Properties

Label 800.3.p.a
Level $800$
Weight $3$
Character orbit 800.p
Analytic conductor $21.798$
Analytic rank $0$
Dimension $2$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,3,Mod(193,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.193");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 800.p (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.7984211488\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 160)
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 9 i q^{9} + (7 i - 7) q^{13} + ( - 23 i - 23) q^{17} - 40 i q^{29} + (23 i + 23) q^{37} - 80 q^{41} - 49 i q^{49} + (73 i - 73) q^{53} - 120 q^{61} + ( - 7 i + 7) q^{73} - 81 q^{81} - 160 i q^{89} + \cdots + ( - 137 i - 137) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 14 q^{13} - 46 q^{17} + 46 q^{37} - 160 q^{41} - 146 q^{53} - 240 q^{61} + 14 q^{73} - 162 q^{81} - 274 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(1\) \(1\) \(i\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
193.1
1.00000i
1.00000i
0 0 0 0 0 0 0 9.00000i 0
257.1 0 0 0 0 0 0 0 9.00000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)
5.c odd 4 1 inner
20.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 800.3.p.a 2
4.b odd 2 1 CM 800.3.p.a 2
5.b even 2 1 160.3.p.b 2
5.c odd 4 1 160.3.p.b 2
5.c odd 4 1 inner 800.3.p.a 2
20.d odd 2 1 160.3.p.b 2
20.e even 4 1 160.3.p.b 2
20.e even 4 1 inner 800.3.p.a 2
40.e odd 2 1 320.3.p.d 2
40.f even 2 1 320.3.p.d 2
40.i odd 4 1 320.3.p.d 2
40.k even 4 1 320.3.p.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
160.3.p.b 2 5.b even 2 1
160.3.p.b 2 5.c odd 4 1
160.3.p.b 2 20.d odd 2 1
160.3.p.b 2 20.e even 4 1
320.3.p.d 2 40.e odd 2 1
320.3.p.d 2 40.f even 2 1
320.3.p.d 2 40.i odd 4 1
320.3.p.d 2 40.k even 4 1
800.3.p.a 2 1.a even 1 1 trivial
800.3.p.a 2 4.b odd 2 1 CM
800.3.p.a 2 5.c odd 4 1 inner
800.3.p.a 2 20.e even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(800, [\chi])\):

\( T_{3} \) Copy content Toggle raw display
\( T_{13}^{2} + 14T_{13} + 98 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 14T + 98 \) Copy content Toggle raw display
$17$ \( T^{2} + 46T + 1058 \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 1600 \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} - 46T + 1058 \) Copy content Toggle raw display
$41$ \( (T + 80)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 146T + 10658 \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( (T + 120)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 14T + 98 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 25600 \) Copy content Toggle raw display
$97$ \( T^{2} + 274T + 37538 \) Copy content Toggle raw display
show more
show less