.287665\pi\)
−0.785637 + 0.618688i \(0.787665\pi\)
\(194\) 0 0
\(195\) −1.54095 6.35006i −0.110350 0.454737i
\(196\) 0 0
\(197\) 7.18858 + 14.1084i 0.512165 + 1.00518i 0.991810 + 0.127718i \(0.0407653\pi\)
−0.479645 + 0.877462i \(0.659235\pi\)
\(198\) 0 0
\(199\) −10.7082 −0.759082 −0.379541 0.925175i \(-0.623918\pi\)
−0.379541 + 0.925175i \(0.623918\pi\)
\(200\) 0 0
\(201\) 23.0408 1.62517
\(202\) 0 0
\(203\) −0.287754 0.564749i −0.0201964 0.0396376i
\(204\) 0 0
\(205\) 3.41922 2.10682i 0.238808 0.147147i
\(206\) 0 0
\(207\) 0.932164 + 0.932164i 0.0647899 + 0.0647899i
\(208\) 0 0
\(209\) −5.50386 + 7.57542i −0.380710 + 0.524003i
\(210\) 0 0
\(211\) −16.5073 22.7204i −1.13641 1.56414i −0.775277 0.631622i \(-0.782390\pi\)
−0.361134 0.932514i \(-0.617610\pi\)
\(212\) 0 0
\(213\) 1.27428 + 8.04546i 0.0873119 + 0.551266i
\(214\) 0 0
\(215\) −2.03658 4.88293i −0.138894 0.333013i
\(216\) 0 0
\(217\) −0.170152 0.0866967i −0.0115507 0.00588536i
\(218\) 0 0
\(219\) 2.02185 + 6.22261i 0.136624 + 0.420485i
\(220\) 0 0
\(221\) 0.459398 1.41388i 0.0309025 0.0951081i
\(222\) 0 0
\(223\) 0.997631 6.29880i 0.0668063 0.421799i −0.931506 0.363726i \(-0.881504\pi\)
0.998312 0.0580727i \(-0.0184955\pi\)
\(224\) 0 0
\(225\) −1.27119 + 0.207714i −0.0847457 + 0.0138476i
\(226\) 0 0
\(227\) 2.56132 + 0.405672i 0.170000 + 0.0269254i 0.240854 0.970561i \(-0.422572\pi\)
−0.0708539 + 0.997487i \(0.522572\pi\)
\(228\) 0 0
\(229\) −1.73971 0.565265i −0.114963 0.0373537i 0.250971 0.967995i \(-0.419250\pi\)
−0.365934 + 0.930641i \(0.619250\pi\)
\(230\) 0 0
\(231\) −0.464598 + 0.150957i −0.0305683 + 0.00993225i
\(232\) 0 0
\(233\) 3.61760 7.09993i 0.236997 0.465132i −0.741621 0.670819i \(-0.765943\pi\)
0.978618 + 0.205687i \(0.0659428\pi\)
\(234\) 0 0
\(235\) −0.231383 2.85086i −0.0150938 0.185969i
\(236\) 0 0
\(237\) −2.78494 + 0.441092i −0.180901 + 0.0286520i
\(238\) 0 0
\(239\) 6.94065 5.04268i 0.448953 0.326184i −0.340229 0.940343i \(-0.610505\pi\)
0.789182 + 0.614159i \(0.210505\pi\)
\(240\) 0 0
\(241\) −16.1939 11.7656i −1.04314 0.757887i −0.0722456 0.997387i \(-0.523017\pi\)
−0.970896 + 0.239500i \(0.923017\pi\)
\(242\) 0 0
\(243\) 1.88764 1.88764i 0.121092 0.121092i
\(244\) 0 0
\(245\) 14.4432 + 5.94124i 0.922744 + 0.379572i
\(246\) 0 0
\(247\) −6.24571 + 3.18235i −0.397405 + 0.202488i
\(248\) 0 0
\(249\) 5.07835i 0.321827i
\(250\) 0 0
\(251\) 12.4024i 0.782835i −0.920213 0.391417i \(-0.871985\pi\)
0.920213 0.391417i \(-0.128015\pi\)
\(252\) 0 0
\(253\) −10.7480 + 5.47638i −0.675722 + 0.344297i
\(254\) 0 0
\(255\) 2.88508 + 1.18678i 0.180671 + 0.0743192i
\(256\) 0 0
\(257\) 6.77274 6.77274i 0.422472 0.422472i −0.463582 0.886054i \(-0.653436\pi\)
0.886054 + 0.463582i \(0.153436\pi\)
\(258\) 0 0
\(259\) −0.511741 0.371801i −0.0317980 0.0231026i
\(260\) 0 0
\(261\) −1.05557 + 0.766916i −0.0653381 + 0.0474709i
\(262\) 0 0
\(263\) 31.8308 5.04150i 1.96277 0.310872i 0.963738 0.266849i \(-0.0859826\pi\)
0.999031 0.0440228i \(-0.0140174\pi\)
\(264\) 0 0
\(265\) −1.81818 22.4016i −0.111690 1.37612i
\(266\) 0 0
\(267\) 7.88748 15.4801i 0.482706 0.947364i
\(268\) 0 0
\(269\) −16.0880 + 5.22729i −0.980900 + 0.318714i −0.755208 0.655485i \(-0.772464\pi\)
−0.225692 + 0.974199i \(0.572464\pi\)
\(270\) 0 0
\(271\) 29.5240 + 9.59293i 1.79345 + 0.582729i 0.999675 0.0254774i \(-0.00811058\pi\)
0.793779 + 0.608206i \(0.208111\pi\)
\(272\) 0 0
\(273\) −0.361196 0.0572079i −0.0218606 0.00346238i
\(274\) 0 0
\(275\) 1.78680 11.6499i 0.107748 0.702514i
\(276\) 0 0
\(277\) −3.11302 + 19.6549i −0.187043 + 1.18095i 0.698230 + 0.715874i \(0.253971\pi\)
−0.885273 + 0.465072i \(0.846029\pi\)
\(278\) 0 0
\(279\) −0.121477 + 0.373867i −0.00727262 + 0.0223828i
\(280\) 0 0
\(281\) −0.893100 2.74868i −0.0532779 0.163973i 0.920877 0.389853i \(-0.127474\pi\)
−0.974155 + 0.225880i \(0.927474\pi\)
\(282\) 0 0
\(283\) −28.1099 14.3227i −1.67096 0.851396i −0.993240 0.116076i \(-0.962969\pi\)
−0.677719 0.735321i \(-0.737031\pi\)
\(284\) 0 0
\(285\) −5.66230 13.5760i −0.335406 0.804173i
\(286\) 0 0
\(287\) −0.0351614 0.222001i −0.00207551 0.0131043i
\(288\) 0 0
\(289\) −9.57517 13.1791i −0.563245 0.775240i
\(290\) 0 0
