Properties

Label 800.2.c.e
Level 800800
Weight 22
Character orbit 800.c
Analytic conductor 6.3886.388
Analytic rank 00
Dimension 22
CM discriminant -4
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,2,Mod(449,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.449");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 800=2552 800 = 2^{5} \cdot 5^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 800.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.388032161706.38803216170
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a17]\Z[a_1, \ldots, a_{17}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 32)
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=2i\beta = 2i. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+3q9+3βq13βq17+10q29+βq37+10q41+7q49+7βq5310q613βq73+9q8110q899βq97+O(q100) q + 3 q^{9} + 3 \beta q^{13} - \beta q^{17} + 10 q^{29} + \beta q^{37} + 10 q^{41} + 7 q^{49} + 7 \beta q^{53} - 10 q^{61} - 3 \beta q^{73} + 9 q^{81} - 10 q^{89} - 9 \beta q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+6q9+20q29+20q41+14q4920q61+18q8120q89+O(q100) 2 q + 6 q^{9} + 20 q^{29} + 20 q^{41} + 14 q^{49} - 20 q^{61} + 18 q^{81} - 20 q^{89}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/800Z)×\left(\mathbb{Z}/800\mathbb{Z}\right)^\times.

nn 101101 351351 577577
χ(n)\chi(n) 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
449.1
1.00000i
1.00000i
0 0 0 0 0 0 0 3.00000 0
449.2 0 0 0 0 0 0 0 3.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by Q(1)\Q(\sqrt{-1})
5.b even 2 1 inner
20.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 800.2.c.e 2
3.b odd 2 1 7200.2.f.m 2
4.b odd 2 1 CM 800.2.c.e 2
5.b even 2 1 inner 800.2.c.e 2
5.c odd 4 1 32.2.a.a 1
5.c odd 4 1 800.2.a.d 1
8.b even 2 1 1600.2.c.l 2
8.d odd 2 1 1600.2.c.l 2
12.b even 2 1 7200.2.f.m 2
15.d odd 2 1 7200.2.f.m 2
15.e even 4 1 288.2.a.d 1
15.e even 4 1 7200.2.a.v 1
20.d odd 2 1 inner 800.2.c.e 2
20.e even 4 1 32.2.a.a 1
20.e even 4 1 800.2.a.d 1
35.f even 4 1 1568.2.a.e 1
35.k even 12 2 1568.2.i.f 2
35.l odd 12 2 1568.2.i.g 2
40.e odd 2 1 1600.2.c.l 2
40.f even 2 1 1600.2.c.l 2
40.i odd 4 1 64.2.a.a 1
40.i odd 4 1 1600.2.a.n 1
40.k even 4 1 64.2.a.a 1
40.k even 4 1 1600.2.a.n 1
45.k odd 12 2 2592.2.i.t 2
45.l even 12 2 2592.2.i.e 2
55.e even 4 1 3872.2.a.f 1
60.h even 2 1 7200.2.f.m 2
60.l odd 4 1 288.2.a.d 1
60.l odd 4 1 7200.2.a.v 1
65.h odd 4 1 5408.2.a.g 1
80.i odd 4 1 256.2.b.b 2
80.j even 4 1 256.2.b.b 2
80.s even 4 1 256.2.b.b 2
80.t odd 4 1 256.2.b.b 2
85.g odd 4 1 9248.2.a.f 1
120.q odd 4 1 576.2.a.c 1
120.w even 4 1 576.2.a.c 1
140.j odd 4 1 1568.2.a.e 1
140.w even 12 2 1568.2.i.g 2
140.x odd 12 2 1568.2.i.f 2
160.u even 8 2 1024.2.e.j 4
160.v odd 8 2 1024.2.e.j 4
160.ba even 8 2 1024.2.e.j 4
160.bb odd 8 2 1024.2.e.j 4
180.v odd 12 2 2592.2.i.e 2
180.x even 12 2 2592.2.i.t 2
220.i odd 4 1 3872.2.a.f 1
