Properties

Label 800.3.p.n.257.2
Level $800$
Weight $3$
Character 800.257
Analytic conductor $21.798$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,3,Mod(193,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.193");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 800.p (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.7984211488\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.151613669376.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 7x^{4} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 5^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 257.2
Root \(0.662382 + 1.88713i\) of defining polynomial
Character \(\chi\) \(=\) 800.257
Dual form 800.3.p.n.193.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.54951 + 1.54951i) q^{3} +(-2.00000 - 2.00000i) q^{7} +4.19804i q^{9} +1.10347 q^{11} +(-10.0405 + 10.0405i) q^{13} +(-3.91678 - 3.91678i) q^{17} -23.3914i q^{19} +6.19804 q^{21} +(5.29706 - 5.29706i) q^{23} +(-20.4505 - 20.4505i) q^{27} +32.5941i q^{29} +42.3690 q^{31} +(-1.70984 + 1.70984i) q^{33} +(-22.2880 - 22.2880i) q^{37} -31.1157i q^{39} -15.0000 q^{41} +(-32.5941 + 32.5941i) q^{43} +(-55.2971 - 55.2971i) q^{47} -41.0000i q^{49} +12.1382 q^{51} +(-16.6613 + 16.6613i) q^{53} +(36.2452 + 36.2452i) q^{57} -111.440i q^{59} +5.40588 q^{61} +(8.39608 - 8.39608i) q^{63} +(-36.0544 - 36.0544i) q^{67} +16.4157i q^{69} +71.2777 q^{71} +(93.0686 - 93.0686i) q^{73} +(-2.20694 - 2.20694i) q^{77} -118.061i q^{79} +25.5941 q^{81} +(-6.64853 + 6.64853i) q^{83} +(-50.5049 - 50.5049i) q^{87} -126.782i q^{89} +40.1620 q^{91} +(-65.6511 + 65.6511i) q^{93} +(73.4847 + 73.4847i) q^{97} +4.63242i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{3} - 16 q^{7} - 32 q^{21} - 80 q^{23} - 184 q^{27} - 120 q^{41} - 16 q^{43} - 320 q^{47} + 288 q^{61} - 96 q^{63} - 472 q^{67} - 40 q^{81} + 8 q^{83} - 608 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.54951 + 1.54951i −0.516503 + 0.516503i −0.916512 0.400008i \(-0.869007\pi\)
0.400008 + 0.916512i \(0.369007\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −2.00000 2.00000i −0.285714 0.285714i 0.549669 0.835383i \(-0.314754\pi\)
−0.835383 + 0.549669i \(0.814754\pi\)
\(8\) 0 0
\(9\) 4.19804i 0.466449i
\(10\) 0 0
\(11\) 1.10347 0.100316 0.0501578 0.998741i \(-0.484028\pi\)
0.0501578 + 0.998741i \(0.484028\pi\)
\(12\) 0 0
\(13\) −10.0405 + 10.0405i −0.772347 + 0.772347i −0.978516 0.206170i \(-0.933900\pi\)
0.206170 + 0.978516i \(0.433900\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.91678 3.91678i −0.230399 0.230399i 0.582460 0.812859i \(-0.302090\pi\)
−0.812859 + 0.582460i \(0.802090\pi\)
\(18\) 0 0
\(19\) 23.3914i 1.23113i −0.788087 0.615564i \(-0.788928\pi\)
0.788087 0.615564i \(-0.211072\pi\)
\(20\) 0 0
\(21\) 6.19804 0.295145
\(22\) 0 0
\(23\) 5.29706 5.29706i 0.230307 0.230307i −0.582514 0.812821i \(-0.697931\pi\)
0.812821 + 0.582514i \(0.197931\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −20.4505 20.4505i −0.757426 0.757426i
\(28\) 0 0
\(29\) 32.5941i 1.12394i 0.827159 + 0.561968i \(0.189955\pi\)
−0.827159 + 0.561968i \(0.810045\pi\)
\(30\) 0 0
\(31\) 42.3690 1.36674 0.683370 0.730072i \(-0.260513\pi\)
0.683370 + 0.730072i \(0.260513\pi\)
\(32\) 0 0
\(33\) −1.70984 + 1.70984i −0.0518133 + 0.0518133i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −22.2880 22.2880i −0.602377 0.602377i 0.338566 0.940943i \(-0.390058\pi\)
−0.940943 + 0.338566i \(0.890058\pi\)
\(38\) 0 0
\(39\) 31.1157i 0.797839i
\(40\) 0 0
\(41\) −15.0000 −0.365854 −0.182927 0.983127i \(-0.558557\pi\)
−0.182927 + 0.983127i \(0.558557\pi\)
\(42\) 0 0
\(43\) −32.5941 + 32.5941i −0.758003 + 0.758003i −0.975959 0.217956i \(-0.930061\pi\)
0.217956 + 0.975959i \(0.430061\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −55.2971 55.2971i −1.17653 1.17653i −0.980622 0.195912i \(-0.937233\pi\)
−0.195912 0.980622i \(-0.562767\pi\)
\(48\) 0 0
\(49\) 41.0000i 0.836735i
\(50\) 0 0
\(51\) 12.1382 0.238004
\(52\) 0 0
\(53\) −16.6613 + 16.6613i −0.314365 + 0.314365i −0.846598 0.532233i \(-0.821353\pi\)
0.532233 + 0.846598i \(0.321353\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 36.2452 + 36.2452i 0.635881 + 0.635881i
\(58\) 0 0
\(59\) 111.440i 1.88881i −0.328785 0.944405i \(-0.606639\pi\)
0.328785 0.944405i \(-0.393361\pi\)
\(60\) 0 0
\(61\) 5.40588 0.0886210 0.0443105 0.999018i \(-0.485891\pi\)
0.0443105 + 0.999018i \(0.485891\pi\)
\(62\) 0 0
\(63\) 8.39608 8.39608i 0.133271 0.133271i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −36.0544 36.0544i −0.538126 0.538126i 0.384853 0.922978i \(-0.374252\pi\)
−0.922978 + 0.384853i \(0.874252\pi\)
\(68\) 0 0
\(69\) 16.4157i 0.237909i
\(70\) 0 0