\(291\) −13.6492 + 18.7865i −0.800129 + 1.10128i
\(292\) 0 0
\(293\) −10.3449 10.3449i −0.604357 0.604357i 0.337109 0.941466i \(-0.390551\pi\)
−0.941466 + 0.337109i \(0.890551\pi\)
\(294\) 0 0
\(295\) −17.6037 + 10.8469i −1.02493 + 0.631529i
\(296\) 0 0
\(297\) 5.77312 + 11.3304i 0.334991 + 0.657456i
\(298\) 0 0
\(299\) −9.03024 −0.522232
\(300\) 0 0
\(301\) −0.296092 −0.0170665
\(302\) 0 0
\(303\) 13.9549 + 27.3880i 0.801687 + 1.57340i
\(304\) 0 0
\(305\) 5.50806 + 22.6981i 0.315391 + 1.29969i
\(306\) 0 0
\(307\) 19.8561 + 19.8561i 1.13325 + 1.13325i 0.989633 + 0.143617i \(0.0458733\pi\)
0.143617 + 0.989633i \(0.454127\pi\)
\(308\) 0 0
\(309\) −9.82771 + 13.5267i −0.559079 + 0.769506i
\(310\) 0 0
\(311\) −17.7923 24.4890i −1.00891 1.38865i −0.919695 0.392633i \(-0.871564\pi\)
−0.0892151 0.996012i \(-0.528436\pi\)
\(312\) 0 0
\(313\) −1.83280 11.5718i −0.103596 0.654079i −0.983771 0.179429i \(-0.942575\pi\)
0.880175 0.474649i \(-0.157425\pi\)
\(314\) 0 0
\(315\) −0.0166567 + 0.0701353i −0.000938499 + 0.00395168i
\(316\) 0 0
\(317\) 2.15472 + 1.09788i 0.121021 + 0.0616633i 0.513453 0.858118i \(-0.328366\pi\)
−0.392432 + 0.919781i \(0.628366\pi\)
\(318\) 0 0
\(319\) −3.68936 11.3547i −0.206565 0.635740i
\(320\) 0 0
\(321\) −8.05929 + 24.8039i −0.449825 + 1.38442i
\(322\) 0 0
\(323\) 0.523523 3.30539i 0.0291296 0.183917i
\(324\) 0 0
\(325\) 5.15113 7.16334i 0.285733 0.397351i
\(326\) 0 0
\(327\) 12.0381 + 1.90665i 0.665711 + 0.105438i
\(328\) 0 0
\(329\) −0.152240 0.0494657i −0.00839325 0.00272713i
\(330\) 0 0
\(331\) −19.3863 + 6.29900i −1.06557 + 0.346224i −0.788760 0.614701i \(-0.789277\pi\)
−0.276809 + 0.960925i \(0.589277\pi\)
\(332\) 0 0
\(333\) −0.591145 + 1.16019i −0.0323945 + 0.0635778i
\(334\) 0 0
\(335\) 20.2629 + 23.6077i 1.10708 + 1.28983i
\(336\) 0 0
\(337\) 10.1296 1.60437i 0.551796 0.0873958i 0.125690 0.992070i \(-0.459885\pi\)
0.426105 + 0.904674i \(0.359885\pi\)
\(338\) 0 0
\(339\) −17.6980 + 12.8584i −0.961224 + 0.698370i
\(340\) 0 0
\(341\) −2.91010 2.11431i −0.157591 0.114496i
\(342\) 0 0
\(343\) 1.23746 1.23746i 0.0668168 0.0668168i
\(344\) 0 0
\(345\) 1.44055 18.8946i 0.0775568 1.01725i
\(346\) 0 0
\(347\) −23.3969 + 11.9213i −1.25601 + 0.639969i −0.950057 0.312078i \(-0.898975\pi\)
−0.305953 + 0.952047i \(0.598975\pi\)
\(348\) 0 0
\(349\) 26.8200i 1.43564i −0.696228 0.717821i \(-0.745140\pi\)
0.696228 0.717821i \(-0.254860\pi\)
\(350\) 0 0
\(351\) 9.51955i 0.508116i
\(352\) 0 0
\(353\) −28.1655 + 14.3511i −1.49910 + 0.763830i −0.995006 0.0998189i \(-0.968174\pi\)
−0.504094 + 0.863649i \(0.668174\pi\)
\(354\) 0 0
\(355\) −7.12277 + 8.38111i −0.378037 + 0.444823i
\(356\) 0 0
\(357\) 0.123455 0.123455i 0.00653395 0.00653395i
\(358\) 0 0
\(359\) 9.40554 + 6.83352i 0.496405 + 0.360660i 0.807642 0.589673i \(-0.200743\pi\)
−0.311237 + 0.950332i \(0.600743\pi\)
\(360\) 0 0
\(361\) 2.60533 1.89288i 0.137122 0.0996253i
\(362\) 0 0
\(363\) 8.90355 1.41018i 0.467315 0.0740155i
\(364\) 0 0
\(365\) −4.59762 + 7.54399i −0.240651 + 0.394871i
\(366\) 0 0
\(367\) −13.2366 + 25.9783i −0.690945 + 1.35606i 0.232602 + 0.972572i \(0.425276\pi\)
−0.923547 + 0.383485i \(0.874724\pi\)
\(368\) 0 0
\(369\) −0.440043 + 0.142979i −0.0229077 + 0.00744317i
\(370\) 0 0
\(371\) −1.19628 0.388695i −0.0621078 0.0201800i
\(372\) 0 0
\(373\) 4.33058 + 0.685896i 0.224229 + 0.0355144i 0.267538 0.963547i \(-0.413790\pi\)
−0.0433090 + 0.999062i \(0.513790\pi\)
\(374\) 0 0
\(375\) 14.1666 + 11.9208i 0.731561 + 0.615588i
\(376\) 0 0
\(377\) 1.39815 8.82757i 0.0720084 0.454643i
\(378\) 0 0
\(379\) −2.44158 + 7.51440i −0.125415 + 0.385989i −0.993977 0.109593i \(-0.965045\pi\)
0.868561 + 0.495582i \(0.165045\pi\)
\(380\) 0 0
\(381\) −3.29313 10.1352i −0.168712 0.519243i
\(382\) 0 0
\(383\) 6.29625 + 3.20810i 0.321723 + 0.163926i 0.607392 0.794402i \(-0.292216\pi\)
−0.285669 + 0.958328i \(0.592216\pi\)
\(384\) 0 0
\(385\) −0.563256 0.343272i −0.0287062 0.0174948i
\(386\) 0 0
\(387\) 0.0953486 + 0.602008i 0.00484684 + 0.0306018i
\(388\) 0 0
\(389\) 14.3596 + 19.7642i 0.728059 + 1.00209i 0.999217 + 0.0395525i \(0.0125932\pi\)
−0.271159 + 0.962535i \(0.587407\pi\)
\(390\) 0 0
\(391\) 2.53408 3.48786i 0.128154 0.176389i
