Properties

Label 800.4.a.d
Level 800800
Weight 44
Character orbit 800.a
Self dual yes
Analytic conductor 47.20247.202
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,4,Mod(1,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 800=2552 800 = 2^{5} \cdot 5^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 800.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 47.201528004647.2015280046
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 160)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q2q3+6q723q960q1150q13+30q1740q1912q21+178q23+100q27+166q2920q31+120q3310q37+100q39250q41+142q43++1380q99+O(q100) q - 2 q^{3} + 6 q^{7} - 23 q^{9} - 60 q^{11} - 50 q^{13} + 30 q^{17} - 40 q^{19} - 12 q^{21} + 178 q^{23} + 100 q^{27} + 166 q^{29} - 20 q^{31} + 120 q^{33} - 10 q^{37} + 100 q^{39} - 250 q^{41} + 142 q^{43}+ \cdots + 1380 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 −2.00000 0 0 0 6.00000 0 −23.0000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
55 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 800.4.a.d 1
4.b odd 2 1 800.4.a.h 1
5.b even 2 1 160.4.a.b yes 1
5.c odd 4 2 800.4.c.e 2
8.b even 2 1 1600.4.a.bj 1
8.d odd 2 1 1600.4.a.r 1
15.d odd 2 1 1440.4.a.n 1
20.d odd 2 1 160.4.a.a 1
20.e even 4 2 800.4.c.f 2
40.e odd 2 1 320.4.a.i 1
40.f even 2 1 320.4.a.f 1
60.h even 2 1 1440.4.a.o 1
80.k odd 4 2 1280.4.d.f 2
80.q even 4 2 1280.4.d.k 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
160.4.a.a 1 20.d odd 2 1
160.4.a.b yes 1 5.b even 2 1
320.4.a.f 1 40.f even 2 1
320.4.a.i 1 40.e odd 2 1
800.4.a.d 1 1.a even 1 1 trivial
800.4.a.h 1 4.b odd 2 1
800.4.c.e 2 5.c odd 4 2
800.4.c.f 2 20.e even 4 2
1280.4.d.f 2 80.k odd 4 2
1280.4.d.k 2 80.q even 4 2
1440.4.a.n 1 15.d odd 2 1
1440.4.a.o 1 60.h even 2 1
1600.4.a.r 1 8.d odd 2 1
1600.4.a.bj 1 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(800))S_{4}^{\mathrm{new}}(\Gamma_0(800)):

T3+2 T_{3} + 2 Copy content Toggle raw display
T11+60 T_{11} + 60 Copy content Toggle raw display
T13+50 T_{13} + 50 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T+2 T + 2 Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T6 T - 6 Copy content Toggle raw display
1111 T+60 T + 60 Copy content Toggle raw display
1313 T+50 T + 50 Copy content Toggle raw display
1717 T30 T - 30 Copy content Toggle raw display
1919 T+40 T + 40 Copy content Toggle raw display
2323 T178 T - 178 Copy content Toggle raw display
2929 T166 T - 166 Copy content Toggle raw display
3131 T+20 T + 20 Copy content Toggle raw display
3737 T+10 T + 10 Copy content Toggle raw display
4141 T+250 T + 250 Copy content Toggle raw display
4343 T142 T - 142 Copy content Toggle raw display
4747 T214 T - 214 Copy content Toggle raw display
5353 T+490 T + 490 Copy content Toggle raw display
5959 T800 T - 800 Copy content Toggle raw display
6161 T250 T - 250 Copy content Toggle raw display
6767 T+774 T + 774 Copy content Toggle raw display
7171 T+100 T + 100 Copy content Toggle raw display
7373 T230 T - 230 Copy content Toggle raw display
7979 T1320 T - 1320 Copy content Toggle raw display
8383 T982 T - 982 Copy content Toggle raw display
8989 T874 T - 874 Copy content Toggle raw display
9797 T310 T - 310 Copy content Toggle raw display
show more
show less