\(71\) 71.2777 1.00391 0.501956 0.864893i \(-0.332614\pi\)
0.501956 + 0.864893i \(0.332614\pi\)
\(72\) 0 0
\(73\) 93.0686 93.0686i 1.27491 1.27491i 0.331434 0.943478i \(-0.392468\pi\)
0.943478 0.331434i \(-0.107532\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.20694 2.20694i −0.0286616 0.0286616i
\(78\) 0 0
\(79\) 118.061i 1.49444i −0.664578 0.747219i \(-0.731389\pi\)
0.664578 0.747219i \(-0.268611\pi\)
\(80\) 0 0
\(81\) 25.5941 0.315977
\(82\) 0 0
\(83\) −6.64853 + 6.64853i −0.0801028 + 0.0801028i −0.746023 0.665920i \(-0.768039\pi\)
0.665920 + 0.746023i \(0.268039\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −50.5049 50.5049i −0.580516 0.580516i
\(88\) 0 0
\(89\) 126.782i 1.42452i −0.701915 0.712260i \(-0.747672\pi\)
0.701915 0.712260i \(-0.252328\pi\)
\(90\) 0 0
\(91\) 40.1620 0.441341
\(92\) 0 0
\(93\) −65.6511 + 65.6511i −0.705926 + 0.705926i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 73.4847 + 73.4847i 0.757574 + 0.757574i 0.975880 0.218306i \(-0.0700531\pi\)
−0.218306 + 0.975880i \(0.570053\pi\)
\(98\) 0 0
\(99\) 4.63242i 0.0467921i
\(100\) 0 0
\(101\) −22.5941 −0.223704 −0.111852 0.993725i \(-0.535678\pi\)
−0.111852 + 0.993725i \(0.535678\pi\)
\(102\) 0 0
\(103\) −40.7029 + 40.7029i −0.395174 + 0.395174i −0.876527 0.481353i \(-0.840146\pi\)
0.481353 + 0.876527i \(0.340146\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −75.8368 75.8368i −0.708755 0.708755i 0.257519 0.966273i \(-0.417095\pi\)
−0.966273 + 0.257519i \(0.917095\pi\)
\(108\) 0 0
\(109\) 65.4059i 0.600054i 0.953931 + 0.300027i \(0.0969957\pi\)
−0.953931 + 0.300027i \(0.903004\pi\)
\(110\) 0 0
\(111\) 69.0708 0.622260
\(112\) 0 0
\(113\) 95.2755 95.2755i 0.843146 0.843146i −0.146120 0.989267i \(-0.546679\pi\)
0.989267 + 0.146120i \(0.0466787\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −42.1504 42.1504i −0.360260 0.360260i
\(118\) 0 0
\(119\) 15.6671i 0.131657i
\(120\) 0 0
\(121\) −119.782 −0.989937
\(122\) 0 0
\(123\) 23.2426 23.2426i 0.188965 0.188965i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −23.8912 23.8912i −0.188119 0.188119i 0.606763 0.794883i \(-0.292468\pi\)
−0.794883 + 0.606763i \(0.792468\pi\)
\(128\) 0 0
\(129\) 101.010i 0.783022i
\(130\) 0 0
\(131\) 66.8639 0.510411 0.255206 0.966887i \(-0.417857\pi\)
0.255206 + 0.966887i \(0.417857\pi\)
\(132\) 0 0
\(133\) −46.7829 + 46.7829i −0.351751 + 0.351751i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −54.1193 54.1193i −0.395031 0.395031i 0.481445 0.876476i \(-0.340112\pi\)
−0.876476 + 0.481445i \(0.840112\pi\)
\(138\) 0 0
\(139\) 83.6345i 0.601687i −0.953674 0.300843i \(-0.902732\pi\)
0.953674 0.300843i \(-0.0972681\pi\)
\(140\) 0 0
\(141\) 171.367 1.21537
\(142\) 0 0
\(143\) −11.0794 + 11.0794i −0.0774784 + 0.0774784i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 63.5299 + 63.5299i 0.432176 + 0.432176i
\(148\) 0 0
\(149\) 242.971i 1.63068i 0.578986 + 0.815338i \(0.303449\pi\)
−0.578986 + 0.815338i \(0.696551\pi\)
\(150\) 0 0
\(151\) −274.295 −1.81652 −0.908261 0.418404i \(-0.862590\pi\)
−0.908261 + 0.418404i \(0.862590\pi\)
\(152\) 0 0
\(153\) 16.4428 16.4428i 0.107469 0.107469i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −88.1576 88.1576i −0.561513 0.561513i 0.368224 0.929737i \(-0.379966\pi\)
−0.929737 + 0.368224i \(0.879966\pi\)
\(158\) 0 0
\(159\) 51.6338i 0.324741i
\(160\) 0 0
\(161\) −21.1882 −0.131604
\(162\) 0 0
\(163\) 34.4309 34.4309i 0.211232 0.211232i −0.593558 0.804791i \(-0.702277\pi\)
0.804791 + 0.593558i \(0.202277\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 153.674 + 153.674i 0.920201 + 0.920201i 0.997043 0.0768425i \(-0.0244839\pi\)
−0.0768425 + 0.997043i \(0.524484\pi\)
\(168\) 0 0
\(169\) 32.6235i 0.193039i
\(170\) 0 0
\(171\) 98.1981 0.574258
\(172\) 0 0
\(173\) −182.718 + 182.718i −1.05617 + 1.05617i −0.0578451 + 0.998326i \(0.518423\pi\)
−0.998326 + 0.0578451i \(0.981577\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 172.677 + 172.677i 0.975576 + 0.975576i
\(178\) 0 0
\(179\) 241.857i 1.35116i 0.737288 + 0.675578i \(0.236106\pi\)
−0.737288 + 0.675578i \(0.763894\pi\)
\(180\) 0 0
\(181\) −111.188 −0.614300 −0.307150 0.951661i \(-0.599375\pi\)
−0.307150 + 0.951661i \(0.599375\pi\)
\(182\) 0 0
\(183\) −8.37647 + 8.37647i −0.0457731 + 0.0457731i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −4.32206 4.32206i −0.0231126 0.0231126i
\(188\) 0 0
\(189\) 81.8020i 0.432815i
\(190\) 0 0
\(191\) −42.3690 −0.221827 −0.110914 0.993830i \(-0.535378\pi\)
−0.110914 + 0.993830i \(0.535378\pi\)
\(192\) 0 0
\(193\) −11.7503 + 11.7503i −0.0608826 + 0.0608826i −0.736893 0.676010i \(-0.763708\pi\)
0.676010 + 0.736893i \(0.263708\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −152.815 152.815i −0.775708 0.775708i 0.203390 0.979098i \(-0.434804\pi\)