\(392\) 0 0
\(393\) −7.58647 7.58647i −0.382687 0.382687i
\(394\) 0 0
\(395\) −2.90113 2.46555i −0.145972 0.124055i
\(396\) 0 0
\(397\) 3.87816 + 7.61132i 0.194639 + 0.382001i 0.967614 0.252436i \(-0.0812318\pi\)
−0.772974 + 0.634438i \(0.781232\pi\)
\(398\) 0 0
\(399\) −0.823226 −0.0412129
\(400\) 0 0
\(401\) 7.18801 0.358952 0.179476 0.983762i \(-0.442560\pi\)
0.179476 + 0.983762i \(0.442560\pi\)
\(402\) 0 0
\(403\) −1.22250 2.39930i −0.0608972 0.119517i
\(404\) 0 0
\(405\) −18.1953 1.38724i −0.904133 0.0689325i
\(406\) 0 0
\(407\) −8.42504 8.42504i −0.417614 0.417614i
\(408\) 0 0
\(409\) −6.01976 + 8.28549i −0.297658 + 0.409691i −0.931483 0.363786i \(-0.881484\pi\)
0.633825 + 0.773477i \(0.281484\pi\)
\(410\) 0 0
\(411\) 6.89072 + 9.48426i 0.339894 + 0.467824i
\(412\) 0 0
\(413\) 0.181027 + 1.14296i 0.00890778 + 0.0562415i
\(414\) 0 0
\(415\) −5.20330 + 4.46609i −0.255420 + 0.219232i
\(416\) 0 0
\(417\) −11.1149 5.66331i −0.544298 0.277334i
\(418\) 0 0
\(419\) 10.8890 + 33.5128i 0.531961 + 1.63721i 0.750126 + 0.661295i \(0.229993\pi\)
−0.218165 + 0.975912i \(0.570007\pi\)
\(420\) 0 0
\(421\) −5.51420 + 16.9710i −0.268746 + 0.827114i 0.722061 + 0.691829i \(0.243195\pi\)
−0.990807 + 0.135285i \(0.956805\pi\)
\(422\) 0 0
\(423\) −0.0515477 + 0.325459i −0.00250633 + 0.0158244i
\(424\) 0 0
\(425\) 1.32127 + 3.99977i 0.0640908 + 0.194017i
\(426\) 0 0
\(427\) 1.29108 + 0.204488i 0.0624799 + 0.00989585i
\(428\) 0 0
\(429\) −6.55125 2.12863i −0.316297 0.102771i
\(430\) 0 0
\(431\) 15.1614 4.92624i 0.730299 0.237289i 0.0798164 0.996810i \(-0.474567\pi\)
0.650483 + 0.759521i \(0.274567\pi\)
\(432\) 0 0
\(433\) −3.58768 + 7.04123i −0.172413 + 0.338380i −0.961002 0.276541i \(-0.910812\pi\)
0.788589 + 0.614921i \(0.210812\pi\)
\(434\) 0 0
\(435\) 18.2475 + 4.33367i 0.874900 + 0.207783i
\(436\) 0 0
\(437\) −20.0778 + 3.18000i −0.960449 + 0.152120i
\(438\) 0 0
\(439\) −6.13149 + 4.45479i −0.292640 + 0.212615i −0.724412 0.689367i \(-0.757889\pi\)
0.431772 + 0.901983i \(0.357889\pi\)
\(440\) 0 0
\(441\) −1.45561 1.05756i −0.0693145 0.0503600i
\(442\) 0 0
\(443\) −23.6674 + 23.6674i −1.12447 + 1.12447i −0.133409 + 0.991061i \(0.542592\pi\)
−0.991061 + 0.133409i \(0.957408\pi\)
\(444\) 0 0
\(445\) 22.7975 5.53220i 1.08071 0.262251i
\(446\) 0 0
\(447\) −6.10390 + 3.11009i −0.288705 + 0.147102i
\(448\) 0 0
\(449\) 25.5797i 1.20718i 0.797294 + 0.603591i \(0.206264\pi\)
−0.797294 + 0.603591i \(0.793736\pi\)
\(450\) 0 0
\(451\) 4.23379i 0.199361i
\(452\) 0 0
\(453\) 24.8590 12.6663i 1.16798 0.595115i
\(454\) 0 0
\(455\) −0.259034 0.420394i −0.0121437 0.0197084i
\(456\) 0 0
\(457\) 2.02727 2.02727i 0.0948316 0.0948316i −0.658099 0.752931i \(-0.728639\pi\)
0.752931 + 0.658099i \(0.228639\pi\)
\(458\) 0 0
\(459\) −3.67685 2.67139i −0.171621 0.124690i
\(460\) 0 0
\(461\) −13.1957 + 9.58720i −0.614583 + 0.446520i −0.851025 0.525125i \(-0.824019\pi\)
0.236442 + 0.971646i \(0.424019\pi\)
\(462\) 0 0
\(463\) 5.05924 0.801304i 0.235123 0.0372398i −0.0377610 0.999287i \(-0.512023\pi\)
0.272884 + 0.962047i \(0.412023\pi\)
\(464\) 0 0
\(465\) 5.21523 2.17518i 0.241851 0.100871i
\(466\) 0 0
\(467\) 6.08871 11.9498i 0.281752 0.552969i −0.706148 0.708065i \(-0.749568\pi\)
0.987900 + 0.155095i \(0.0495685\pi\)
\(468\) 0 0
\(469\) 1.65594 0.538048i 0.0764642 0.0248447i
\(470\) 0 0
\(471\) 35.0238 + 11.3799i 1.61381 + 0.524359i
\(472\) 0 0
\(473\) −5.50861 0.872478i −0.253286 0.0401166i
\(474\) 0 0
\(475\) 8.93040 17.7409i 0.409755 0.814007i
\(476\) 0 0
\(477\) −0.405055 + 2.55741i −0.0185462 + 0.117096i
\(478\) 0 0
\(479\) 8.71560 26.8239i 0.398226 1.22561i −0.528195 0.849123i \(-0.677131\pi\)
0.926421 0.376490i \(-0.122869\pi\)
\(480\) 0 0
\(481\) −2.75627 8.48292i −0.125675 0.386788i
\(482\) 0 0
\(483\) −0.944927 0.481464i −0.0429957 0.0219074i
\(484\) 0 0
\(485\) −31.2523 + 2.53653i −1.41909 + 0.115178i
\(486\) 0 0
\(487\) −2.00995 12.6903i −0.0910796 0.575054i −0.990451 0.137868i \(-0.955975\pi\)
0.899371 0.437186i \(-0.144025\pi\)
\(488\) 0 0
\(489\) 1.70188 + 2.34243i 0.0769616 + 0.105929i
\(490\) 0 0
\(491\) −21.8141 + 30.0245i −0.984455 + 1.35499i −0.0500604 + 0.998746i \(0.515941\pi\)
