Properties

Label 800.2.n.a.543.1
Level $800$
Weight $2$
Character 800.543
Analytic conductor $6.388$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,2,Mod(543,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.543");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 800.n (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.38803216170\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 160)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 543.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 800.543
Dual form 800.2.n.a.607.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.00000 + 2.00000i) q^{3} +(-2.00000 - 2.00000i) q^{7} -5.00000i q^{9} +(1.00000 + 1.00000i) q^{13} +(5.00000 - 5.00000i) q^{17} +4.00000 q^{19} +8.00000 q^{21} +(-2.00000 + 2.00000i) q^{23} +(4.00000 + 4.00000i) q^{27} +4.00000i q^{29} +4.00000i q^{31} +(-1.00000 + 1.00000i) q^{37} -4.00000 q^{39} +(6.00000 - 6.00000i) q^{43} +(2.00000 + 2.00000i) q^{47} +1.00000i q^{49} +20.0000i q^{51} +(7.00000 + 7.00000i) q^{53} +(-8.00000 + 8.00000i) q^{57} +4.00000 q^{59} -4.00000 q^{61} +(-10.0000 + 10.0000i) q^{63} +(10.0000 + 10.0000i) q^{67} -8.00000i q^{69} -12.0000i q^{71} +(3.00000 + 3.00000i) q^{73} +16.0000 q^{79} -1.00000 q^{81} +(2.00000 - 2.00000i) q^{83} +(-8.00000 - 8.00000i) q^{87} -4.00000i q^{91} +(-8.00000 - 8.00000i) q^{93} +(3.00000 - 3.00000i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{3} - 4 q^{7} + 2 q^{13} + 10 q^{17} + 8 q^{19} + 16 q^{21} - 4 q^{23} + 8 q^{27} - 2 q^{37} - 8 q^{39} + 12 q^{43} + 4 q^{47} + 14 q^{53} - 16 q^{57} + 8 q^{59} - 8 q^{61} - 20 q^{63} + 20 q^{67}+ \cdots + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.00000 + 2.00000i −1.15470 + 1.15470i −0.169102 + 0.985599i \(0.554087\pi\)
−0.985599 + 0.169102i \(0.945913\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −2.00000 2.00000i −0.755929 0.755929i 0.219650 0.975579i \(-0.429509\pi\)
−0.975579 + 0.219650i \(0.929509\pi\)
\(8\) 0 0
\(9\) 5.00000i 1.66667i
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) 1.00000 + 1.00000i 0.277350 + 0.277350i 0.832050 0.554700i \(-0.187167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.00000 5.00000i 1.21268 1.21268i 0.242536 0.970143i \(-0.422021\pi\)
0.970143 0.242536i \(-0.0779791\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 8.00000 1.74574
\(22\) 0 0
\(23\) −2.00000 + 2.00000i −0.417029 + 0.417029i −0.884178 0.467150i \(-0.845281\pi\)
0.467150 + 0.884178i \(0.345281\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 4.00000 + 4.00000i 0.769800 + 0.769800i
\(28\) 0 0
\(29\) 4.00000i 0.742781i 0.928477 + 0.371391i \(0.121119\pi\)
−0.928477 + 0.371391i \(0.878881\pi\)
\(30\) 0 0
\(31\) 4.00000i 0.718421i 0.933257 + 0.359211i \(0.116954\pi\)
−0.933257 + 0.359211i \(0.883046\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.00000 + 1.00000i −0.164399 + 0.164399i −0.784512 0.620113i \(-0.787087\pi\)
0.620113 + 0.784512i \(0.287087\pi\)
\(38\) 0 0
\(39\) −4.00000 −0.640513
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 6.00000 6.00000i 0.914991 0.914991i −0.0816682 0.996660i \(-0.526025\pi\)
0.996660 + 0.0816682i \(0.0260248\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.00000 + 2.00000i 0.291730 + 0.291730i 0.837763 0.546033i \(-0.183863\pi\)
−0.546033 + 0.837763i \(0.683863\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 0 0
\(51\) 20.0000i 2.80056i
\(52\) 0 0
\(53\) 7.00000 + 7.00000i 0.961524 + 0.961524i 0.999287 0.0377628i \(-0.0120231\pi\)
−0.0377628 + 0.999287i \(0.512023\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −8.00000 + 8.00000i −1.05963 + 1.05963i
\(58\) 0 0
\(59\) 4.00000 0.520756 0.260378 0.965507i \(-0.416153\pi\)
0.260378 + 0.965507i \(0.416153\pi\)
\(60\) 0 0
\(61\) −4.00000 −0.512148 −0.256074 0.966657i \(-0.582429\pi\)
−0.256074 + 0.966657i \(0.582429\pi\)
\(62\) 0 0
\(63\) −10.0000 + 10.0000i −1.25988 + 1.25988i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 10.0000 + 10.0000i 1.22169 + 1.22169i 0.967029 + 0.254665i \(0.0819652\pi\)
0.254665 + 0.967029i \(0.418035\pi\)
\(68\) 0 0
\(69\) 8.00000i 0.963087i
\(70\) 0 0
\(71\) 12.0000i 1.42414i −0.702109 0.712069i \(-0.747758\pi\)
0.702109 0.712069i \(-0.252242\pi\)
\(72\) 0 0
\(73\) 3.00000 + 3.00000i 0.351123 + 0.351123i 0.860527 0.509404i \(-0.170134\pi\)
−0.509404 + 0.860527i \(0.670134\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 16.0000 1.80014 0.900070 0.435745i \(-0.143515\pi\)