240.z odd 4 1 2304.2.d.j 2
240.bb even 4 1 2304.2.d.j 2
240.bd odd 4 1 2304.2.d.j 2
240.bf even 4 1 2304.2.d.j 2
260.p even 4 1 5408.2.a.g 1
280.s even 4 1 3136.2.a.m 1
280.y odd 4 1 3136.2.a.m 1
340.r even 4 1 9248.2.a.f 1
440.t even 4 1 7744.2.a.v 1
440.w odd 4 1 7744.2.a.v 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
32.2.a.a 1 5.c odd 4 1
32.2.a.a 1 20.e even 4 1
64.2.a.a 1 40.i odd 4 1
64.2.a.a 1 40.k even 4 1
256.2.b.b 2 80.i odd 4 1
256.2.b.b 2 80.j even 4 1
256.2.b.b 2 80.s even 4 1
256.2.b.b 2 80.t odd 4 1
288.2.a.d 1 15.e even 4 1
288.2.a.d 1 60.l odd 4 1
576.2.a.c 1 120.q odd 4 1
576.2.a.c 1 120.w even 4 1
800.2.a.d 1 5.c odd 4 1
800.2.a.d 1 20.e even 4 1
800.2.c.e 2 1.a even 1 1 trivial
800.2.c.e 2 4.b odd 2 1 CM
800.2.c.e 2 5.b even 2 1 inner
800.2.c.e 2 20.d odd 2 1 inner
1024.2.e.j 4 160.u even 8 2
1024.2.e.j 4 160.v odd 8 2
1024.2.e.j 4 160.ba even 8 2
1024.2.e.j 4 160.bb odd 8 2
1568.2.a.e 1 35.f even 4 1
1568.2.a.e 1 140.j odd 4 1
1568.2.i.f 2 35.k even 12 2
1568.2.i.f 2 140.x odd 12 2
1568.2.i.g 2 35.l odd 12 2
1568.2.i.g 2 140.w even 12 2
1600.2.a.n 1 40.i odd 4 1
1600.2.a.n 1 40.k even 4 1
1600.2.c.l 2 8.b even 2 1
1600.2.c.l 2 8.d odd 2 1
1600.2.c.l 2 40.e odd 2 1
1600.2.c.l 2 40.f even 2 1
2304.2.d.j 2 240.z odd 4 1
2304.2.d.j 2 240.bb even 4 1
2304.2.d.j 2 240.bd odd 4 1
2304.2.d.j 2 240.bf even 4 1
2592.2.i.e 2 45.l even 12 2
2592.2.i.e 2 180.v odd 12 2
2592.2.i.t 2 45.k odd 12 2
2592.2.i.t 2 180.x even 12 2
3136.2.a.m 1 280.s even 4 1
3136.2.a.m 1 280.y odd 4 1
3872.2.a.f 1 55.e even 4 1
3872.2.a.f 1 220.i odd 4 1
5408.2.a.g 1 65.h odd 4 1
5408.2.a.g 1 260.p even 4 1
7200.2.a.v 1 15.e even 4 1
7200.2.a.v 1 60.l odd 4 1
7200.2.f.m 2 3.b odd 2 1
7200.2.f.m 2 12.b even 2 1
7200.2.f.m 2 15.d odd 2 1
7200.2.f.m 2 60.h even 2 1
7744.2.a.v 1 440.t even 4 1
7744.2.a.v 1 440.w odd 4 1
9248.2.a.f 1 85.g odd 4 1
9248.2.a.f 1 340.r even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(800,[χ])S_{2}^{\mathrm{new}}(800, [\chi]):

T3 T_{3} Copy content Toggle raw display
T11 T_{11} Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2+36 T^{2} + 36 Copy content Toggle raw display
1717 T2+4 T^{2} + 4 Copy content Toggle raw display
1919 T2 T^{2} Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 (T10)2 (T - 10)^{2} Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 T2+4 T^{2} + 4 Copy content Toggle raw display
4141 (T10)2 (T - 10)^{2} Copy content Toggle raw display
4343 T2 T^{2} Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2+196 T^{2} + 196 Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 (T+10)2 (T + 10)^{2} Copy content Toggle raw display
6767 T2 T^{2} Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T2+36 T^{2} + 36 Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 (T+10)2 (T + 10)^{2} Copy content Toggle raw display
9797 T2+324 T^{2} + 324 Copy content Toggle raw display
show more
show less