−0.979098 + 0.203390i \(0.934804\pi\)
\(198\) 0 0
\(199\) 209.638i 1.05346i 0.850034 + 0.526728i \(0.176581\pi\)
−0.850034 + 0.526728i \(0.823419\pi\)
\(200\) 0 0
\(201\) 111.733 0.555887
\(202\) 0 0
\(203\) 65.1882 65.1882i 0.321124 0.321124i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 22.2373 + 22.2373i 0.107426 + 0.107426i
\(208\) 0 0
\(209\) 25.8118i 0.123501i
\(210\) 0 0
\(211\) −257.087 −1.21842 −0.609211 0.793008i \(-0.708514\pi\)
−0.609211 + 0.793008i \(0.708514\pi\)
\(212\) 0 0
\(213\) −110.446 + 110.446i −0.518524 + 0.518524i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −84.7379 84.7379i −0.390497 0.390497i
\(218\) 0 0
\(219\) 288.421i 1.31699i
\(220\) 0 0
\(221\) 78.6529 0.355896
\(222\) 0 0
\(223\) −117.406 + 117.406i −0.526484 + 0.526484i −0.919522 0.393038i \(-0.871424\pi\)
0.393038 + 0.919522i \(0.371424\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 171.188 + 171.188i 0.754133 + 0.754133i 0.975248 0.221115i \(-0.0709695\pi\)
−0.221115 + 0.975248i \(0.570969\pi\)
\(228\) 0 0
\(229\) 139.565i 0.609453i 0.952440 + 0.304726i \(0.0985650\pi\)
−0.952440 + 0.304726i \(0.901435\pi\)
\(230\) 0 0
\(231\) 6.83936 0.0296076
\(232\) 0 0
\(233\) 167.050 167.050i 0.716954 0.716954i −0.251026 0.967980i \(-0.580768\pi\)
0.967980 + 0.251026i \(0.0807679\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 182.936 + 182.936i 0.771882 + 0.771882i
\(238\) 0 0
\(239\) 186.913i 0.782062i 0.920377 + 0.391031i \(0.127882\pi\)
−0.920377 + 0.391031i \(0.872118\pi\)
\(240\) 0 0
\(241\) 170.406 0.707078 0.353539 0.935420i \(-0.384978\pi\)
0.353539 + 0.935420i \(0.384978\pi\)
\(242\) 0 0
\(243\) 144.396 144.396i 0.594223 0.594223i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 234.862 + 234.862i 0.950857 + 0.950857i
\(248\) 0 0
\(249\) 20.6039i 0.0827467i
\(250\) 0 0
\(251\) 7.94283 0.0316447 0.0158224 0.999875i \(-0.494963\pi\)
0.0158224 + 0.999875i \(0.494963\pi\)
\(252\) 0 0
\(253\) 5.84515 5.84515i 0.0231034 0.0231034i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 69.0708 + 69.0708i 0.268758 + 0.268758i 0.828600 0.559842i \(-0.189138\pi\)
−0.559842 + 0.828600i \(0.689138\pi\)
\(258\) 0 0
\(259\) 89.1518i 0.344216i
\(260\) 0 0
\(261\) −136.831 −0.524258
\(262\) 0 0
\(263\) 262.268 262.268i 0.997215 0.997215i −0.00278076 0.999996i \(-0.500885\pi\)
0.999996 + 0.00278076i \(0.000885144\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 196.450 + 196.450i 0.735770 + 0.735770i
\(268\) 0 0
\(269\) 196.753i 0.731424i −0.930728 0.365712i \(-0.880826\pi\)
0.930728 0.365712i \(-0.119174\pi\)
\(270\) 0 0
\(271\) −345.136 −1.27356 −0.636781 0.771044i \(-0.719735\pi\)
−0.636781 + 0.771044i \(0.719735\pi\)
\(272\) 0 0
\(273\) −62.2314 + 62.2314i −0.227954 + 0.227954i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −210.414 210.414i −0.759616 0.759616i 0.216637 0.976252i \(-0.430491\pi\)
−0.976252 + 0.216637i \(0.930491\pi\)
\(278\) 0 0
\(279\) 177.867i 0.637515i
\(280\) 0 0
\(281\) −515.941 −1.83609 −0.918045 0.396477i \(-0.870233\pi\)
−0.918045 + 0.396477i \(0.870233\pi\)
\(282\) 0 0
\(283\) −170.916 + 170.916i −0.603944 + 0.603944i −0.941357 0.337413i \(-0.890448\pi\)
0.337413 + 0.941357i \(0.390448\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 30.0000 + 30.0000i 0.104530 + 0.104530i
\(288\) 0 0
\(289\) 258.318i 0.893833i
\(290\) 0 0
\(291\) −227.730 −0.782579
\(292\) 0 0
\(293\) 265.249 265.249i 0.905285 0.905285i −0.0906021 0.995887i \(-0.528879\pi\)
0.995887 + 0.0906021i \(0.0288792\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −22.5665 22.5665i −0.0759816 0.0759816i
\(298\) 0 0
\(299\) 106.370i 0.355754i
\(300\) 0 0
\(301\) 130.376 0.433144
\(302\) 0 0
\(303\) 35.0098 35.0098i 0.115544 0.115544i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 231.243 + 231.243i 0.753233 + 0.753233i 0.975081 0.221848i \(-0.0712088\pi\)
−0.221848 + 0.975081i \(0.571209\pi\)
\(308\) 0 0
\(309\) 126.139i 0.408218i
\(310\) 0 0
\(311\) 55.3921 0.178110 0.0890548 0.996027i \(-0.471615\pi\)
0.0890548 + 0.996027i \(0.471615\pi\)
\(312\) 0 0
\(313\) 91.5773 91.5773i 0.292579 0.292579i −0.545519 0.838098i \(-0.683667\pi\)
0.838098 + 0.545519i \(0.183667\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 309.606 + 309.606i 0.976675 + 0.976675i 0.999734 0.0230593i \(-0.00734067\pi\)
−0.0230593 + 0.999734i \(0.507341\pi\)
\(318\) 0 0
\(319\) 35.9667i 0.112748i
\(320\) 0 0
\(321\) 235.020 0.732148
\(322\) 0 0
\(323\) −91.6191 + 91.6191i −0.283651 + 0.283651i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −101.347 101.347i −0.309930 0.309930i
\(328\) 0 0
\(329\) 221.188i 0.672305i
\(330\) 0 0