0.900070 + 0.435745i \(0.143515\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) 2.00000 2.00000i 0.219529 0.219529i −0.588771 0.808300i \(-0.700388\pi\)
0.808300 + 0.588771i \(0.200388\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −8.00000 8.00000i −0.857690 0.857690i
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 4.00000i 0.419314i
\(92\) 0 0
\(93\) −8.00000 8.00000i −0.829561 0.829561i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 3.00000 3.00000i 0.304604 0.304604i −0.538208 0.842812i \(-0.680899\pi\)
0.842812 + 0.538208i \(0.180899\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) 6.00000 6.00000i 0.591198 0.591198i −0.346757 0.937955i \(-0.612717\pi\)
0.937955 + 0.346757i \(0.112717\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.00000 6.00000i −0.580042 0.580042i 0.354873 0.934915i \(-0.384524\pi\)
−0.934915 + 0.354873i \(0.884524\pi\)
\(108\) 0 0
\(109\) 10.0000i 0.957826i −0.877862 0.478913i \(-0.841031\pi\)
0.877862 0.478913i \(-0.158969\pi\)
\(110\) 0 0
\(111\) 4.00000i 0.379663i
\(112\) 0 0
\(113\) 9.00000 + 9.00000i 0.846649 + 0.846649i 0.989713 0.143065i \(-0.0456957\pi\)
−0.143065 + 0.989713i \(0.545696\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 5.00000 5.00000i 0.462250 0.462250i
\(118\) 0 0
\(119\) −20.0000 −1.83340
\(120\) 0 0
\(121\) 11.0000 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −10.0000 10.0000i −0.887357 0.887357i 0.106912 0.994268i \(-0.465904\pi\)
−0.994268 + 0.106912i \(0.965904\pi\)
\(128\) 0 0
\(129\) 24.0000i 2.11308i
\(130\) 0 0
\(131\) 8.00000i 0.698963i −0.936943 0.349482i \(-0.886358\pi\)
0.936943 0.349482i \(-0.113642\pi\)
\(132\) 0 0
\(133\) −8.00000 8.00000i −0.693688 0.693688i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.00000 + 1.00000i −0.0854358 + 0.0854358i −0.748533 0.663097i \(-0.769242\pi\)
0.663097 + 0.748533i \(0.269242\pi\)
\(138\) 0 0
\(139\) −12.0000 −1.01783 −0.508913 0.860818i \(-0.669953\pi\)
−0.508913 + 0.860818i \(0.669953\pi\)
\(140\) 0 0
\(141\) −8.00000 −0.673722
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −2.00000 2.00000i −0.164957 0.164957i
\(148\) 0 0
\(149\) 18.0000i 1.47462i 0.675556 + 0.737309i \(0.263904\pi\)
−0.675556 + 0.737309i \(0.736096\pi\)
\(150\) 0 0
\(151\) 12.0000i 0.976546i −0.872691 0.488273i \(-0.837627\pi\)
0.872691 0.488273i \(-0.162373\pi\)
\(152\) 0 0
\(153\) −25.0000 25.0000i −2.02113 2.02113i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 9.00000 9.00000i 0.718278 0.718278i −0.249974 0.968252i \(-0.580422\pi\)
0.968252 + 0.249974i \(0.0804222\pi\)
\(158\) 0 0
\(159\) −28.0000 −2.22054
\(160\) 0 0
\(161\) 8.00000 0.630488
\(162\) 0 0
\(163\) −2.00000 + 2.00000i −0.156652 + 0.156652i −0.781081 0.624429i \(-0.785332\pi\)
0.624429 + 0.781081i \(0.285332\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.00000 + 2.00000i 0.154765 + 0.154765i 0.780242 0.625478i \(-0.215096\pi\)
−0.625478 + 0.780242i \(0.715096\pi\)
\(168\) 0 0
\(169\) 11.0000i 0.846154i
\(170\) 0 0
\(171\) 20.0000i 1.52944i
\(172\) 0 0
\(173\) −13.0000 13.0000i −0.988372 0.988372i 0.0115615 0.999933i \(-0.496320\pi\)
−0.999933 + 0.0115615i \(0.996320\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −8.00000 + 8.00000i −0.601317 + 0.601317i
\(178\) 0 0
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 0 0
\(183\) 8.00000 8.00000i 0.591377 0.591377i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 16.0000i 1.16383i
\(190\) 0 0
\(191\) 20.0000i 1.44715i 0.690246 + 0.723575i \(0.257502\pi\)
−0.690246 + 0.723575i \(0.742498\pi\)
\(192\) 0 0
\(193\) 5.00000 + 5.00000i 0.359908 + 0.359908i 0.863779 0.503871i \(-0.168091\pi\)
−0.503871 + 0.863779i \(0.668091\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −5.00000 + 5.00000i −0.356235 + 0.356235i −0.862423 0.506188i \(-0.831054\pi\)
0.506188 + 0.862423i \(0.331054\pi\)
\(198\) 0 0
\(199\) 24.0000 1.70131 0.850657 0.525720i \(-0.176204\pi\)
0.850657 + 0.525720i \(0.176204\pi\)
\(200\) 0 0
\(201\) −40.0000 −2.82138
\(202\) 0 0
\(203\) 8.00000 8.00000i 0.561490 0.561490i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 10.0000 + 10.0000i 0.695048 + 0.695048i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 16.0000i 1.10149i −0.834675 0.550743i \(-0.814345\pi\)
0.834675 0.550743i \(-0.185655\pi\)
\(212\) 0 0
\(213\) 24.0000 + 24.0000i 1.64445 + 1.64445i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 8.00000 8.00000i 0.543075 0.543075i
\(218\) 0 0
\(219\) −12.0000 −0.810885
\(220\) 0 0
\(221\) 10.0000 0.672673
\(222\) 0 0