−0.934395 + 0.356240i \(0.884059\pi\)
\(492\) 0 0
\(493\) 3.01723 + 3.01723i 0.135889 + 0.135889i
\(494\) 0 0
\(495\) −0.516551 + 1.25574i −0.0232172 + 0.0564413i
\(496\) 0 0
\(497\) 0.279459 + 0.548470i 0.0125355 + 0.0246022i
\(498\) 0 0
\(499\) 11.5699 0.517938 0.258969 0.965886i \(-0.416617\pi\)
0.258969 + 0.965886i \(0.416617\pi\)
\(500\) 0 0
\(501\) 11.4614 0.512056
\(502\) 0 0
\(503\) 5.09311 + 9.99579i 0.227091 + 0.445690i 0.976234 0.216717i \(-0.0695349\pi\)
−0.749144 + 0.662407i \(0.769535\pi\)
\(504\) 0 0
\(505\) −15.7894 + 38.3843i −0.702620 + 1.70808i
\(506\) 0 0
\(507\) 11.5764 + 11.5764i 0.514127 + 0.514127i
\(508\) 0 0
\(509\) 22.0128 30.2980i 0.975700 1.34294i 0.0365863 0.999330i \(-0.488352\pi\)
0.939114 0.343606i \(-0.111648\pi\)
\(510\) 0 0
\(511\) 0.290620 + 0.400004i 0.0128563 + 0.0176952i
\(512\) 0 0
\(513\) 3.35231 + 21.1657i 0.148008 + 0.934487i
\(514\) 0 0
\(515\) −22.5024 + 1.82636i −0.991573 + 0.0804789i
\(516\) 0 0
\(517\) −2.68656 1.36887i −0.118155 0.0602030i
\(518\) 0 0
\(519\) −3.66381 11.2760i −0.160823 0.494963i
\(520\) 0 0
\(521\) 0.543009 1.67121i 0.0237896 0.0732170i −0.938457 0.345396i \(-0.887744\pi\)
0.962247 + 0.272179i \(0.0877444\pi\)
\(522\) 0 0
\(523\) 3.45193 21.7946i 0.150942 0.953012i −0.789671 0.613531i \(-0.789749\pi\)
0.940613 0.339481i \(-0.110251\pi\)
\(524\) 0 0
\(525\) 0.920943 0.474932i 0.0401932 0.0207277i
\(526\) 0 0
\(527\) 1.26977 + 0.201112i 0.0553120 + 0.00876056i
\(528\) 0 0
\(529\) −3.03146 0.984980i −0.131802 0.0428252i
\(530\) 0 0
\(531\) 2.26555 0.736121i 0.0983164 0.0319449i
\(532\) 0 0
\(533\) 1.43889 2.82398i 0.0623253 0.122320i
\(534\) 0 0
\(535\) −32.5019 + 13.5559i −1.40518 + 0.586074i
\(536\) 0 0
\(537\) −30.4831 + 4.82805i −1.31544 + 0.208346i
\(538\) 0 0
\(539\) 13.3194 9.67708i 0.573706 0.416821i
\(540\) 0 0
\(541\) −35.0442 25.4611i −1.50667 1.09466i −0.967629 0.252375i \(-0.918788\pi\)
−0.539037 0.842282i \(-0.681212\pi\)
\(542\) 0 0
\(543\) −6.26776 + 6.26776i −0.268975 + 0.268975i
\(544\) 0 0
\(545\) 8.63323 + 14.0111i 0.369807 + 0.600171i
\(546\) 0 0
\(547\) 12.9757 6.61147i 0.554803 0.282686i −0.154026 0.988067i \(-0.549224\pi\)
0.708829 + 0.705381i \(0.249224\pi\)
\(548\) 0 0
\(549\) 2.69085i 0.114843i
\(550\) 0 0
\(551\) 20.1195i 0.857119i
\(552\) 0 0
\(553\) −0.189853 + 0.0967352i −0.00807339 + 0.00411360i
\(554\) 0 0
\(555\) 18.1891 4.41389i 0.772084 0.187359i
\(556\) 0 0
\(557\) 9.69419 9.69419i 0.410756 0.410756i −0.471246 0.882002i \(-0.656196\pi\)
0.882002 + 0.471246i \(0.156196\pi\)
\(558\) 0 0
\(559\) −3.37778 2.45410i −0.142865 0.103798i
\(560\) 0 0
\(561\) 2.66059 1.93303i 0.112330 0.0816125i
\(562\) 0 0
\(563\) −15.1095 + 2.39311i −0.636790 + 0.100858i −0.466478 0.884533i \(-0.654477\pi\)
−0.170312 + 0.985390i \(0.554477\pi\)
\(564\) 0 0
\(565\) −28.7390 6.82534i −1.20906 0.287144i
\(566\) 0 0
\(567\) −0.463645 + 0.909955i −0.0194713 + 0.0382145i
\(568\) 0 0
\(569\) −0.345978 + 0.112415i −0.0145041 + 0.00471268i −0.316260 0.948673i \(-0.602427\pi\)
0.301756 + 0.953385i \(0.402427\pi\)
\(570\) 0 0
\(571\) 13.3697 + 4.34407i 0.559503 + 0.181794i 0.575098 0.818085i \(-0.304964\pi\)
−0.0155943 + 0.999878i \(0.504964\pi\)
\(572\) 0 0
\(573\) 38.9172 + 6.16388i 1.62579 + 0.257500i
\(574\) 0 0
\(575\) 20.6264 15.1406i 0.860180 0.631408i
\(576\) 0 0
\(577\) 6.49068 40.9806i 0.270211 1.70604i −0.362772 0.931878i \(-0.618170\pi\)
0.632983 0.774166i \(-0.281830\pi\)
\(578\) 0 0
\(579\) 1.67852 5.16594i 0.0697568 0.214689i
\(580\) 0 0
\(581\) 0.118589 + 0.364981i 0.00491992 + 0.0151420i
\(582\) 0 0
\(583\) −21.1107 10.7564i −0.874314 0.445485i
\(584\) 0 0
\(585\) −0.771320 + 0.662039i −0.0318902 + 0.0273719i
\(586\) 0 0
\(587\) 2.66750 + 16.8420i 0.110100 + 0.695142i 0.979562 + 0.201143i \(0.0644655\pi\)
−0.869462 + 0.493999i \(0.835535\pi\)
\(588\) 0 0
\(589\) −3.56301 4.90407i −0.146811 0.202068i
\(590\) 0 0
\(591\) −15.4127 + 21.2138i −0.633995 + 0.872620i
\(592\) 0 0
\(593\) −8.02300 8.02300i −0.329465 0.329465i 0.522918 0.852383i \(-0.324843\pi\)
−0.852383 + 0.522918i \(0.824843\pi\)
\(594\) 0 0
\(595\) 0.235064 + 0.0179217i 0.00963670 + 0.000734717i
