Properties

Label 800.2.o.a
Level 800800
Weight 22
Character orbit 800.o
Analytic conductor 6.3886.388
Analytic rank 00
Dimension 22
CM discriminant -8
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,2,Mod(143,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.143");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 800=2552 800 = 2^{5} \cdot 5^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 800.o (of order 44, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.388032161706.38803216170
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a9]\Z[a_1, \ldots, a_{9}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 200)
Sato-Tate group: U(1)[D4]\mathrm{U}(1)[D_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(2i2)q35iq9+6q11+(4i+4)q17+2iq19+(4i+4)q27+(12i12)q336q41+(6i6)q43+7iq4916q51+(4i4)q57+6iq59+30iq99+O(q100) q + (2 i - 2) q^{3} - 5 i q^{9} + 6 q^{11} + (4 i + 4) q^{17} + 2 i q^{19} + (4 i + 4) q^{27} + (12 i - 12) q^{33} - 6 q^{41} + (6 i - 6) q^{43} + 7 i q^{49} - 16 q^{51} + ( - 4 i - 4) q^{57} + 6 i q^{59} + \cdots - 30 i q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q4q3+12q11+8q17+8q2724q3312q4112q4332q518q57+12q67+24q732q814q83+24q97+O(q100) 2 q - 4 q^{3} + 12 q^{11} + 8 q^{17} + 8 q^{27} - 24 q^{33} - 12 q^{41} - 12 q^{43} - 32 q^{51} - 8 q^{57} + 12 q^{67} + 24 q^{73} - 2 q^{81} - 4 q^{83} + 24 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/800Z)×\left(\mathbb{Z}/800\mathbb{Z}\right)^\times.

nn 101101 351351 577577
χ(n)\chi(n) 1-1 1-1 ii

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
143.1
1.00000i
1.00000i
0 −2.00000 2.00000i 0 0 0 0 0 5.00000i 0
207.1 0 −2.00000 + 2.00000i 0 0 0 0 0 5.00000i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by Q(2)\Q(\sqrt{-2})
5.c odd 4 1 inner
40.k even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 800.2.o.a 2
4.b odd 2 1 200.2.k.d yes 2
5.b even 2 1 800.2.o.d 2
5.c odd 4 1 inner 800.2.o.a 2
5.c odd 4 1 800.2.o.d 2
8.b even 2 1 200.2.k.d yes 2
8.d odd 2 1 CM 800.2.o.a 2
20.d odd 2 1 200.2.k.a 2
20.e even 4 1 200.2.k.a 2
20.e even 4 1 200.2.k.d yes 2
40.e odd 2 1 800.2.o.d 2
40.f even 2 1 200.2.k.a 2
40.i odd 4 1 200.2.k.a 2
40.i odd 4 1 200.2.k.d yes 2
40.k even 4 1 inner 800.2.o.a 2
40.k even 4 1 800.2.o.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
200.2.k.a 2 20.d odd 2 1
200.2.k.a 2 20.e even 4 1
200.2.k.a 2 40.f even 2 1
200.2.k.a 2 40.i odd 4 1
200.2.k.d yes 2 4.b odd 2 1
200.2.k.d yes 2 8.b even 2 1
200.2.k.d yes 2 20.e even 4 1
200.2.k.d yes 2 40.i odd 4 1
800.2.o.a 2 1.a even 1 1 trivial
800.2.o.a 2 5.c odd 4 1 inner
800.2.o.a 2 8.d odd 2 1 CM
800.2.o.a 2 40.k even 4 1 inner
800.2.o.d 2 5.b even 2 1
800.2.o.d 2 5.c odd 4 1
800.2.o.d 2 40.e odd 2 1
800.2.o.d 2 40.k even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(800,[χ])S_{2}^{\mathrm{new}}(800, [\chi]):

T32+4T3+8 T_{3}^{2} + 4T_{3} + 8 Copy content Toggle raw display
T7 T_{7} Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+4T+8 T^{2} + 4T + 8 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 (T6)2 (T - 6)^{2} Copy content Toggle raw display
1313 T2 T^{2} Copy content Toggle raw display
1717 T28T+32 T^{2} - 8T + 32 Copy content Toggle raw display
1919 T2+4 T^{2} + 4 Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 T2 T^{2} Copy content Toggle raw display
4141 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
4343 T2+12T+72 T^{2} + 12T + 72 Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2+36 T^{2} + 36 Copy content Toggle raw display
6161 T2 T^{2} Copy content Toggle raw display
6767 T212T+72 T^{2} - 12T + 72 Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T224T+288 T^{2} - 24T + 288 Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 T2+4T+8 T^{2} + 4T + 8 Copy content Toggle raw display
8989 T2+324 T^{2} + 324 Copy content Toggle raw display
9797 T224T+288 T^{2} - 24T + 288 Copy content Toggle raw display
show more
show less