\(223\) 10.0000 10.0000i 0.669650 0.669650i −0.287985 0.957635i \(-0.592985\pi\)
0.957635 + 0.287985i \(0.0929854\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −10.0000 10.0000i −0.663723 0.663723i 0.292532 0.956256i \(-0.405502\pi\)
−0.956256 + 0.292532i \(0.905502\pi\)
\(228\) 0 0
\(229\) 20.0000i 1.32164i 0.750546 + 0.660819i \(0.229791\pi\)
−0.750546 + 0.660819i \(0.770209\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5.00000 + 5.00000i 0.327561 + 0.327561i 0.851658 0.524097i \(-0.175597\pi\)
−0.524097 + 0.851658i \(0.675597\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −32.0000 + 32.0000i −2.07862 + 2.07862i
\(238\) 0 0
\(239\) 8.00000 0.517477 0.258738 0.965947i \(-0.416693\pi\)
0.258738 + 0.965947i \(0.416693\pi\)
\(240\) 0 0
\(241\) −16.0000 −1.03065 −0.515325 0.856995i \(-0.672329\pi\)
−0.515325 + 0.856995i \(0.672329\pi\)
\(242\) 0 0
\(243\) −10.0000 + 10.0000i −0.641500 + 0.641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 4.00000 + 4.00000i 0.254514 + 0.254514i
\(248\) 0 0
\(249\) 8.00000i 0.506979i
\(250\) 0 0
\(251\) 24.0000i 1.51487i 0.652913 + 0.757433i \(0.273547\pi\)
−0.652913 + 0.757433i \(0.726453\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −7.00000 + 7.00000i −0.436648 + 0.436648i −0.890882 0.454234i \(-0.849913\pi\)
0.454234 + 0.890882i \(0.349913\pi\)
\(258\) 0 0
\(259\) 4.00000 0.248548
\(260\) 0 0
\(261\) 20.0000 1.23797
\(262\) 0 0
\(263\) −6.00000 + 6.00000i −0.369976 + 0.369976i −0.867468 0.497492i \(-0.834254\pi\)
0.497492 + 0.867468i \(0.334254\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 10.0000i 0.609711i 0.952399 + 0.304855i \(0.0986081\pi\)
−0.952399 + 0.304855i \(0.901392\pi\)
\(270\) 0 0
\(271\) 20.0000i 1.21491i −0.794353 0.607457i \(-0.792190\pi\)
0.794353 0.607457i \(-0.207810\pi\)
\(272\) 0 0
\(273\) 8.00000 + 8.00000i 0.484182 + 0.484182i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 9.00000 9.00000i 0.540758 0.540758i −0.382993 0.923751i \(-0.625107\pi\)
0.923751 + 0.382993i \(0.125107\pi\)
\(278\) 0 0
\(279\) 20.0000 1.19737
\(280\) 0 0
\(281\) 8.00000 0.477240 0.238620 0.971113i \(-0.423305\pi\)
0.238620 + 0.971113i \(0.423305\pi\)
\(282\) 0 0
\(283\) −6.00000 + 6.00000i −0.356663 + 0.356663i −0.862581 0.505918i \(-0.831154\pi\)
0.505918 + 0.862581i \(0.331154\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 33.0000i 1.94118i
\(290\) 0 0
\(291\) 12.0000i 0.703452i
\(292\) 0 0
\(293\) 5.00000 + 5.00000i 0.292103 + 0.292103i 0.837911 0.545807i \(-0.183777\pi\)
−0.545807 + 0.837911i \(0.683777\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −4.00000 −0.231326
\(300\) 0 0
\(301\) −24.0000 −1.38334
\(302\) 0 0
\(303\) 12.0000 12.0000i 0.689382 0.689382i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 10.0000 + 10.0000i 0.570730 + 0.570730i 0.932332 0.361602i \(-0.117770\pi\)
−0.361602 + 0.932332i \(0.617770\pi\)
\(308\) 0 0
\(309\) 24.0000i 1.36531i
\(310\) 0 0
\(311\) 28.0000i 1.58773i 0.608091 + 0.793867i \(0.291935\pi\)
−0.608091 + 0.793867i \(0.708065\pi\)
\(312\) 0 0
\(313\) −15.0000 15.0000i −0.847850 0.847850i 0.142014 0.989865i \(-0.454642\pi\)
−0.989865 + 0.142014i \(0.954642\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −11.0000 + 11.0000i −0.617822 + 0.617822i −0.944972 0.327151i \(-0.893912\pi\)
0.327151 + 0.944972i \(0.393912\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 24.0000 1.33955
\(322\) 0 0
\(323\) 20.0000 20.0000i 1.11283 1.11283i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 20.0000 + 20.0000i 1.10600 + 1.10600i
\(328\) 0 0
\(329\) 8.00000i 0.441054i
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 5.00000 + 5.00000i 0.273998 + 0.273998i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 23.0000 23.0000i 1.25289 1.25289i 0.298471 0.954419i \(-0.403523\pi\)
0.954419 0.298471i \(-0.0964767\pi\)
\(338\) 0 0
\(339\) −36.0000 −1.95525
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −12.0000 + 12.0000i −0.647939 + 0.647939i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −18.0000 18.0000i −0.966291 0.966291i 0.0331594 0.999450i \(-0.489443\pi\)
−0.999450 + 0.0331594i \(0.989443\pi\)
\(348\) 0 0
\(349\) 20.0000i 1.07058i −0.844670 0.535288i \(-0.820203\pi\)
0.844670 0.535288i \(-0.179797\pi\)
\(350\) 0 0
\(351\) 8.00000i 0.427008i
\(352\) 0 0
\(353\) −9.00000 9.00000i −0.479022 0.479022i 0.425797 0.904819i \(-0.359994\pi\)
−0.904819 + 0.425797i \(0.859994\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 40.0000 40.0000i 2.11702 2.11702i
\(358\) 0 0