\(596\) 0 0
\(597\) −8.05058 15.8001i −0.329488 0.646657i
\(598\) 0 0
\(599\) 19.3204 0.789410 0.394705 0.918808i \(-0.370847\pi\)
0.394705 + 0.918808i \(0.370847\pi\)
\(600\) 0 0
\(601\) 20.9811 0.855837 0.427918 0.903817i \(-0.359247\pi\)
0.427918 + 0.903817i \(0.359247\pi\)
\(602\) 0 0
\(603\) −1.62720 3.19355i −0.0662645 0.130051i
\(604\) 0 0
\(605\) 9.27500 + 7.88245i 0.377082 + 0.320467i
\(606\) 0 0
\(607\) −20.3537 20.3537i −0.826131 0.826131i 0.160849 0.986979i \(-0.448577\pi\)
−0.986979 + 0.160849i \(0.948577\pi\)
\(608\) 0 0
\(609\) 0.616961 0.849174i 0.0250005 0.0344103i
\(610\) 0 0
\(611\) −1.32674 1.82611i −0.0536743 0.0738764i
\(612\) 0 0
\(613\) 0.595556 + 3.76019i 0.0240543 + 0.151873i 0.996792 0.0800351i \(-0.0255032\pi\)
−0.972738 + 0.231908i \(0.925503\pi\)
\(614\) 0 0
\(615\) 5.67928 + 3.46119i 0.229010 + 0.139569i
\(616\) 0 0
\(617\) −33.9645 17.3058i −1.36736 0.696705i −0.392549 0.919731i \(-0.628407\pi\)
−0.974812 + 0.223026i \(0.928407\pi\)
\(618\) 0 0
\(619\) −11.9890 36.8984i −0.481880 1.48307i −0.836449 0.548044i \(-0.815373\pi\)
0.354570 0.935030i \(-0.384627\pi\)
\(620\) 0 0
\(621\) −8.53086 + 26.2553i −0.342332 + 1.05359i
\(622\) 0 0
\(623\) 0.205383 1.29674i 0.00822851 0.0519528i
\(624\) 0 0
\(625\) 0.244546 + 24.9988i 0.00978184 + 0.999952i
\(626\) 0 0
\(627\) −15.3156 2.42575i −0.611646 0.0968751i
\(628\) 0 0
\(629\) 4.04993 + 1.31590i 0.161481 + 0.0524684i
\(630\) 0 0
\(631\) −22.1471 + 7.19602i −0.881661 + 0.286469i −0.714647 0.699485i \(-0.753413\pi\)
−0.167014 + 0.985954i \(0.553413\pi\)
\(632\) 0 0
\(633\) 21.1139 41.4385i 0.839204 1.64703i
\(634\) 0 0
\(635\) 7.48849 12.2875i 0.297172 0.487613i
\(636\) 0 0
\(637\) 12.1730 1.92802i 0.482312 0.0763908i
\(638\) 0 0
\(639\) 1.02514 0.744810i 0.0405540 0.0294642i
\(640\) 0 0
\(641\) −14.4631 10.5080i −0.571257 0.415043i 0.264305 0.964439i \(-0.414858\pi\)
−0.835562 + 0.549397i \(0.814858\pi\)
\(642\) 0 0
\(643\) 3.35759 3.35759i 0.132410 0.132410i −0.637795 0.770206i \(-0.720153\pi\)
0.770206 + 0.637795i \(0.220153\pi\)
\(644\) 0 0
\(645\) 5.67373 6.67608i 0.223403 0.262870i
\(646\) 0 0
\(647\) −16.2015 + 8.25507i −0.636946 + 0.324540i −0.742473 0.669876i \(-0.766347\pi\)
0.105527 + 0.994416i \(0.466347\pi\)
\(648\) 0 0
\(649\) 21.7975i 0.855626i
\(650\) 0 0
\(651\) 0.316243i 0.0123945i
\(652\) 0 0
\(653\) −26.4145 + 13.4589i −1.03368 + 0.526686i −0.886647 0.462446i \(-0.846972\pi\)
−0.147031 + 0.989132i \(0.546972\pi\)
\(654\) 0 0
\(655\) 1.10131 14.4450i 0.0430316 0.564411i
\(656\) 0 0
\(657\) 0.719692 0.719692i 0.0280779 0.0280779i
\(658\) 0 0
\(659\) 27.3439 + 19.8665i 1.06517 + 0.773888i 0.975037 0.222042i \(-0.0712721\pi\)
0.0901289 + 0.995930i \(0.471272\pi\)
\(660\) 0 0
\(661\) 2.34971 1.70716i 0.0913932 0.0664010i −0.541150 0.840926i \(-0.682011\pi\)
0.632543 + 0.774525i \(0.282011\pi\)
\(662\) 0 0
\(663\) 2.43160 0.385127i 0.0944355 0.0149571i
\(664\) 0 0
\(665\) −0.723976 0.843482i −0.0280746 0.0327088i
\(666\) 0 0
\(667\) 11.7669 23.0938i 0.455616 0.894197i
\(668\) 0 0
\(669\) 10.0440 3.26351i 0.388325 0.126174i
\(670\) 0 0
\(671\) 23.4172 + 7.60872i 0.904012 + 0.293731i
\(672\) 0 0
\(673\) 25.6426 + 4.06138i 0.988449 + 0.156555i 0.629666 0.776866i \(-0.283192\pi\)
0.358783 + 0.933421i \(0.383192\pi\)
\(674\) 0 0
\(675\) −15.9610 21.7440i −0.614340 0.836928i
\(676\) 0 0
\(677\) −0.209997 + 1.32587i −0.00807086 + 0.0509574i −0.991395 0.130904i \(-0.958212\pi\)
0.983324 + 0.181861i \(0.0582121\pi\)
\(678\) 0 0
\(679\) −0.542265 + 1.66892i −0.0208102 + 0.0640472i
\(680\) 0 0
\(681\) 1.32706 + 4.08427i 0.0508530 + 0.156509i
\(682\) 0 0
\(683\) −28.3352 14.4375i −1.08422 0.552436i −0.181815 0.983333i \(-0.558197\pi\)
−0.902401 + 0.430897i \(0.858197\pi\)
\(684\) 0 0
\(685\) −3.65766 + 15.4011i −0.139752 + 0.588445i
\(686\) 0 0
\(687\) −0.473878 2.99195i −0.0180796 0.114150i
\(688\) 0 0
\(689\) −10.4254 14.3493i −0.397175 0.546665i
\(690\) 0 0
\(691\) −17.4158 + 23.9708i −0.662530 + 0.911894i −0.999562 0.0295992i \(-0.990577\pi\)
0.337032 + 0.941493i \(0.390577\pi\)
\(692\) 0 0
\(693\) 0.0537344 + 0.0537344i 0.00204120 + 0.00204120i
\(694\) 0 0
\(695\) −3.97219 16.3689i −0.150674 0.620907i