\(331\) −370.952 −1.12070 −0.560351 0.828255i \(-0.689334\pi\)
−0.560351 + 0.828255i \(0.689334\pi\)
\(332\) 0 0
\(333\) 93.5657 93.5657i 0.280978 0.280978i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 97.2640 + 97.2640i 0.288617 + 0.288617i 0.836533 0.547916i \(-0.184579\pi\)
−0.547916 + 0.836533i \(0.684579\pi\)
\(338\) 0 0
\(339\) 295.261i 0.870976i
\(340\) 0 0
\(341\) 46.7529 0.137105
\(342\) 0 0
\(343\) −180.000 + 180.000i −0.524781 + 0.524781i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −145.243 145.243i −0.418567 0.418567i 0.466143 0.884709i \(-0.345643\pi\)
−0.884709 + 0.466143i \(0.845643\pi\)
\(348\) 0 0
\(349\) 24.2176i 0.0693915i −0.999398 0.0346958i \(-0.988954\pi\)
0.999398 0.0346958i \(-0.0110462\pi\)
\(350\) 0 0
\(351\) 410.667 1.16999
\(352\) 0 0
\(353\) −95.5541 + 95.5541i −0.270692 + 0.270692i −0.829379 0.558687i \(-0.811305\pi\)
0.558687 + 0.829379i \(0.311305\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −24.2764 24.2764i −0.0680010 0.0680010i
\(358\) 0 0
\(359\) 466.277i 1.29882i 0.760438 + 0.649411i \(0.224985\pi\)
−0.760438 + 0.649411i \(0.775015\pi\)
\(360\) 0 0
\(361\) −186.159 −0.515675
\(362\) 0 0
\(363\) 185.604 185.604i 0.511306 0.511306i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 244.971 + 244.971i 0.667495 + 0.667495i 0.957135 0.289641i \(-0.0935358\pi\)
−0.289641 + 0.957135i \(0.593536\pi\)
\(368\) 0 0
\(369\) 62.9706i 0.170652i
\(370\) 0 0
\(371\) 66.6453 0.179637
\(372\) 0 0
\(373\) 159.217 159.217i 0.426855 0.426855i −0.460701 0.887556i \(-0.652402\pi\)
0.887556 + 0.460701i \(0.152402\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −327.261 327.261i −0.868067 0.868067i
\(378\) 0 0
\(379\) 515.933i 1.36130i −0.732608 0.680651i \(-0.761697\pi\)
0.732608 0.680651i \(-0.238303\pi\)
\(380\) 0 0
\(381\) 74.0392 0.194329
\(382\) 0 0
\(383\) 343.941 343.941i 0.898019 0.898019i −0.0972420 0.995261i \(-0.531002\pi\)
0.995261 + 0.0972420i \(0.0310021\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −136.831 136.831i −0.353569 0.353569i
\(388\) 0 0
\(389\) 537.565i 1.38191i −0.722896 0.690957i \(-0.757189\pi\)
0.722896 0.690957i \(-0.242811\pi\)
\(390\) 0 0
\(391\) −41.4948 −0.106125
\(392\) 0 0
\(393\) −103.606 + 103.606i −0.263629 + 0.263629i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 289.525 + 289.525i 0.729282 + 0.729282i 0.970477 0.241195i \(-0.0775393\pi\)
−0.241195 + 0.970477i \(0.577539\pi\)
\(398\) 0 0
\(399\) 144.981i 0.363361i
\(400\) 0 0
\(401\) 441.912 1.10202 0.551012 0.834497i \(-0.314242\pi\)
0.551012 + 0.834497i \(0.314242\pi\)
\(402\) 0 0
\(403\) −425.406 + 425.406i −1.05560 + 1.05560i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −24.5941 24.5941i −0.0604278 0.0604278i
\(408\) 0 0
\(409\) 492.565i 1.20431i 0.798377 + 0.602157i \(0.205692\pi\)
−0.798377 + 0.602157i \(0.794308\pi\)
\(410\) 0 0
\(411\) 167.717 0.408070
\(412\) 0 0
\(413\) −222.880 + 222.880i −0.539660 + 0.539660i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 129.592 + 129.592i 0.310773 + 0.310773i
\(418\) 0 0
\(419\) 404.712i 0.965900i −0.875648 0.482950i \(-0.839565\pi\)
0.875648 0.482950i \(-0.160435\pi\)
\(420\) 0 0
\(421\) −731.882 −1.73844 −0.869219 0.494427i \(-0.835378\pi\)
−0.869219 + 0.494427i \(0.835378\pi\)
\(422\) 0 0
\(423\) 232.139 232.139i 0.548792 0.548792i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −10.8118 10.8118i −0.0253203 0.0253203i
\(428\) 0 0
\(429\) 34.3353i 0.0800357i
\(430\) 0 0
\(431\) 117.624 0.272908 0.136454 0.990646i \(-0.456429\pi\)
0.136454 + 0.990646i \(0.456429\pi\)
\(432\) 0 0
\(433\) −558.909 + 558.909i −1.29078 + 1.29078i −0.356479 + 0.934303i \(0.616023\pi\)
−0.934303 + 0.356479i \(0.883977\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −123.906 123.906i −0.283537 0.283537i
\(438\) 0 0
\(439\) 570.441i 1.29941i −0.760187 0.649704i \(-0.774893\pi\)
0.760187 0.649704i \(-0.225107\pi\)
\(440\) 0 0
\(441\) 172.120 0.390294
\(442\) 0 0
\(443\) 159.569 159.569i 0.360201 0.360201i −0.503686 0.863887i \(-0.668023\pi\)
0.863887 + 0.503686i \(0.168023\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −376.485 376.485i −0.842249 0.842249i
\(448\) 0 0
\(449\) 640.665i 1.42687i 0.700721 + 0.713435i \(0.252862\pi\)
−0.700721 + 0.713435i \(0.747138\pi\)
\(450\) 0 0
\(451\) −16.5521 −0.0367008
\(452\) 0 0
\(453\) 425.022 425.022i 0.938240 0.938240i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −344.638 344.638i −0.754132 0.754132i 0.221115 0.975248i \(-0.429030\pi\)
−0.975248 + 0.221115i \(0.929030\pi\)
\(458\) 0 0
\(459\) 160.200i 0.349020i
\(460\) 0 0
\(461\) 475.565 1.03159 0.515797 0.856711i \(-0.327496\pi\)
0.515797 + 0.856711i \(0.327496\pi\)
\(462\) 0 0