\(359\) −16.0000 −0.844448 −0.422224 0.906492i \(-0.638750\pi\)
−0.422224 + 0.906492i \(0.638750\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) −22.0000 + 22.0000i −1.15470 + 1.15470i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 22.0000 + 22.0000i 1.14839 + 1.14839i 0.986869 + 0.161521i \(0.0516401\pi\)
0.161521 + 0.986869i \(0.448360\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 28.0000i 1.45369i
\(372\) 0 0
\(373\) −21.0000 21.0000i −1.08734 1.08734i −0.995802 0.0915371i \(-0.970822\pi\)
−0.0915371 0.995802i \(-0.529178\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −4.00000 + 4.00000i −0.206010 + 0.206010i
\(378\) 0 0
\(379\) 28.0000 1.43826 0.719132 0.694874i \(-0.244540\pi\)
0.719132 + 0.694874i \(0.244540\pi\)
\(380\) 0 0
\(381\) 40.0000 2.04926
\(382\) 0 0
\(383\) −22.0000 + 22.0000i −1.12415 + 1.12415i −0.133036 + 0.991111i \(0.542473\pi\)
−0.991111 + 0.133036i \(0.957527\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −30.0000 30.0000i −1.52499 1.52499i
\(388\) 0 0
\(389\) 18.0000i 0.912636i −0.889817 0.456318i \(-0.849168\pi\)
0.889817 0.456318i \(-0.150832\pi\)
\(390\) 0 0
\(391\) 20.0000i 1.01144i
\(392\) 0 0
\(393\) 16.0000 + 16.0000i 0.807093 + 0.807093i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −13.0000 + 13.0000i −0.652451 + 0.652451i −0.953583 0.301131i \(-0.902636\pi\)
0.301131 + 0.953583i \(0.402636\pi\)
\(398\) 0 0
\(399\) 32.0000 1.60200
\(400\) 0 0
\(401\) 34.0000 1.69788 0.848939 0.528490i \(-0.177242\pi\)
0.848939 + 0.528490i \(0.177242\pi\)
\(402\) 0 0
\(403\) −4.00000 + 4.00000i −0.199254 + 0.199254i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 2.00000i 0.0988936i −0.998777 0.0494468i \(-0.984254\pi\)
0.998777 0.0494468i \(-0.0157458\pi\)
\(410\) 0 0
\(411\) 4.00000i 0.197305i
\(412\) 0 0
\(413\) −8.00000 8.00000i −0.393654 0.393654i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 24.0000 24.0000i 1.17529 1.17529i
\(418\) 0 0
\(419\) −12.0000 −0.586238 −0.293119 0.956076i \(-0.594693\pi\)
−0.293119 + 0.956076i \(0.594693\pi\)
\(420\) 0 0
\(421\) 20.0000 0.974740 0.487370 0.873195i \(-0.337956\pi\)
0.487370 + 0.873195i \(0.337956\pi\)
\(422\) 0 0
\(423\) 10.0000 10.0000i 0.486217 0.486217i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 8.00000 + 8.00000i 0.387147 + 0.387147i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 4.00000i 0.192673i −0.995349 0.0963366i \(-0.969287\pi\)
0.995349 0.0963366i \(-0.0307125\pi\)
\(432\) 0 0
\(433\) 19.0000 + 19.0000i 0.913082 + 0.913082i 0.996513 0.0834318i \(-0.0265881\pi\)
−0.0834318 + 0.996513i \(0.526588\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −8.00000 + 8.00000i −0.382692 + 0.382692i
\(438\) 0 0
\(439\) −16.0000 −0.763638 −0.381819 0.924237i \(-0.624702\pi\)
−0.381819 + 0.924237i \(0.624702\pi\)
\(440\) 0 0
\(441\) 5.00000 0.238095
\(442\) 0 0
\(443\) −22.0000 + 22.0000i −1.04525 + 1.04525i −0.0463251 + 0.998926i \(0.514751\pi\)
−0.998926 + 0.0463251i \(0.985249\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −36.0000 36.0000i −1.70274 1.70274i
\(448\) 0 0
\(449\) 26.0000i 1.22702i 0.789689 + 0.613508i \(0.210242\pi\)
−0.789689 + 0.613508i \(0.789758\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 24.0000 + 24.0000i 1.12762 + 1.12762i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −15.0000 + 15.0000i −0.701670 + 0.701670i −0.964769 0.263099i \(-0.915256\pi\)
0.263099 + 0.964769i \(0.415256\pi\)
\(458\) 0 0
\(459\) 40.0000 1.86704
\(460\) 0 0
\(461\) −14.0000 −0.652045 −0.326023 0.945362i \(-0.605709\pi\)
−0.326023 + 0.945362i \(0.605709\pi\)
\(462\) 0 0
\(463\) 22.0000 22.0000i 1.02243 1.02243i 0.0226840 0.999743i \(-0.492779\pi\)
0.999743 0.0226840i \(-0.00722117\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −2.00000 2.00000i −0.0925490 0.0925490i 0.659317 0.751865i \(-0.270846\pi\)
−0.751865 + 0.659317i \(0.770846\pi\)
\(468\) 0 0
\(469\) 40.0000i 1.84703i
\(470\) 0 0
\(471\) 36.0000i 1.65879i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 35.0000 35.0000i 1.60254 1.60254i
\(478\) 0 0
\(479\) −24.0000 −1.09659 −0.548294 0.836286i \(-0.684723\pi\)
−0.548294 + 0.836286i \(0.684723\pi\)
\(480\) 0 0
\(481\) −2.00000 −0.0911922
\(482\) 0 0
\(483\) −16.0000 + 16.0000i −0.728025 + 0.728025i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 6.00000 + 6.00000i 0.271886 + 0.271886i 0.829859 0.557973i \(-0.188421\pi\)
−0.557973 + 0.829859i \(0.688421\pi\)
\(488\) 0 0
\(489\) 8.00000i 0.361773i
\(490\) 0 0
\(491\) 16.0000i 0.722070i 0.932552 + 0.361035i \(0.117576\pi\)