\(696\) 0 0
\(697\) 0.686957 + 1.34823i 0.0260204 + 0.0510678i
\(698\) 0 0
\(699\) 13.1959 0.499114
\(700\) 0 0
\(701\) 19.4462 0.734472 0.367236 0.930128i \(-0.380304\pi\)
0.367236 + 0.930128i \(0.380304\pi\)
\(702\) 0 0
\(703\) −9.11553 17.8902i −0.343799 0.674743i
\(704\) 0 0
\(705\) 4.03254 2.48473i 0.151874 0.0935803i
\(706\) 0 0
\(707\) 1.64250 + 1.64250i 0.0617726 + 0.0617726i
\(708\) 0 0
\(709\) 18.2726 25.1500i 0.686241 0.944529i −0.313747 0.949507i \(-0.601584\pi\)
0.999988 + 0.00497747i \(0.00158439\pi\)
\(710\) 0 0
\(711\) 0.257817 + 0.354854i 0.00966888 + 0.0133081i
\(712\) 0 0
\(713\) −1.22160 7.71288i −0.0457493 0.288850i
\(714\) 0 0
\(715\) −3.58041 8.58444i −0.133900 0.321040i
\(716\) 0 0
\(717\) 12.6587 + 6.44991i 0.472747 + 0.240876i
\(718\) 0 0
\(719\) −3.81150 11.7306i −0.142145 0.437477i 0.854488 0.519471i \(-0.173871\pi\)
−0.996633 + 0.0819940i \(0.973871\pi\)
\(720\) 0 0
\(721\) −0.390443 + 1.20166i −0.0145408 + 0.0447521i
\(722\) 0 0
\(723\) 5.18551 32.7400i 0.192851 1.21761i
\(724\) 0 0
\(725\) 11.6072 + 22.5077i 0.431082 + 0.835914i
\(726\) 0 0
\(727\) −10.7519 1.70294i −0.398767 0.0631585i −0.0461698 0.998934i \(-0.514702\pi\)
−0.352598 + 0.935775i \(0.614702\pi\)
\(728\) 0 0
\(729\) 27.4886 + 8.93158i 1.01810 + 0.330799i
\(730\) 0 0
\(731\) 1.89575 0.615968i 0.0701170 0.0227824i
\(732\) 0 0
\(733\) 15.7463 30.9039i 0.581603 1.14146i −0.393420 0.919359i \(-0.628708\pi\)
0.975023 0.222102i \(-0.0712917\pi\)
\(734\) 0 0
\(735\) 2.09222 + 25.7780i 0.0771725 + 0.950836i
\(736\) 0 0
\(737\) 32.3931 5.13057i 1.19322 0.188987i
\(738\) 0 0
\(739\) 25.3653 18.4289i 0.933076 0.677920i −0.0136677 0.999907i \(-0.504351\pi\)
0.946744 + 0.321987i \(0.104351\pi\)
\(740\) 0 0
\(741\) −9.39125 6.82315i −0.344996 0.250655i
\(742\) 0 0
\(743\) −23.5771 + 23.5771i −0.864959 + 0.864959i −0.991909 0.126950i \(-0.959481\pi\)
0.126950 + 0.991909i \(0.459481\pi\)
\(744\) 0 0
\(745\) −8.55462 3.51895i −0.313417 0.128925i
\(746\) 0 0
\(747\) 0.703881 0.358645i 0.0257537 0.0131221i
\(748\) 0 0
\(749\) 1.97086i 0.0720136i
\(750\) 0 0
\(751\) 26.9305i 0.982710i 0.870960 + 0.491355i \(0.163498\pi\)
−0.870960 + 0.491355i \(0.836502\pi\)
\(752\) 0 0
\(753\) 18.3001 9.32435i 0.666891 0.339798i
\(754\) 0 0
\(755\) 34.8399 + 14.3315i 1.26795 + 0.521575i
\(756\) 0 0
\(757\) −19.9611 + 19.9611i −0.725500 + 0.725500i −0.969720 0.244220i \(-0.921468\pi\)
0.244220 + 0.969720i \(0.421468\pi\)
\(758\) 0 0
\(759\) −16.1610 11.7417i −0.586609 0.426196i
\(760\) 0 0
\(761\) 32.3921 23.5343i 1.17421 0.853116i 0.182707 0.983167i \(-0.441514\pi\)
0.991507 + 0.130051i \(0.0415141\pi\)
\(762\) 0 0
\(763\) 0.909705 0.144083i 0.0329335 0.00521616i
\(764\) 0 0
\(765\) −0.0392583 0.483698i −0.00141939 0.0174881i
\(766\) 0 0
\(767\) −7.40808 + 14.5392i −0.267490 + 0.524979i
\(768\) 0 0
\(769\) 44.1316 14.3392i 1.59143 0.517086i 0.626458 0.779455i \(-0.284504\pi\)
0.964968 + 0.262369i \(0.0845038\pi\)
\(770\) 0 0
\(771\) 15.0852 + 4.90147i 0.543279 + 0.176522i
\(772\) 0 0
\(773\) 23.3059 + 3.69129i 0.838255 + 0.132767i 0.560779 0.827966i \(-0.310502\pi\)
0.277477 + 0.960732i \(0.410502\pi\)
\(774\) 0 0
\(775\) 6.81517 + 3.43062i 0.244808 + 0.123232i
\(776\) 0 0
\(777\) 0.163866 1.03461i 0.00587867 0.0371165i
\(778\) 0 0
\(779\) 2.20475 6.78552i 0.0789934 0.243117i
\(780\) 0 0
\(781\) 3.58302 + 11.0274i 0.128210 + 0.394591i
\(782\) 0 0
\(783\) −24.3452 12.4045i −0.870026 0.443300i
\(784\) 0 0
\(785\) 19.1413 + 45.8935i 0.683184 + 1.63801i
\(786\) 0 0
\(787\) −2.02526 12.7870i −0.0721926 0.455806i −0.997131 0.0756899i \(-0.975884\pi\)
0.924939 0.380116i \(-0.124116\pi\)
\(788\) 0 0
\(789\) 31.3697 + 43.1767i 1.11679 + 1.53713i
\(790\) 0 0
\(791\) −0.971687 + 1.33741i −0.0345492 + 0.0475529i
\(792\) 0 0
\(793\) 13.0337 + 13.0337i 0.462839 + 0.462839i
\(794\) 0 0
\(795\) 31.6872 19.5247i 1.12383 0.692469i
\(796\) 0 0
\(797\) −20.9531 41.1228i −0.742198 1.45665i −0.884362 0.466802i \(-0.845406\pi\)
0.142164 0.989843i \(-0.454594\pi\)
\(798\) 0 0
\(799\) 1.07763 0.0381239
\(800\) 0 0
\(801\) −2.70264 −0.0954930
\(802\) 0 0
\(803\) 4.22813 + 8.29818i 0.149208 + 0.292836i
\(804\) 0 0