\(463\) −330.159 + 330.159i −0.713086 + 0.713086i −0.967180 0.254094i \(-0.918223\pi\)
0.254094 + 0.967180i \(0.418223\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −291.724 291.724i −0.624676 0.624676i 0.322048 0.946723i \(-0.395629\pi\)
−0.946723 + 0.322048i \(0.895629\pi\)
\(468\) 0 0
\(469\) 144.218i 0.307500i
\(470\) 0 0
\(471\) 273.202 0.580047
\(472\) 0 0
\(473\) −35.9667 + 35.9667i −0.0760395 + 0.0760395i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −69.9449 69.9449i −0.146635 0.146635i
\(478\) 0 0
\(479\) 100.624i 0.210070i 0.994469 + 0.105035i \(0.0334955\pi\)
−0.994469 + 0.105035i \(0.966505\pi\)
\(480\) 0 0
\(481\) 447.565 0.930488
\(482\) 0 0
\(483\) 32.8314 32.8314i 0.0679739 0.0679739i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −385.297 385.297i −0.791164 0.791164i 0.190519 0.981683i \(-0.438983\pi\)
−0.981683 + 0.190519i \(0.938983\pi\)
\(488\) 0 0
\(489\) 106.702i 0.218204i
\(490\) 0 0
\(491\) 454.368 0.925394 0.462697 0.886517i \(-0.346882\pi\)
0.462697 + 0.886517i \(0.346882\pi\)
\(492\) 0 0
\(493\) 127.664 127.664i 0.258953 0.258953i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −142.555 142.555i −0.286832 0.286832i
\(498\) 0 0
\(499\) 753.158i 1.50933i −0.656108 0.754667i \(-0.727798\pi\)
0.656108 0.754667i \(-0.272202\pi\)
\(500\) 0 0
\(501\) −476.237 −0.950573
\(502\) 0 0
\(503\) −450.694 + 450.694i −0.896012 + 0.896012i −0.995081 0.0990685i \(-0.968414\pi\)
0.0990685 + 0.995081i \(0.468414\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 50.5505 + 50.5505i 0.0997051 + 0.0997051i
\(508\) 0 0
\(509\) 332.812i 0.653854i −0.945050 0.326927i \(-0.893987\pi\)
0.945050 0.326927i \(-0.106013\pi\)
\(510\) 0 0
\(511\) −372.274 −0.728521
\(512\) 0 0
\(513\) −478.366 + 478.366i −0.932488 + 0.932488i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −61.0187 61.0187i −0.118025 0.118025i
\(518\) 0 0
\(519\) 566.245i 1.09103i
\(520\) 0 0
\(521\) −976.506 −1.87429 −0.937146 0.348938i \(-0.886542\pi\)
−0.937146 + 0.348938i \(0.886542\pi\)
\(522\) 0 0
\(523\) −530.649 + 530.649i −1.01462 + 1.01462i −0.0147329 + 0.999891i \(0.504690\pi\)
−0.999891 + 0.0147329i \(0.995310\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −165.950 165.950i −0.314896 0.314896i
\(528\) 0 0
\(529\) 472.882i 0.893917i
\(530\) 0 0
\(531\) 467.829 0.881033
\(532\) 0 0
\(533\) 150.608 150.608i 0.282566 0.282566i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −374.760 374.760i −0.697877 0.697877i
\(538\) 0 0
\(539\) 45.2423i 0.0839375i
\(540\) 0 0
\(541\) 558.259 1.03190 0.515951 0.856618i \(-0.327439\pi\)
0.515951 + 0.856618i \(0.327439\pi\)
\(542\) 0 0
\(543\) 172.287 172.287i 0.317288 0.317288i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −572.857 572.857i −1.04727 1.04727i −0.998826 0.0484454i \(-0.984573\pi\)
−0.0484454 0.998826i \(-0.515427\pi\)
\(548\) 0 0
\(549\) 22.6941i 0.0413372i
\(550\) 0 0
\(551\) 762.423 1.38371
\(552\) 0 0
\(553\) −236.121 + 236.121i −0.426982 + 0.426982i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 693.909 + 693.909i 1.24580 + 1.24580i 0.957558 + 0.288239i \(0.0930698\pi\)
0.288239 + 0.957558i \(0.406930\pi\)
\(558\) 0 0
\(559\) 654.523i 1.17088i
\(560\) 0 0
\(561\) 13.3941 0.0238755
\(562\) 0 0
\(563\) 709.347 709.347i 1.25994 1.25994i 0.308821 0.951120i \(-0.400065\pi\)
0.951120 0.308821i \(-0.0999346\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −51.1882 51.1882i −0.0902791 0.0902791i
\(568\) 0 0
\(569\) 19.8706i 0.0349220i 0.999848 + 0.0174610i \(0.00555828\pi\)
−0.999848 + 0.0174610i \(0.994442\pi\)
\(570\) 0 0
\(571\) −445.104 −0.779516 −0.389758 0.920917i \(-0.627441\pi\)
−0.389758 + 0.920917i \(0.627441\pi\)
\(572\) 0 0
\(573\) 65.6511 65.6511i 0.114574 0.114574i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 401.462 + 401.462i 0.695774 + 0.695774i 0.963496 0.267722i \(-0.0862709\pi\)
−0.267722 + 0.963496i \(0.586271\pi\)
\(578\) 0 0
\(579\) 36.4146i 0.0628921i
\(580\) 0 0
\(581\) 26.5941 0.0457730
\(582\) 0 0
\(583\) −18.3853 + 18.3853i −0.0315357 + 0.0315357i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −356.649 356.649i −0.607578 0.607578i 0.334734 0.942313i \(-0.391353\pi\)
−0.942313 + 0.334734i \(0.891353\pi\)
\(588\) 0 0
\(589\) 991.071i 1.68263i
\(590\) 0 0
\(591\) 473.575 0.801312
\(592\) 0 0
\(593\) −209.916 + 209.916i −0.353991 + 0.353991i −0.861592 0.507601i \(-0.830532\pi\)
0.507601 + 0.861592i \(0.330532\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −324.836 324.836i −0.544114 0.544114i
\(598\) 0 0
\(599\) 880.702i 1.47029i −0.677911 0.735144i \(-0.737115\pi\)
0.677911 0.735144i \(-0.262885\pi\)
\(600\) 0 0
\(601\) 580.665 0.966164 0.483082 0.875575i \(-0.339517\pi\)