−0.932552 + 0.361035i \(0.882424\pi\)
\(492\) 0 0
\(493\) 20.0000 + 20.0000i 0.900755 + 0.900755i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −24.0000 + 24.0000i −1.07655 + 1.07655i
\(498\) 0 0
\(499\) 4.00000 0.179065 0.0895323 0.995984i \(-0.471463\pi\)
0.0895323 + 0.995984i \(0.471463\pi\)
\(500\) 0 0
\(501\) −8.00000 −0.357414
\(502\) 0 0
\(503\) −10.0000 + 10.0000i −0.445878 + 0.445878i −0.893982 0.448104i \(-0.852100\pi\)
0.448104 + 0.893982i \(0.352100\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 22.0000 + 22.0000i 0.977054 + 0.977054i
\(508\) 0 0
\(509\) 36.0000i 1.59567i −0.602875 0.797836i \(-0.705978\pi\)
0.602875 0.797836i \(-0.294022\pi\)
\(510\) 0 0
\(511\) 12.0000i 0.530849i
\(512\) 0 0
\(513\) 16.0000 + 16.0000i 0.706417 + 0.706417i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 52.0000 2.28255
\(520\) 0 0
\(521\) 6.00000 0.262865 0.131432 0.991325i \(-0.458042\pi\)
0.131432 + 0.991325i \(0.458042\pi\)
\(522\) 0 0
\(523\) −14.0000 + 14.0000i −0.612177 + 0.612177i −0.943513 0.331336i \(-0.892501\pi\)
0.331336 + 0.943513i \(0.392501\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 20.0000 + 20.0000i 0.871214 + 0.871214i
\(528\) 0 0
\(529\) 15.0000i 0.652174i
\(530\) 0 0
\(531\) 20.0000i 0.867926i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −24.0000 + 24.0000i −1.03568 + 1.03568i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −30.0000 −1.28980 −0.644900 0.764267i \(-0.723101\pi\)
−0.644900 + 0.764267i \(0.723101\pi\)
\(542\) 0 0
\(543\) 20.0000 20.0000i 0.858282 0.858282i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 6.00000 + 6.00000i 0.256541 + 0.256541i 0.823646 0.567104i \(-0.191936\pi\)
−0.567104 + 0.823646i \(0.691936\pi\)
\(548\) 0 0
\(549\) 20.0000i 0.853579i
\(550\) 0 0
\(551\) 16.0000i 0.681623i
\(552\) 0 0
\(553\) −32.0000 32.0000i −1.36078 1.36078i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 15.0000 15.0000i 0.635570 0.635570i −0.313889 0.949460i \(-0.601632\pi\)
0.949460 + 0.313889i \(0.101632\pi\)
\(558\) 0 0
\(559\) 12.0000 0.507546
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 6.00000 6.00000i 0.252870 0.252870i −0.569276 0.822146i \(-0.692777\pi\)
0.822146 + 0.569276i \(0.192777\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 2.00000 + 2.00000i 0.0839921 + 0.0839921i
\(568\) 0 0
\(569\) 2.00000i 0.0838444i 0.999121 + 0.0419222i \(0.0133482\pi\)
−0.999121 + 0.0419222i \(0.986652\pi\)
\(570\) 0 0
\(571\) 16.0000i 0.669579i 0.942293 + 0.334790i \(0.108665\pi\)
−0.942293 + 0.334790i \(0.891335\pi\)
\(572\) 0 0
\(573\) −40.0000 40.0000i −1.67102 1.67102i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −15.0000 + 15.0000i −0.624458 + 0.624458i −0.946668 0.322210i \(-0.895574\pi\)
0.322210 + 0.946668i \(0.395574\pi\)
\(578\) 0 0
\(579\) −20.0000 −0.831172
\(580\) 0 0
\(581\) −8.00000 −0.331896
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 14.0000 + 14.0000i 0.577842 + 0.577842i 0.934308 0.356466i \(-0.116019\pi\)
−0.356466 + 0.934308i \(0.616019\pi\)
\(588\) 0 0
\(589\) 16.0000i 0.659269i
\(590\) 0 0
\(591\) 20.0000i 0.822690i
\(592\) 0 0
\(593\) −1.00000 1.00000i −0.0410651 0.0410651i 0.686276 0.727341i \(-0.259244\pi\)
−0.727341 + 0.686276i \(0.759244\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −48.0000 + 48.0000i −1.96451 + 1.96451i
\(598\) 0 0
\(599\) −8.00000 −0.326871 −0.163436 0.986554i \(-0.552258\pi\)
−0.163436 + 0.986554i \(0.552258\pi\)
\(600\) 0 0
\(601\) −8.00000 −0.326327 −0.163163 0.986599i \(-0.552170\pi\)
−0.163163 + 0.986599i \(0.552170\pi\)
\(602\) 0 0
\(603\) 50.0000 50.0000i 2.03616 2.03616i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 18.0000 + 18.0000i 0.730597 + 0.730597i 0.970738 0.240141i \(-0.0771936\pi\)
−0.240141 + 0.970738i \(0.577194\pi\)
\(608\) 0 0
\(609\) 32.0000i 1.29671i
\(610\) 0 0
\(611\) 4.00000i 0.161823i
\(612\) 0 0
\(613\) 9.00000 + 9.00000i 0.363507 + 0.363507i 0.865102 0.501596i \(-0.167253\pi\)
−0.501596 + 0.865102i \(0.667253\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 29.0000 29.0000i 1.16750 1.16750i 0.184701 0.982795i \(-0.440868\pi\)
0.982795 0.184701i \(-0.0591318\pi\)
\(618\) 0 0
\(619\) −28.0000 −1.12542 −0.562708 0.826656i \(-0.690240\pi\)
−0.562708 + 0.826656i \(0.690240\pi\)
\(620\) 0 0
\(621\) −16.0000 −0.642058
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 10.0000i 0.398726i
\(630\) 0 0
\(631\) 4.00000i 0.159237i −0.996825 0.0796187i \(-0.974630\pi\)
0.996825 0.0796187i \(-0.0253703\pi\)