\(805\) −0.337694 1.39159i −0.0119021 0.0490473i
\(806\) 0 0
\(807\) −19.8082 19.8082i −0.697280 0.697280i
\(808\) 0 0
\(809\) −12.7018 + 17.4825i −0.446571 + 0.614652i −0.971656 0.236397i \(-0.924033\pi\)
0.525086 + 0.851049i \(0.324033\pi\)
\(810\) 0 0
\(811\) 26.8810 + 36.9985i 0.943918 + 1.29919i 0.954176 + 0.299245i \(0.0967347\pi\)
−0.0102581 + 0.999947i \(0.503265\pi\)
\(812\) 0 0
\(813\) 8.04203 + 50.7754i 0.282046 + 1.78077i
\(814\) 0 0
\(815\) −0.903374 + 3.80378i −0.0316438 + 0.133241i
\(816\) 0 0
\(817\) −8.37434 4.26694i −0.292981 0.149281i
\(818\) 0 0
\(819\) 0.0175793 + 0.0541035i 0.000614271 + 0.00189053i
\(820\) 0 0
\(821\) −4.17662 + 12.8543i −0.145765 + 0.448619i −0.997109 0.0759897i \(-0.975788\pi\)
0.851343 + 0.524609i \(0.175788\pi\)
\(822\) 0 0
\(823\) 4.59531 29.0136i 0.160182 1.01135i −0.768331 0.640053i \(-0.778913\pi\)
0.928513 0.371299i \(-0.121087\pi\)
\(824\) 0 0
\(825\) 18.5330 6.12211i 0.645236 0.213144i
\(826\) 0 0
\(827\) −48.6187 7.70044i −1.69064 0.267771i −0.764408 0.644733i \(-0.776969\pi\)
−0.926229 + 0.376962i \(0.876969\pi\)
\(828\) 0 0
\(829\) 16.3509 + 5.31274i 0.567892 + 0.184519i 0.578869 0.815421i \(-0.303494\pi\)
−0.0109774 + 0.999940i \(0.503494\pi\)
\(830\) 0 0
\(831\) −31.3416 + 10.1835i −1.08723 + 0.353262i
\(832\) 0 0
\(833\) −2.67132 + 5.24277i −0.0925559 + 0.181651i
\(834\) 0 0
\(835\) 10.0796 + 11.7434i 0.348817 + 0.406396i
\(836\) 0 0
\(837\) −8.13081 + 1.28779i −0.281042 + 0.0445126i
\(838\) 0 0
\(839\) 28.7069 20.8568i 0.991074 0.720057i 0.0309178 0.999522i \(-0.490157\pi\)
0.960156 + 0.279465i \(0.0901570\pi\)
\(840\) 0 0
\(841\) −2.70784 1.96736i −0.0933738 0.0678400i
\(842\) 0 0
\(843\) 3.38429 3.38429i 0.116561 0.116561i
\(844\) 0 0
\(845\) −1.68052 + 22.0420i −0.0578115 + 0.758268i
\(846\) 0 0
\(847\) 0.606968 0.309265i 0.0208557 0.0106265i
\(848\) 0 0
\(849\) 52.2448i 1.79304i
\(850\) 0 0
\(851\) 25.8662i 0.886683i
\(852\) 0 0
\(853\) 14.2266 7.24881i 0.487109 0.248194i −0.193146 0.981170i \(-0.561869\pi\)
0.680255 + 0.732976i \(0.261869\pi\)
\(854\) 0 0
\(855\) −1.48181 + 1.74359i −0.0506768 + 0.0596295i
\(856\) 0 0
\(857\) −4.29173 + 4.29173i −0.146603 + 0.146603i −0.776598 0.629996i \(-0.783057\pi\)
0.629996 + 0.776598i \(0.283057\pi\)
\(858\) 0 0
\(859\) −3.01819 2.19284i −0.102979 0.0748187i 0.535104 0.844786i \(-0.320272\pi\)
−0.638083 + 0.769967i \(0.720272\pi\)
\(860\) 0 0
\(861\) 0.301132 0.218785i 0.0102625 0.00745618i
\(862\) 0 0
\(863\) −27.8172 + 4.40580i −0.946907 + 0.149975i −0.610744 0.791828i \(-0.709129\pi\)
−0.336163 + 0.941804i \(0.609129\pi\)
\(864\) 0 0
\(865\) 8.33140 13.6705i 0.283276 0.464812i
\(866\) 0 0
\(867\) 12.2473 24.0366i 0.415939 0.816326i
\(868\) 0 0
\(869\) −3.81714 + 1.24026i −0.129488 + 0.0420731i
\(870\) 0 0
\(871\) 23.3502 + 7.58696i 0.791193 + 0.257074i
\(872\) 0 0
\(873\) 3.56783 + 0.565088i 0.120753 + 0.0191253i
\(874\) 0 0
\(875\) 1.29653 + 0.525930i 0.0438307 + 0.0177797i
\(876\) 0 0
\(877\) −0.589305 + 3.72072i −0.0198994 + 0.125640i −0.995638 0.0932978i \(-0.970259\pi\)
0.975739 + 0.218938i \(0.0702591\pi\)
\(878\) 0 0
\(879\) 7.48668 23.0416i 0.252520 0.777175i
\(880\) 0 0
\(881\) −6.17082 18.9918i −0.207900 0.639851i −0.999582 0.0289169i \(-0.990794\pi\)
0.791682 0.610934i \(-0.209206\pi\)
\(882\) 0 0
\(883\) −0.994033 0.506485i −0.0334519 0.0170446i 0.437185 0.899372i \(-0.355976\pi\)
−0.470636 + 0.882327i \(0.655976\pi\)
\(884\) 0 0
\(885\) −29.2395 17.8198i −0.982877 0.599006i
\(886\) 0 0
\(887\) −0.00506085 0.0319529i −0.000169927 0.00107287i 0.987603 0.156971i \(-0.0501729\pi\)
−0.987773 + 0.155898i \(0.950173\pi\)
\(888\) 0 0
\(889\) −0.473355 0.651517i −0.0158758 0.0218512i
\(890\) 0 0
\(891\) −11.3071 + 15.5629i −0.378803 + 0.521378i
\(892\) 0 0
\(893\) −3.59294 3.59294i −0.120233 0.120233i
\(894\) 0 0
\(895\) −31.7549 26.9872i −1.06145 0.902082i
\(896\) 0 0
\(897\) −6.78908 13.3243i −0.226681 0.444886i
\(898\) 0 0
\(899\) 7.72891 0.257774
\(900\) 0 0
\(901\) 8.46789 0.282106
\(902\) 0 0
\(903\) −0.222607 0.436891i −0.00740790 0.0145388i
\(904\) 0 0
\(905\) −11.9341 0.909873i −0.396702 0.0302452i
\(906\) 0 0
