Properties

Label 8000.2.a.bh
Level 80008000
Weight 22
Character orbit 8000.a
Self dual yes
Analytic conductor 63.88063.880
Analytic rank 11
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8000,2,Mod(1,8000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8000.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 8000=2653 8000 = 2^{6} \cdot 5^{3}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 8000.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 63.880321617063.8803216170
Analytic rank: 11
Dimension: 44
Coefficient field: Q(ζ20)+\Q(\zeta_{20})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x45x2+5 x^{4} - 5x^{2} + 5 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 4000)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q3β3q7+β2q92β3q11+(2β2+2)q132q17+(2β32β1)q19+(2β21)q21+β3q23+(β33β1)q27++(2β32β1)q99+O(q100) q + \beta_1 q^{3} - \beta_{3} q^{7} + \beta_{2} q^{9} - 2 \beta_{3} q^{11} + (2 \beta_{2} + 2) q^{13} - 2 q^{17} + (2 \beta_{3} - 2 \beta_1) q^{19} + ( - 2 \beta_{2} - 1) q^{21} + \beta_{3} q^{23} + (\beta_{3} - 3 \beta_1) q^{27}+ \cdots + (2 \beta_{3} - 2 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q2q9+4q138q1710q29+12q3710q4118q49+16q5320q5710q6136q73+20q7724q81+10q89+40q9312q97+O(q100) 4 q - 2 q^{9} + 4 q^{13} - 8 q^{17} - 10 q^{29} + 12 q^{37} - 10 q^{41} - 18 q^{49} + 16 q^{53} - 20 q^{57} - 10 q^{61} - 36 q^{73} + 20 q^{77} - 24 q^{81} + 10 q^{89} + 40 q^{93} - 12 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of ν=ζ20+ζ201\nu = \zeta_{20} + \zeta_{20}^{-1}:

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν23 \nu^{2} - 3 Copy content Toggle raw display
β3\beta_{3}== ν33ν \nu^{3} - 3\nu Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+3 \beta_{2} + 3 Copy content Toggle raw display
ν3\nu^{3}== β3+3β1 \beta_{3} + 3\beta_1 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−1.90211
−1.17557
1.17557
1.90211
0 −1.90211 0 0 0 1.17557 0 0.618034 0
1.2 0 −1.17557 0 0 0 −1.90211 0 −1.61803 0
1.3 0 1.17557 0 0 0 1.90211 0 −1.61803 0
1.4 0 1.90211 0 0 0 −1.17557 0 0.618034 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
55 1 -1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8000.2.a.bh 4
4.b odd 2 1 inner 8000.2.a.bh 4
5.b even 2 1 8000.2.a.bg 4
8.b even 2 1 4000.2.a.e 4
8.d odd 2 1 4000.2.a.e 4
20.d odd 2 1 8000.2.a.bg 4
40.e odd 2 1 4000.2.a.f yes 4
40.f even 2 1 4000.2.a.f yes 4
40.i odd 4 2 4000.2.c.d 8
40.k even 4 2 4000.2.c.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4000.2.a.e 4 8.b even 2 1
4000.2.a.e 4 8.d odd 2 1
4000.2.a.f yes 4 40.e odd 2 1
4000.2.a.f yes 4 40.f even 2 1
4000.2.c.d 8 40.i odd 4 2
4000.2.c.d 8 40.k even 4 2
8000.2.a.bg 4 5.b even 2 1
8000.2.a.bg 4 20.d odd 2 1
8000.2.a.bh 4 1.a even 1 1 trivial
8000.2.a.bh 4 4.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(8000))S_{2}^{\mathrm{new}}(\Gamma_0(8000)):

T345T32+5 T_{3}^{4} - 5T_{3}^{2} + 5 Copy content Toggle raw display
T745T72+5 T_{7}^{4} - 5T_{7}^{2} + 5 Copy content Toggle raw display
T11420T112+80 T_{11}^{4} - 20T_{11}^{2} + 80 Copy content Toggle raw display
T1322T134 T_{13}^{2} - 2T_{13} - 4 Copy content Toggle raw display
T19440T192+80 T_{19}^{4} - 40T_{19}^{2} + 80 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T45T2+5 T^{4} - 5T^{2} + 5 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T45T2+5 T^{4} - 5T^{2} + 5 Copy content Toggle raw display
1111 T420T2+80 T^{4} - 20T^{2} + 80 Copy content Toggle raw display
1313 (T22T4)2 (T^{2} - 2 T - 4)^{2} Copy content Toggle raw display
1717 (T+2)4 (T + 2)^{4} Copy content Toggle raw display
1919 T440T2+80 T^{4} - 40T^{2} + 80 Copy content Toggle raw display
2323 T45T2+5 T^{4} - 5T^{2} + 5 Copy content Toggle raw display
2929 (T2+5T+5)2 (T^{2} + 5 T + 5)^{2} Copy content Toggle raw display
3131 T4100T2+80 T^{4} - 100T^{2} + 80 Copy content Toggle raw display
3737 (T26T36)2 (T^{2} - 6 T - 36)^{2} Copy content Toggle raw display
4141 (T2+5T5)2 (T^{2} + 5 T - 5)^{2} Copy content Toggle raw display
4343 T4125T2+125 T^{4} - 125T^{2} + 125 Copy content Toggle raw display
4747 T4145T2+4805 T^{4} - 145T^{2} + 4805 Copy content Toggle raw display
5353 (T4)4 (T - 4)^{4} Copy content Toggle raw display
5959 T420T2+80 T^{4} - 20T^{2} + 80 Copy content Toggle raw display
6161 (T2+5T+5)2 (T^{2} + 5 T + 5)^{2} Copy content Toggle raw display
6767 T440T2+80 T^{4} - 40T^{2} + 80 Copy content Toggle raw display
7171 T4200T2+9680 T^{4} - 200T^{2} + 9680 Copy content Toggle raw display
7373 (T2+18T+76)2 (T^{2} + 18 T + 76)^{2} Copy content Toggle raw display
7979 T4340T2+28880 T^{4} - 340 T^{2} + 28880 Copy content Toggle raw display
8383 T425T2+125 T^{4} - 25T^{2} + 125 Copy content Toggle raw display
8989 (T25T25)2 (T^{2} - 5 T - 25)^{2} Copy content Toggle raw display
9797 (T2+6T116)2 (T^{2} + 6 T - 116)^{2} Copy content Toggle raw display
show more
show less