\(632\) 0 0
\(633\) 32.0000 + 32.0000i 1.27189 + 1.27189i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −1.00000 + 1.00000i −0.0396214 + 0.0396214i
\(638\) 0 0
\(639\) −60.0000 −2.37356
\(640\) 0 0
\(641\) −48.0000 −1.89589 −0.947943 0.318440i \(-0.896841\pi\)
−0.947943 + 0.318440i \(0.896841\pi\)
\(642\) 0 0
\(643\) 10.0000 10.0000i 0.394362 0.394362i −0.481877 0.876239i \(-0.660045\pi\)
0.876239 + 0.481877i \(0.160045\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −10.0000 10.0000i −0.393141 0.393141i 0.482665 0.875805i \(-0.339669\pi\)
−0.875805 + 0.482665i \(0.839669\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 32.0000i 1.25418i
\(652\) 0 0
\(653\) −1.00000 1.00000i −0.0391330 0.0391330i 0.687270 0.726403i \(-0.258809\pi\)
−0.726403 + 0.687270i \(0.758809\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 15.0000 15.0000i 0.585206 0.585206i
\(658\) 0 0
\(659\) 20.0000 0.779089 0.389545 0.921008i \(-0.372632\pi\)
0.389545 + 0.921008i \(0.372632\pi\)
\(660\) 0 0
\(661\) 12.0000 0.466746 0.233373 0.972387i \(-0.425024\pi\)
0.233373 + 0.972387i \(0.425024\pi\)
\(662\) 0 0
\(663\) −20.0000 + 20.0000i −0.776736 + 0.776736i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −8.00000 8.00000i −0.309761 0.309761i
\(668\) 0 0
\(669\) 40.0000i 1.54649i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −5.00000 5.00000i −0.192736 0.192736i 0.604141 0.796877i \(-0.293516\pi\)
−0.796877 + 0.604141i \(0.793516\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 3.00000 3.00000i 0.115299 0.115299i −0.647103 0.762402i \(-0.724020\pi\)
0.762402 + 0.647103i \(0.224020\pi\)
\(678\) 0 0
\(679\) −12.0000 −0.460518
\(680\) 0 0
\(681\) 40.0000 1.53280
\(682\) 0 0
\(683\) 22.0000 22.0000i 0.841807 0.841807i −0.147287 0.989094i \(-0.547054\pi\)
0.989094 + 0.147287i \(0.0470541\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −40.0000 40.0000i −1.52610 1.52610i
\(688\) 0 0
\(689\) 14.0000i 0.533358i
\(690\) 0 0
\(691\) 32.0000i 1.21734i 0.793424 + 0.608669i \(0.208296\pi\)
−0.793424 + 0.608669i \(0.791704\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −20.0000 −0.756469
\(700\) 0 0
\(701\) 20.0000 0.755390 0.377695 0.925930i \(-0.376717\pi\)
0.377695 + 0.925930i \(0.376717\pi\)
\(702\) 0 0
\(703\) −4.00000 + 4.00000i −0.150863 + 0.150863i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 12.0000 + 12.0000i 0.451306 + 0.451306i
\(708\) 0 0
\(709\) 12.0000i 0.450669i 0.974281 + 0.225335i \(0.0723476\pi\)
−0.974281 + 0.225335i \(0.927652\pi\)
\(710\) 0 0
\(711\) 80.0000i 3.00023i
\(712\) 0 0
\(713\) −8.00000 8.00000i −0.299602 0.299602i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −16.0000 + 16.0000i −0.597531 + 0.597531i
\(718\) 0 0
\(719\) 8.00000 0.298350 0.149175 0.988811i \(-0.452338\pi\)
0.149175 + 0.988811i \(0.452338\pi\)
\(720\) 0 0
\(721\) −24.0000 −0.893807
\(722\) 0 0
\(723\) 32.0000 32.0000i 1.19009 1.19009i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −18.0000 18.0000i −0.667583 0.667583i 0.289573 0.957156i \(-0.406487\pi\)
−0.957156 + 0.289573i \(0.906487\pi\)
\(728\) 0 0
\(729\) 43.0000i 1.59259i
\(730\) 0 0
\(731\) 60.0000i 2.21918i
\(732\) 0 0
\(733\) −21.0000 21.0000i −0.775653 0.775653i 0.203436 0.979088i \(-0.434789\pi\)
−0.979088 + 0.203436i \(0.934789\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 44.0000 1.61857 0.809283 0.587419i \(-0.199856\pi\)
0.809283 + 0.587419i \(0.199856\pi\)
\(740\) 0 0
\(741\) −16.0000 −0.587775
\(742\) 0 0
\(743\) −30.0000 + 30.0000i −1.10059 + 1.10059i −0.106254 + 0.994339i \(0.533886\pi\)
−0.994339 + 0.106254i \(0.966114\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −10.0000 10.0000i −0.365881 0.365881i
\(748\) 0 0
\(749\) 24.0000i 0.876941i
\(750\) 0 0
\(751\) 44.0000i 1.60558i −0.596260 0.802791i \(-0.703347\pi\)
0.596260 0.802791i \(-0.296653\pi\)
\(752\) 0 0
\(753\) −48.0000 48.0000i −1.74922 1.74922i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1.00000 1.00000i 0.0363456 0.0363456i −0.688700 0.725046i \(-0.741818\pi\)
0.725046 + 0.688700i \(0.241818\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −22.0000 −0.797499 −0.398750 0.917060i \(-0.630556\pi\)
−0.398750 + 0.917060i \(0.630556\pi\)
\(762\) 0 0
\(763\) −20.0000 + 20.0000i −0.724049 + 0.724049i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 4.00000 + 4.00000i 0.144432 + 0.144432i
\(768\) 0 0
\(769\) 40.0000i 1.44244i −0.692708 0.721218i \(-0.743582\pi\)
0.692708 0.721218i \(-0.256418\pi\)
\(770\) 0 0