\(907\) 32.8325 + 32.8325i 1.09019 + 1.09019i 0.995508 + 0.0946771i \(0.0301819\pi\)
0.0946771 + 0.995508i \(0.469818\pi\)
\(908\) 0 0
\(909\) 2.81057 3.86841i 0.0932206 0.128307i
\(910\) 0 0
\(911\) −18.2810 25.1617i −0.605677 0.833643i 0.390536 0.920588i \(-0.372290\pi\)
−0.996213 + 0.0869445i \(0.972290\pi\)
\(912\) 0 0
\(913\) 1.13081 + 7.13967i 0.0374244 + 0.236289i
\(914\) 0 0
\(915\) −29.3504 + 25.1920i −0.970295 + 0.832823i
\(916\) 0 0
\(917\) −0.722398 0.368080i −0.0238557 0.0121551i
\(918\) 0 0
\(919\) −0.0359360 0.110600i −0.00118542 0.00364835i 0.950462 0.310841i \(-0.100611\pi\)
−0.951647 + 0.307192i \(0.900611\pi\)
\(920\) 0 0
\(921\) −14.3700 + 44.2263i −0.473508 + 1.45731i
\(922\) 0 0
\(923\) −1.35785 + 8.57312i −0.0446941 + 0.282188i
\(924\) 0 0
\(925\) 20.5187 + 14.7549i 0.674650 + 0.485138i
\(926\) 0 0
\(927\) 2.56891 + 0.406876i 0.0843742 + 0.0133636i
\(928\) 0 0
\(929\) 10.2285 + 3.32343i 0.335585 + 0.109038i 0.471962 0.881619i \(-0.343546\pi\)
−0.136377 + 0.990657i \(0.543546\pi\)
\(930\) 0 0
\(931\) 26.3864 8.57346i 0.864779 0.280984i
\(932\) 0 0
\(933\) 22.7575 44.6642i 0.745049 1.46224i
\(934\) 0 0
\(935\) 4.32041 + 1.02607i 0.141293 + 0.0335561i
\(936\) 0 0
\(937\) −1.19736 + 0.189643i −0.0391160 + 0.00619537i −0.175962 0.984397i \(-0.556304\pi\)
0.136846 + 0.990592i \(0.456304\pi\)
\(938\) 0 0
\(939\) 15.6966 11.4042i 0.512238 0.372163i
\(940\) 0 0
\(941\) −38.2557 27.7944i −1.24710 0.906072i −0.249051 0.968490i \(-0.580119\pi\)
−0.998050 + 0.0624187i \(0.980119\pi\)
\(942\) 0 0
\(943\) 6.49920 6.49920i 0.211643 0.211643i
\(944\) 0 0
\(945\) −1.46700 + 0.355992i −0.0477215 + 0.0115804i
\(946\) 0 0
\(947\) −37.4707 + 19.0923i −1.21763 + 0.620415i −0.940296 0.340358i \(-0.889452\pi\)
−0.277337 + 0.960773i \(0.589452\pi\)
\(948\) 0 0
\(949\) 6.97195i 0.226319i
\(950\) 0 0
\(951\) 4.00474i 0.129863i
\(952\) 0 0
\(953\) −5.54476 + 2.82519i −0.179612 + 0.0915170i −0.541485 0.840711i \(-0.682138\pi\)
0.361872 + 0.932228i \(0.382138\pi\)
\(954\) 0 0
\(955\) 27.9097 + 45.2955i 0.903137 + 1.46573i
\(956\) 0 0
\(957\) 13.9804 13.9804i 0.451921 0.451921i
\(958\) 0 0
\(959\) 0.716712 + 0.520722i 0.0231438 + 0.0168150i
\(960\) 0 0
\(961\) −23.1956 + 16.8526i −0.748246 + 0.543633i
\(962\) 0 0
\(963\) 4.00710 0.634662i 0.129127 0.0204517i
\(964\) 0 0
\(965\) 6.76920 2.82331i 0.217908 0.0908856i
\(966\) 0 0
\(967\) −25.7210 + 50.4803i −0.827132 + 1.62334i −0.0460252 + 0.998940i \(0.514655\pi\)
−0.781107 + 0.624398i \(0.785345\pi\)
\(968\) 0 0
\(969\) 5.27077 1.71258i 0.169322 0.0550159i
\(970\) 0 0
\(971\) 22.5479 + 7.32627i 0.723598 + 0.235111i 0.647583 0.761995i \(-0.275780\pi\)
0.0760156 + 0.997107i \(0.475780\pi\)
\(972\) 0 0
\(973\) −0.931076 0.147468i −0.0298489 0.00472760i
\(974\) 0 0
\(975\) 14.4424 + 2.21509i 0.462526 + 0.0709397i
\(976\) 0 0
\(977\) 6.00177 37.8937i 0.192014 1.21233i −0.683797 0.729672i \(-0.739673\pi\)
0.875811 0.482654i \(-0.160327\pi\)
\(978\) 0 0
\(979\) 7.64205 23.5198i 0.244241 0.751696i
\(980\) 0 0
\(981\) −0.585892 1.80319i −0.0187061 0.0575715i
\(982\) 0 0
\(983\) −24.4725 12.4694i −0.780551 0.397711i 0.0178471 0.999841i \(-0.494319\pi\)
−0.798398 + 0.602130i \(0.794319\pi\)
\(984\) 0 0
\(985\) −35.2903 + 2.86426i −1.12444 + 0.0912630i
\(986\) 0 0
\(987\) −0.0414686 0.261822i −0.00131996 0.00833389i
\(988\) 0 0
\(989\) −7.11683 9.79548i −0.226302 0.311478i
\(990\) 0 0
\(991\) −12.3597 + 17.0116i −0.392618 + 0.540393i −0.958872 0.283838i \(-0.908392\pi\)
0.566254 + 0.824231i \(0.308392\pi\)
\(992\) 0 0
\(993\) −23.8693 23.8693i −0.757468 0.757468i
\(994\) 0 0
\(995\) 9.10893 22.1439i 0.288772 0.702009i
\(996\) 0 0
\(997\) −15.4380 30.2987i −0.488925 0.959569i −0.995262 0.0972334i \(-0.969001\pi\)
0.506337 0.862336i \(-0.330999\pi\)
\(998\) 0 0
\(999\) −27.2678 −0.862715
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.2.bq.d.223.6 yes 64
4.3 odd 2 800.2.bq.c.223.3 64
25.12 odd 20 800.2.bq.c.287.3 yes 64
100.87 even 20 inner 800.2.bq.d.287.6 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
800.2.bq.c.223.3 64 4.3 odd 2
800.2.bq.c.287.3 yes 64 25.12 odd 20
800.2.bq.d.223.6 yes 64 1.1 even 1 trivial
800.2.bq.d.287.6 yes 64 100.87 even 20 inner