Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [800,4,Mod(1,800)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(800, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("800.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 800.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 160) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 800.4.a.d | 1 | |
4.b | odd | 2 | 1 | 800.4.a.h | 1 | ||
5.b | even | 2 | 1 | 160.4.a.b | yes | 1 | |
5.c | odd | 4 | 2 | 800.4.c.e | 2 | ||
8.b | even | 2 | 1 | 1600.4.a.bj | 1 | ||
8.d | odd | 2 | 1 | 1600.4.a.r | 1 | ||
15.d | odd | 2 | 1 | 1440.4.a.n | 1 | ||
20.d | odd | 2 | 1 | 160.4.a.a | ✓ | 1 | |
20.e | even | 4 | 2 | 800.4.c.f | 2 | ||
40.e | odd | 2 | 1 | 320.4.a.i | 1 | ||
40.f | even | 2 | 1 | 320.4.a.f | 1 | ||
60.h | even | 2 | 1 | 1440.4.a.o | 1 | ||
80.k | odd | 4 | 2 | 1280.4.d.f | 2 | ||
80.q | even | 4 | 2 | 1280.4.d.k | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
160.4.a.a | ✓ | 1 | 20.d | odd | 2 | 1 | |
160.4.a.b | yes | 1 | 5.b | even | 2 | 1 | |
320.4.a.f | 1 | 40.f | even | 2 | 1 | ||
320.4.a.i | 1 | 40.e | odd | 2 | 1 | ||
800.4.a.d | 1 | 1.a | even | 1 | 1 | trivial | |
800.4.a.h | 1 | 4.b | odd | 2 | 1 | ||
800.4.c.e | 2 | 5.c | odd | 4 | 2 | ||
800.4.c.f | 2 | 20.e | even | 4 | 2 | ||
1280.4.d.f | 2 | 80.k | odd | 4 | 2 | ||
1280.4.d.k | 2 | 80.q | even | 4 | 2 | ||
1440.4.a.n | 1 | 15.d | odd | 2 | 1 | ||
1440.4.a.o | 1 | 60.h | even | 2 | 1 | ||
1600.4.a.r | 1 | 8.d | odd | 2 | 1 | ||
1600.4.a.bj | 1 | 8.b | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|