0.483082 + 0.875575i \(0.339517\pi\)
\(602\) 0 0
\(603\) 151.358 151.358i 0.251008 0.251008i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 81.1882 + 81.1882i 0.133753 + 0.133753i 0.770814 0.637061i \(-0.219850\pi\)
−0.637061 + 0.770814i \(0.719850\pi\)
\(608\) 0 0
\(609\) 202.020i 0.331723i
\(610\) 0 0
\(611\) 1110.42 1.81738
\(612\) 0 0
\(613\) 756.359 756.359i 1.23386 1.23386i 0.271398 0.962467i \(-0.412514\pi\)
0.962467 0.271398i \(-0.0874858\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −614.798 614.798i −0.996431 0.996431i 0.00356268 0.999994i \(-0.498866\pi\)
−0.999994 + 0.00356268i \(0.998866\pi\)
\(618\) 0 0
\(619\) 231.052i 0.373266i −0.982430 0.186633i \(-0.940242\pi\)
0.982430 0.186633i \(-0.0597575\pi\)
\(620\) 0 0
\(621\) −216.655 −0.348881
\(622\) 0 0
\(623\) −253.565 + 253.565i −0.407006 + 0.407006i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 39.9956 + 39.9956i 0.0637888 + 0.0637888i
\(628\) 0 0
\(629\) 174.594i 0.277574i
\(630\) 0 0
\(631\) −1058.79 −1.67795 −0.838976 0.544169i \(-0.816845\pi\)
−0.838976 + 0.544169i \(0.816845\pi\)
\(632\) 0 0
\(633\) 398.359 398.359i 0.629319 0.629319i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 411.661 + 411.661i 0.646249 + 0.646249i
\(638\) 0 0
\(639\) 299.227i 0.468274i
\(640\) 0 0
\(641\) 434.318 0.677563 0.338781 0.940865i \(-0.389985\pi\)
0.338781 + 0.940865i \(0.389985\pi\)
\(642\) 0 0
\(643\) −130.653 + 130.653i −0.203193 + 0.203193i −0.801366 0.598174i \(-0.795893\pi\)
0.598174 + 0.801366i \(0.295893\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −524.753 524.753i −0.811056 0.811056i 0.173737 0.984792i \(-0.444416\pi\)
−0.984792 + 0.173737i \(0.944416\pi\)
\(648\) 0 0
\(649\) 122.971i 0.189477i
\(650\) 0 0
\(651\) 262.605 0.403386
\(652\) 0 0
\(653\) −182.499 + 182.499i −0.279478 + 0.279478i −0.832901 0.553423i \(-0.813321\pi\)
0.553423 + 0.832901i \(0.313321\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 390.706 + 390.706i 0.594681 + 0.594681i
\(658\) 0 0
\(659\) 20.5289i 0.0311516i 0.999879 + 0.0155758i \(0.00495813\pi\)
−0.999879 + 0.0155758i \(0.995042\pi\)
\(660\) 0 0
\(661\) −662.971 −1.00298 −0.501491 0.865163i \(-0.667215\pi\)
−0.501491 + 0.865163i \(0.667215\pi\)
\(662\) 0 0
\(663\) −121.874 + 121.874i −0.183821 + 0.183821i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 172.653 + 172.653i 0.258850 + 0.258850i
\(668\) 0 0
\(669\) 363.843i 0.543861i
\(670\) 0 0
\(671\) 5.96524 0.00889007
\(672\) 0 0
\(673\) 31.7713 31.7713i 0.0472085 0.0472085i −0.683108 0.730317i \(-0.739372\pi\)
0.730317 + 0.683108i \(0.239372\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 740.135 + 740.135i 1.09326 + 1.09326i 0.995179 + 0.0980782i \(0.0312695\pi\)
0.0980782 + 0.995179i \(0.468730\pi\)
\(678\) 0 0
\(679\) 293.939i 0.432900i
\(680\) 0 0
\(681\) −530.516 −0.779024
\(682\) 0 0
\(683\) 14.9750 14.9750i 0.0219253 0.0219253i −0.696059 0.717984i \(-0.745065\pi\)
0.717984 + 0.696059i \(0.245065\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −216.257 216.257i −0.314784 0.314784i
\(688\) 0 0
\(689\) 334.576i 0.485597i
\(690\) 0 0
\(691\) −203.028 −0.293817 −0.146909 0.989150i \(-0.546932\pi\)
−0.146909 + 0.989150i \(0.546932\pi\)
\(692\) 0 0
\(693\) 9.26483 9.26483i 0.0133692 0.0133692i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 58.7517 + 58.7517i 0.0842923 + 0.0842923i
\(698\) 0 0
\(699\) 517.692i 0.740619i
\(700\) 0 0
\(701\) 624.594 0.891004 0.445502 0.895281i \(-0.353025\pi\)
0.445502 + 0.895281i \(0.353025\pi\)
\(702\) 0 0
\(703\) −521.347 + 521.347i −0.741603 + 0.741603i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 45.1882 + 45.1882i 0.0639155 + 0.0639155i
\(708\) 0 0
\(709\) 925.506i 1.30537i −0.757630 0.652684i \(-0.773643\pi\)
0.757630 0.652684i \(-0.226357\pi\)
\(710\) 0 0
\(711\) 495.623 0.697079
\(712\) 0 0
\(713\) 224.431 224.431i 0.314770 0.314770i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −289.623 289.623i −0.403938 0.403938i
\(718\) 0 0
\(719\) 487.472i 0.677987i 0.940789 + 0.338993i \(0.110086\pi\)
−0.940789 + 0.338993i \(0.889914\pi\)
\(720\) 0 0
\(721\) 162.812 0.225814
\(722\) 0 0
\(723\) −264.046 + 264.046i −0.365208 + 0.365208i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 98.5441 + 98.5441i 0.135549 + 0.135549i 0.771626 0.636077i \(-0.219444\pi\)
−0.636077 + 0.771626i \(0.719444\pi\)
\(728\) 0 0
\(729\) 677.833i 0.929813i
\(730\) 0 0
\(731\) 255.328 0.349286
\(732\) 0 0
\(733\) −132.515 + 132.515i −0.180784 + 0.180784i −0.791698 0.610913i \(-0.790802\pi\)
0.610913 + 0.791698i \(0.290802\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −39.7850 39.7850i −0.0539824 0.0539824i
\(738\) 0 0
\(739\) 543.957i 0.736072i −0.929812 0.368036i \(-0.880030\pi\)