\(771\) 28.0000i 1.00840i
\(772\) 0 0
\(773\) 1.00000 + 1.00000i 0.0359675 + 0.0359675i 0.724862 0.688894i \(-0.241904\pi\)
−0.688894 + 0.724862i \(0.741904\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −8.00000 + 8.00000i −0.286998 + 0.286998i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −16.0000 + 16.0000i −0.571793 + 0.571793i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −30.0000 30.0000i −1.06938 1.06938i −0.997406 0.0719783i \(-0.977069\pi\)
−0.0719783 0.997406i \(-0.522931\pi\)
\(788\) 0 0
\(789\) 24.0000i 0.854423i
\(790\) 0 0
\(791\) 36.0000i 1.28001i
\(792\) 0 0
\(793\) −4.00000 4.00000i −0.142044 0.142044i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 29.0000 29.0000i 1.02723 1.02723i 0.0276140 0.999619i \(-0.491209\pi\)
0.999619 0.0276140i \(-0.00879094\pi\)
\(798\) 0 0
\(799\) 20.0000 0.707549
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −20.0000 20.0000i −0.704033 0.704033i
\(808\) 0 0
\(809\) 24.0000i 0.843795i −0.906644 0.421898i \(-0.861364\pi\)
0.906644 0.421898i \(-0.138636\pi\)
\(810\) 0 0
\(811\) 24.0000i 0.842754i 0.906886 + 0.421377i \(0.138453\pi\)
−0.906886 + 0.421377i \(0.861547\pi\)
\(812\) 0 0
\(813\) 40.0000 + 40.0000i 1.40286 + 1.40286i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 24.0000 24.0000i 0.839654 0.839654i
\(818\) 0 0
\(819\) −20.0000 −0.698857
\(820\) 0 0
\(821\) −28.0000 −0.977207 −0.488603 0.872506i \(-0.662493\pi\)
−0.488603 + 0.872506i \(0.662493\pi\)
\(822\) 0 0
\(823\) 30.0000 30.0000i 1.04573 1.04573i 0.0468315 0.998903i \(-0.485088\pi\)
0.998903 0.0468315i \(-0.0149124\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −2.00000 2.00000i −0.0695468 0.0695468i 0.671478 0.741025i \(-0.265660\pi\)
−0.741025 + 0.671478i \(0.765660\pi\)
\(828\) 0 0
\(829\) 6.00000i 0.208389i −0.994557 0.104194i \(-0.966774\pi\)
0.994557 0.104194i \(-0.0332264\pi\)
\(830\) 0 0
\(831\) 36.0000i 1.24883i
\(832\) 0 0
\(833\) 5.00000 + 5.00000i 0.173240 + 0.173240i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −16.0000 + 16.0000i −0.553041 + 0.553041i
\(838\) 0 0
\(839\) −24.0000 −0.828572 −0.414286 0.910147i \(-0.635969\pi\)
−0.414286 + 0.910147i \(0.635969\pi\)
\(840\) 0 0
\(841\) 13.0000 0.448276
\(842\) 0 0
\(843\) −16.0000 + 16.0000i −0.551069 + 0.551069i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −22.0000 22.0000i −0.755929 0.755929i
\(848\) 0 0
\(849\) 24.0000i 0.823678i
\(850\) 0 0
\(851\) 4.00000i 0.137118i
\(852\) 0 0
\(853\) −15.0000 15.0000i −0.513590 0.513590i 0.402034 0.915625i \(-0.368303\pi\)
−0.915625 + 0.402034i \(0.868303\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 7.00000 7.00000i 0.239115 0.239115i −0.577368 0.816484i \(-0.695920\pi\)
0.816484 + 0.577368i \(0.195920\pi\)
\(858\) 0 0
\(859\) −28.0000 −0.955348 −0.477674 0.878537i \(-0.658520\pi\)
−0.477674 + 0.878537i \(0.658520\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −34.0000 + 34.0000i −1.15737 + 1.15737i −0.172335 + 0.985038i \(0.555131\pi\)
−0.985038 + 0.172335i \(0.944869\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 66.0000 + 66.0000i 2.24148 + 2.24148i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 20.0000i 0.677674i
\(872\) 0 0
\(873\) −15.0000 15.0000i −0.507673 0.507673i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −15.0000 + 15.0000i −0.506514 + 0.506514i −0.913455 0.406941i \(-0.866596\pi\)
0.406941 + 0.913455i \(0.366596\pi\)
\(878\) 0 0
\(879\) −20.0000 −0.674583
\(880\) 0 0
\(881\) −40.0000 −1.34763 −0.673817 0.738898i \(-0.735346\pi\)
−0.673817 + 0.738898i \(0.735346\pi\)
\(882\) 0 0
\(883\) −10.0000 + 10.0000i −0.336527 + 0.336527i −0.855058 0.518532i \(-0.826479\pi\)
0.518532 + 0.855058i \(0.326479\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −10.0000 10.0000i −0.335767 0.335767i 0.519004 0.854772i \(-0.326303\pi\)
−0.854772 + 0.519004i \(0.826303\pi\)
\(888\) 0 0
\(889\) 40.0000i 1.34156i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 8.00000 + 8.00000i 0.267710 + 0.267710i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 8.00000 8.00000i 0.267112 0.267112i
\(898\) 0 0
\(899\) −16.0000 −0.533630
\(900\) 0 0
\(901\) 70.0000 2.33204
\(902\) 0 0
\(903\) 48.0000 48.0000i 1.59734 1.59734i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −6.00000 6.00000i −0.199227 0.199227i 0.600442 0.799668i \(-0.294991\pi\)
−0.799668 + 0.600442i \(0.794991\pi\)
\(908\) 0 0
\(909\) 30.0000i 0.995037i
\(910\) 0 0
\(911\) 4.00000i 0.132526i 0.997802 + 0.0662630i \(0.0211076\pi\)
