Properties

Label 8000.2.a.bh
Level $8000$
Weight $2$
Character orbit 8000.a
Self dual yes
Analytic conductor $63.880$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8000,2,Mod(1,8000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8000.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8000 = 2^{6} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8000.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.8803216170\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{20})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 4000)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} - \beta_{3} q^{7} + \beta_{2} q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{3} - \beta_{3} q^{7} + \beta_{2} q^{9} - 2 \beta_{3} q^{11} + (2 \beta_{2} + 2) q^{13} - 2 q^{17} + (2 \beta_{3} - 2 \beta_1) q^{19} + ( - 2 \beta_{2} - 1) q^{21} + \beta_{3} q^{23} + (\beta_{3} - 3 \beta_1) q^{27} + (\beta_{2} - 2) q^{29} + (2 \beta_{3} + 4 \beta_1) q^{31} + ( - 4 \beta_{2} - 2) q^{33} - 6 \beta_{2} q^{37} + (2 \beta_{3} + 2 \beta_1) q^{39} + ( - 3 \beta_{2} - 4) q^{41} + (4 \beta_{3} - 3 \beta_1) q^{43} + (2 \beta_{3} - 5 \beta_1) q^{47} + ( - \beta_{2} - 5) q^{49} - 2 \beta_1 q^{51} + 4 q^{53} + (2 \beta_{2} - 4) q^{57} + 2 \beta_{3} q^{59} + ( - \beta_{2} - 3) q^{61} + (\beta_{3} - \beta_1) q^{63} + ( - 2 \beta_{3} - 2 \beta_1) q^{67} + (2 \beta_{2} + 1) q^{69} + (6 \beta_{3} + 2 \beta_1) q^{71} + ( - 2 \beta_{2} - 10) q^{73} + ( - 2 \beta_{2} + 4) q^{77} + ( - 8 \beta_{3} - 2 \beta_1) q^{79} + ( - 4 \beta_{2} - 8) q^{81} + ( - \beta_{3} + 2 \beta_1) q^{83} + (\beta_{3} - 2 \beta_1) q^{87} + (5 \beta_{2} + 5) q^{89} - 2 \beta_1 q^{91} + (8 \beta_{2} + 14) q^{93} + (10 \beta_{2} + 2) q^{97} + (2 \beta_{3} - 2 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{9} + 4 q^{13} - 8 q^{17} - 10 q^{29} + 12 q^{37} - 10 q^{41} - 18 q^{49} + 16 q^{53} - 20 q^{57} - 10 q^{61} - 36 q^{73} + 20 q^{77} - 24 q^{81} + 10 q^{89} + 40 q^{93} - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{20} + \zeta_{20}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 3\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 3\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.90211
−1.17557
1.17557
1.90211
0 −1.90211 0 0 0 1.17557 0 0.618034 0
1.2 0 −1.17557 0 0 0 −1.90211 0 −1.61803 0
1.3 0 1.17557 0 0 0 1.90211 0 −1.61803 0
1.4 0 1.90211 0 0 0 −1.17557 0 0.618034 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8000.2.a.bh 4
4.b odd 2 1 inner 8000.2.a.bh 4
5.b even 2 1 8000.2.a.bg 4
8.b even 2 1 4000.2.a.e 4
8.d odd 2 1 4000.2.a.e 4
20.d odd 2 1 8000.2.a.bg 4
40.e odd 2 1 4000.2.a.f yes 4
40.f even 2 1 4000.2.a.f yes 4
40.i odd 4 2 4000.2.c.d 8
40.k even 4 2 4000.2.c.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4000.2.a.e 4 8.b even 2 1
4000.2.a.e 4 8.d odd 2 1
4000.2.a.f yes 4 40.e odd 2 1
4000.2.a.f yes 4 40.f even 2 1
4000.2.c.d 8 40.i odd 4 2
4000.2.c.d 8 40.k even 4 2
8000.2.a.bg 4 5.b even 2 1
8000.2.a.bg 4 20.d odd 2 1
8000.2.a.bh 4 1.a even 1 1 trivial
8000.2.a.bh 4 4.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8000))\):

\( T_{3}^{4} - 5T_{3}^{2} + 5 \) Copy content Toggle raw display
\( T_{7}^{4} - 5T_{7}^{2} + 5 \) Copy content Toggle raw display
\( T_{11}^{4} - 20T_{11}^{2} + 80 \) Copy content Toggle raw display
\( T_{13}^{2} - 2T_{13} - 4 \) Copy content Toggle raw display
\( T_{19}^{4} - 40T_{19}^{2} + 80 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 5T^{2} + 5 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 5T^{2} + 5 \) Copy content Toggle raw display
$11$ \( T^{4} - 20T^{2} + 80 \) Copy content Toggle raw display
$13$ \( (T^{2} - 2 T - 4)^{2} \) Copy content Toggle raw display
$17$ \( (T + 2)^{4} \) Copy content Toggle raw display
$19$ \( T^{4} - 40T^{2} + 80 \) Copy content Toggle raw display
$23$ \( T^{4} - 5T^{2} + 5 \) Copy content Toggle raw display
$29$ \( (T^{2} + 5 T + 5)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} - 100T^{2} + 80 \) Copy content Toggle raw display
$37$ \( (T^{2} - 6 T - 36)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 5 T - 5)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} - 125T^{2} + 125 \) Copy content Toggle raw display
$47$ \( T^{4} - 145T^{2} + 4805 \) Copy content Toggle raw display
$53$ \( (T - 4)^{4} \) Copy content Toggle raw display
$59$ \( T^{4} - 20T^{2} + 80 \) Copy content Toggle raw display
$61$ \( (T^{2} + 5 T + 5)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} - 40T^{2} + 80 \) Copy content Toggle raw display
$71$ \( T^{4} - 200T^{2} + 9680 \) Copy content Toggle raw display
$73$ \( (T^{2} + 18 T + 76)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} - 340 T^{2} + 28880 \) Copy content Toggle raw display
$83$ \( T^{4} - 25T^{2} + 125 \) Copy content Toggle raw display
$89$ \( (T^{2} - 5 T - 25)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 6 T - 116)^{2} \) Copy content Toggle raw display
show more
show less