0.929812 0.368036i \(-0.119970\pi\)
\(740\) 0 0
\(741\) −727.841 −0.982242
\(742\) 0 0
\(743\) 447.991 447.991i 0.602949 0.602949i −0.338145 0.941094i \(-0.609799\pi\)
0.941094 + 0.338145i \(0.109799\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −27.9108 27.9108i −0.0373638 0.0373638i
\(748\) 0 0
\(749\) 303.347i 0.405003i
\(750\) 0 0
\(751\) −981.326 −1.30669 −0.653346 0.757059i \(-0.726635\pi\)
−0.653346 + 0.757059i \(0.726635\pi\)
\(752\) 0 0
\(753\) −12.3075 + 12.3075i −0.0163446 + 0.0163446i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −965.003 965.003i −1.27477 1.27477i −0.943554 0.331219i \(-0.892540\pi\)
−0.331219 0.943554i \(-0.607460\pi\)
\(758\) 0 0
\(759\) 18.1142i 0.0238659i
\(760\) 0 0
\(761\) −459.494 −0.603803 −0.301902 0.953339i \(-0.597621\pi\)
−0.301902 + 0.953339i \(0.597621\pi\)
\(762\) 0 0
\(763\) 130.812 130.812i 0.171444 0.171444i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1118.91 + 1118.91i 1.45882 + 1.45882i
\(768\) 0 0
\(769\) 757.535i 0.985091i −0.870287 0.492546i \(-0.836066\pi\)
0.870287 0.492546i \(-0.163934\pi\)
\(770\) 0 0
\(771\) −214.052 −0.277629
\(772\) 0 0
\(773\) 285.887 285.887i 0.369840 0.369840i −0.497578 0.867419i \(-0.665777\pi\)
0.867419 + 0.497578i \(0.165777\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −138.142 138.142i −0.177788 0.177788i
\(778\) 0 0
\(779\) 350.871i 0.450413i
\(780\) 0 0
\(781\) 78.6529 0.100708
\(782\) 0 0
\(783\) 666.566 666.566i 0.851297 0.851297i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −320.159 320.159i −0.406809 0.406809i 0.473815 0.880624i \(-0.342876\pi\)
−0.880624 + 0.473815i \(0.842876\pi\)
\(788\) 0 0
\(789\) 812.773i 1.03013i
\(790\) 0 0
\(791\) −381.102 −0.481798
\(792\) 0 0
\(793\) −54.2778 + 54.2778i −0.0684462 + 0.0684462i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 587.757 + 587.757i 0.737462 + 0.737462i 0.972086 0.234624i \(-0.0753859\pi\)
−0.234624 + 0.972086i \(0.575386\pi\)
\(798\) 0 0
\(799\) 433.173i 0.542144i
\(800\) 0 0
\(801\) 532.237 0.664466
\(802\) 0 0
\(803\) 102.699 102.699i 0.127894 0.127894i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 304.871 + 304.871i 0.377783 + 0.377783i
\(808\) 0 0
\(809\) 163.941i 0.202647i 0.994854 + 0.101323i \(0.0323077\pi\)
−0.994854 + 0.101323i \(0.967692\pi\)
\(810\) 0 0
\(811\) −1194.07 −1.47234 −0.736169 0.676798i \(-0.763367\pi\)
−0.736169 + 0.676798i \(0.763367\pi\)
\(812\) 0 0
\(813\) 534.791 534.791i 0.657799 0.657799i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 762.423 + 762.423i 0.933198 + 0.933198i
\(818\) 0 0
\(819\) 168.602i 0.205863i
\(820\) 0 0
\(821\) 722.435 0.879946 0.439973 0.898011i \(-0.354988\pi\)
0.439973 + 0.898011i \(0.354988\pi\)
\(822\) 0 0
\(823\) −728.218 + 728.218i −0.884833 + 0.884833i −0.994021 0.109188i \(-0.965175\pi\)
0.109188 + 0.994021i \(0.465175\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 635.560 + 635.560i 0.768513 + 0.768513i 0.977845 0.209332i \(-0.0671288\pi\)
−0.209332 + 0.977845i \(0.567129\pi\)
\(828\) 0 0
\(829\) 1051.61i 1.26852i 0.773118 + 0.634262i \(0.218696\pi\)
−0.773118 + 0.634262i \(0.781304\pi\)
\(830\) 0 0
\(831\) 652.076 0.784688
\(832\) 0 0
\(833\) −160.588 + 160.588i −0.192783 + 0.192783i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −866.466 866.466i −1.03520 1.03520i
\(838\) 0 0
\(839\) 1052.17i 1.25407i 0.778990 + 0.627036i \(0.215732\pi\)
−0.778990 + 0.627036i \(0.784268\pi\)
\(840\) 0 0
\(841\) −221.376 −0.263230
\(842\) 0 0
\(843\) 799.456 799.456i 0.948346 0.948346i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 239.565 + 239.565i 0.282839 + 0.282839i
\(848\) 0 0
\(849\) 529.673i 0.623878i
\(850\) 0 0
\(851\) −236.121 −0.277463
\(852\) 0 0
\(853\) −832.706 + 832.706i −0.976209 + 0.976209i −0.999724 0.0235143i \(-0.992514\pi\)
0.0235143 + 0.999724i \(0.492514\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −492.045 492.045i −0.574148 0.574148i 0.359137 0.933285i \(-0.383071\pi\)
−0.933285 + 0.359137i \(0.883071\pi\)
\(858\) 0 0
\(859\) 362.125i 0.421565i 0.977533 + 0.210783i \(0.0676012\pi\)
−0.977533 + 0.210783i \(0.932399\pi\)
\(860\) 0 0
\(861\) −92.9706 −0.107980
\(862\) 0 0
\(863\) 968.268 968.268i 1.12198 1.12198i 0.130535 0.991444i \(-0.458330\pi\)
0.991444 0.130535i \(-0.0416695\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 400.266 + 400.266i 0.461667 + 0.461667i
\(868\) 0 0
\(869\) 130.276i 0.149915i
\(870\) 0 0
\(871\) 724.009 0.831239
\(872\) 0 0
\(873\) −308.492 + 308.492i −0.353370 + 0.353370i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 198.385 + 198.385i 0.226208 + 0.226208i 0.811107 0.584898i \(-0.198866\pi\)
−0.584898 + 0.811107i \(0.698866\pi\)
\(878\) 0 0