−0.997802 + 0.0662630i \(0.978892\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −16.0000 + 16.0000i −0.528367 + 0.528367i
\(918\) 0 0
\(919\) −24.0000 −0.791687 −0.395843 0.918318i \(-0.629548\pi\)
−0.395843 + 0.918318i \(0.629548\pi\)
\(920\) 0 0
\(921\) −40.0000 −1.31804
\(922\) 0 0
\(923\) 12.0000 12.0000i 0.394985 0.394985i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −30.0000 30.0000i −0.985329 0.985329i
\(928\) 0 0
\(929\) 6.00000i 0.196854i 0.995144 + 0.0984268i \(0.0313810\pi\)
−0.995144 + 0.0984268i \(0.968619\pi\)
\(930\) 0 0
\(931\) 4.00000i 0.131095i
\(932\) 0 0
\(933\) −56.0000 56.0000i −1.83336 1.83336i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −27.0000 + 27.0000i −0.882052 + 0.882052i −0.993743 0.111691i \(-0.964373\pi\)
0.111691 + 0.993743i \(0.464373\pi\)
\(938\) 0 0
\(939\) 60.0000 1.95803
\(940\) 0 0
\(941\) 46.0000 1.49956 0.749779 0.661689i \(-0.230160\pi\)
0.749779 + 0.661689i \(0.230160\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 10.0000 + 10.0000i 0.324956 + 0.324956i 0.850665 0.525708i \(-0.176200\pi\)
−0.525708 + 0.850665i \(0.676200\pi\)
\(948\) 0 0
\(949\) 6.00000i 0.194768i
\(950\) 0 0
\(951\) 44.0000i 1.42680i
\(952\) 0 0
\(953\) 9.00000 + 9.00000i 0.291539 + 0.291539i 0.837688 0.546149i \(-0.183907\pi\)
−0.546149 + 0.837688i \(0.683907\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 4.00000 0.129167
\(960\) 0 0
\(961\) 15.0000 0.483871
\(962\) 0 0
\(963\) −30.0000 + 30.0000i −0.966736 + 0.966736i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 10.0000 + 10.0000i 0.321578 + 0.321578i 0.849372 0.527794i \(-0.176981\pi\)
−0.527794 + 0.849372i \(0.676981\pi\)
\(968\) 0 0
\(969\) 80.0000i 2.56997i
\(970\) 0 0
\(971\) 8.00000i 0.256732i −0.991727 0.128366i \(-0.959027\pi\)
0.991727 0.128366i \(-0.0409733\pi\)
\(972\) 0 0
\(973\) 24.0000 + 24.0000i 0.769405 + 0.769405i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −21.0000 + 21.0000i −0.671850 + 0.671850i −0.958142 0.286293i \(-0.907577\pi\)
0.286293 + 0.958142i \(0.407577\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −50.0000 −1.59638
\(982\) 0 0
\(983\) 34.0000 34.0000i 1.08443 1.08443i 0.0883413 0.996090i \(-0.471843\pi\)
0.996090 0.0883413i \(-0.0281566\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 16.0000 + 16.0000i 0.509286 + 0.509286i
\(988\) 0 0
\(989\) 24.0000i 0.763156i
\(990\) 0 0
\(991\) 4.00000i 0.127064i −0.997980 0.0635321i \(-0.979763\pi\)
0.997980 0.0635321i \(-0.0202365\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 21.0000 21.0000i 0.665077 0.665077i −0.291496 0.956572i \(-0.594153\pi\)
0.956572 + 0.291496i \(0.0941528\pi\)
\(998\) 0 0
\(999\) −8.00000 −0.253109
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.2.n.a.543.1 2
4.3 odd 2 800.2.n.j.543.1 2
5.2 odd 4 800.2.n.j.607.1 2
5.3 odd 4 160.2.n.a.127.1 yes 2
5.4 even 2 160.2.n.f.63.1 yes 2
8.3 odd 2 1600.2.n.a.1343.1 2
8.5 even 2 1600.2.n.n.1343.1 2
15.8 even 4 1440.2.x.i.127.1 2
15.14 odd 2 1440.2.x.j.703.1 2
20.3 even 4 160.2.n.f.127.1 yes 2
20.7 even 4 inner 800.2.n.a.607.1 2
20.19 odd 2 160.2.n.a.63.1 2
40.3 even 4 320.2.n.a.127.1 2
40.13 odd 4 320.2.n.h.127.1 2
40.19 odd 2 320.2.n.h.63.1 2
40.27 even 4 1600.2.n.n.1407.1 2
40.29 even 2 320.2.n.a.63.1 2
40.37 odd 4 1600.2.n.a.1407.1 2
60.23 odd 4 1440.2.x.j.127.1 2
60.59 even 2 1440.2.x.i.703.1 2
80.3 even 4 1280.2.o.b.127.1 2
80.13 odd 4 1280.2.o.p.127.1 2
80.19 odd 4 1280.2.o.a.383.1 2
80.29 even 4 1280.2.o.o.383.1 2
80.43 even 4 1280.2.o.o.127.1 2
80.53 odd 4 1280.2.o.a.127.1 2
80.59 odd 4 1280.2.o.p.383.1 2
80.69 even 4 1280.2.o.b.383.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.2.n.a.63.1 2 20.19 odd 2
160.2.n.a.127.1 yes 2 5.3 odd 4
160.2.n.f.63.1 yes 2 5.4 even 2
160.2.n.f.127.1 yes 2 20.3 even 4
320.2.n.a.63.1 2 40.29 even 2
320.2.n.a.127.1 2 40.3 even 4
320.2.n.h.63.1 2 40.19 odd 2
320.2.n.h.127.1 2 40.13 odd 4
800.2.n.a.543.1 2 1.1 even 1 trivial
800.2.n.a.607.1 2 20.7 even 4 inner
800.2.n.j.543.1 2 4.3 odd 2
800.2.n.j.607.1 2 5.2 odd 4
1280.2.o.a.127.1 2 80.53 odd 4
1280.2.o.a.383.1 2 80.19 odd 4
1280.2.o.b.127.1 2 80.3 even 4
1280.2.o.b.383.1 2 80.69 even 4
1280.2.o.o.127.1 2 80.43 even 4
1280.2.o.o.383.1 2 80.29 even 4
1280.2.o.p.127.1 2 80.13 odd 4
1280.2.o.p.383.1 2 80.59 odd 4
1440.2.x.i.127.1 2 15.8 even 4
1440.2.x.i.703.1 2 60.59 even 2
1440.2.x.j.127.1 2 60.23 odd 4
1440.2.x.j.703.1 2 15.14 odd 2
1600.2.n.a.1343.1 2 8.3 odd 2
1600.2.n.a.1407.1 2 40.37 odd 4
1600.2.n.n.1343.1 2 8.5 even 2
1600.2.n.n.1407.1 2 40.27 even 4