\(879\) 822.010i 0.935165i
\(880\) 0 0
\(881\) −127.306 −0.144502 −0.0722508 0.997386i \(-0.523018\pi\)
−0.0722508 + 0.997386i \(0.523018\pi\)
\(882\) 0 0
\(883\) −711.451 + 711.451i −0.805721 + 0.805721i −0.983983 0.178262i \(-0.942952\pi\)
0.178262 + 0.983983i \(0.442952\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −392.000 392.000i −0.441939 0.441939i 0.450724 0.892663i \(-0.351166\pi\)
−0.892663 + 0.450724i \(0.851166\pi\)
\(888\) 0 0
\(889\) 95.5647i 0.107497i
\(890\) 0 0
\(891\) 28.2424 0.0316974
\(892\) 0 0
\(893\) −1293.48 + 1293.48i −1.44846 + 1.44846i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −164.822 164.822i −0.183748 0.183748i
\(898\) 0 0
\(899\) 1380.98i 1.53613i
\(900\) 0 0
\(901\) 130.518 0.144859
\(902\) 0 0
\(903\) −202.020 + 202.020i −0.223720 + 0.223720i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1259.61 + 1259.61i 1.38876 + 1.38876i 0.827932 + 0.560829i \(0.189517\pi\)
0.560829 + 0.827932i \(0.310483\pi\)
\(908\) 0 0
\(909\) 94.8510i 0.104347i
\(910\) 0 0
\(911\) −770.595 −0.845878 −0.422939 0.906158i \(-0.639002\pi\)
−0.422939 + 0.906158i \(0.639002\pi\)
\(912\) 0 0
\(913\) −7.33646 + 7.33646i −0.00803555 + 0.00803555i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −133.728 133.728i −0.145832 0.145832i
\(918\) 0 0
\(919\) 594.935i 0.647373i 0.946164 + 0.323686i \(0.104922\pi\)
−0.946164 + 0.323686i \(0.895078\pi\)
\(920\) 0 0
\(921\) −716.625 −0.778095
\(922\) 0 0
\(923\) −715.665 + 715.665i −0.775368 + 0.775368i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −170.873 170.873i −0.184329 0.184329i
\(928\) 0 0
\(929\) 68.3765i 0.0736022i 0.999323 + 0.0368011i \(0.0117168\pi\)
−0.999323 + 0.0368011i \(0.988283\pi\)
\(930\) 0 0
\(931\) −959.048 −1.03013
\(932\) 0 0
\(933\) −85.8306 + 85.8306i −0.0919942 + 0.0919942i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 636.370 + 636.370i 0.679157 + 0.679157i 0.959809 0.280652i \(-0.0905508\pi\)
−0.280652 + 0.959809i \(0.590551\pi\)
\(938\) 0 0
\(939\) 283.800i 0.302236i
\(940\) 0 0
\(941\) 690.971 0.734294 0.367147 0.930163i \(-0.380335\pi\)
0.367147 + 0.930163i \(0.380335\pi\)
\(942\) 0 0
\(943\) −79.4559 + 79.4559i −0.0842586 + 0.0842586i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −84.1588 84.1588i −0.0888689 0.0888689i 0.661275 0.750144i \(-0.270016\pi\)
−0.750144 + 0.661275i \(0.770016\pi\)
\(948\) 0 0
\(949\) 1868.91i 1.96935i
\(950\) 0 0
\(951\) −959.475 −1.00891
\(952\) 0 0
\(953\) 1046.60 1046.60i 1.09822 1.09822i 0.103596 0.994619i \(-0.466965\pi\)
0.994619 0.103596i \(-0.0330350\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −55.7307 55.7307i −0.0582348 0.0582348i
\(958\) 0 0
\(959\) 216.477i 0.225732i
\(960\) 0 0
\(961\) 834.129 0.867981
\(962\) 0 0
\(963\) 318.366 318.366i 0.330598 0.330598i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1204.97 + 1204.97i 1.24609 + 1.24609i 0.957432 + 0.288660i \(0.0932097\pi\)
0.288660 + 0.957432i \(0.406790\pi\)
\(968\) 0 0
\(969\) 283.929i 0.293013i
\(970\) 0 0
\(971\) −475.094 −0.489283 −0.244642 0.969614i \(-0.578670\pi\)
−0.244642 + 0.969614i \(0.578670\pi\)
\(972\) 0 0
\(973\) −167.269 + 167.269i −0.171911 + 0.171911i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −452.101 452.101i −0.462744 0.462744i 0.436810 0.899554i \(-0.356108\pi\)
−0.899554 + 0.436810i \(0.856108\pi\)
\(978\) 0 0
\(979\) 139.901i 0.142902i
\(980\) 0 0
\(981\) −274.576 −0.279894
\(982\) 0 0
\(983\) 1014.97 1014.97i 1.03252 1.03252i 0.0330705 0.999453i \(-0.489471\pi\)
0.999453 0.0330705i \(-0.0105286\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −342.733 342.733i −0.347248 0.347248i
\(988\) 0 0
\(989\) 345.306i 0.349147i
\(990\) 0 0
\(991\) −362.135 −0.365424 −0.182712 0.983166i \(-0.558488\pi\)
−0.182712 + 0.983166i \(0.558488\pi\)
\(992\) 0 0
\(993\) 574.794 574.794i 0.578846 0.578846i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −236.121 236.121i −0.236832 0.236832i 0.578705 0.815537i \(-0.303558\pi\)
−0.815537 + 0.578705i \(0.803558\pi\)
\(998\) 0 0
\(999\) 911.599i 0.912512i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.3.p.n.257.2 yes 8
4.3 odd 2 800.3.p.k.257.3 yes 8
5.2 odd 4 800.3.p.k.193.4 yes 8
5.3 odd 4 inner 800.3.p.n.193.2 yes 8
5.4 even 2 800.3.p.k.257.4 yes 8
20.3 even 4 800.3.p.k.193.3 8
20.7 even 4 inner 800.3.p.n.193.1 yes 8
20.19 odd 2 inner 800.3.p.n.257.1 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
800.3.p.k.193.3 8 20.3 even 4
800.3.p.k.193.4 yes 8 5.2 odd 4
800.3.p.k.257.3 yes 8 4.3 odd 2
800.3.p.k.257.4 yes 8 5.4 even 2
800.3.p.n.193.1 yes 8 20.7 even 4 inner
800.3.p.n.193.2 yes 8 5.3 odd 4 inner
800.3.p.n.257.1 yes 8 20.19 odd 2 inner
800.3.p.n.257.2 yes 8 1.1 even 1 trivial