Properties

Label 8000.2.a.g.1.1
Level $8000$
Weight $2$
Character 8000.1
Self dual yes
Analytic conductor $63.880$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8000,2,Mod(1,8000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8000.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8000 = 2^{6} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8000.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.8803216170\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1000)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 8000.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.61803 q^{3} -4.23607 q^{7} -0.381966 q^{9} +O(q^{10})\) \(q-1.61803 q^{3} -4.23607 q^{7} -0.381966 q^{9} -6.23607 q^{11} +2.38197 q^{13} -2.23607 q^{17} +4.09017 q^{19} +6.85410 q^{21} -5.23607 q^{23} +5.47214 q^{27} +10.2361 q^{29} +5.85410 q^{31} +10.0902 q^{33} -1.23607 q^{37} -3.85410 q^{39} -3.00000 q^{41} -2.70820 q^{43} +6.32624 q^{47} +10.9443 q^{49} +3.61803 q^{51} +9.85410 q^{53} -6.61803 q^{57} -3.38197 q^{59} +12.5623 q^{61} +1.61803 q^{63} +2.61803 q^{67} +8.47214 q^{69} -0.236068 q^{71} -6.14590 q^{73} +26.4164 q^{77} +1.76393 q^{79} -7.70820 q^{81} -6.94427 q^{83} -16.5623 q^{87} +0.472136 q^{89} -10.0902 q^{91} -9.47214 q^{93} -11.5623 q^{97} +2.38197 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} - 4 q^{7} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{3} - 4 q^{7} - 3 q^{9} - 8 q^{11} + 7 q^{13} - 3 q^{19} + 7 q^{21} - 6 q^{23} + 2 q^{27} + 16 q^{29} + 5 q^{31} + 9 q^{33} + 2 q^{37} - q^{39} - 6 q^{41} + 8 q^{43} - 3 q^{47} + 4 q^{49} + 5 q^{51} + 13 q^{53} - 11 q^{57} - 9 q^{59} + 5 q^{61} + q^{63} + 3 q^{67} + 8 q^{69} + 4 q^{71} - 19 q^{73} + 26 q^{77} + 8 q^{79} - 2 q^{81} + 4 q^{83} - 13 q^{87} - 8 q^{89} - 9 q^{91} - 10 q^{93} - 3 q^{97} + 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.61803 −0.934172 −0.467086 0.884212i \(-0.654696\pi\)
−0.467086 + 0.884212i \(0.654696\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −4.23607 −1.60108 −0.800542 0.599277i \(-0.795455\pi\)
−0.800542 + 0.599277i \(0.795455\pi\)
\(8\) 0 0
\(9\) −0.381966 −0.127322
\(10\) 0 0
\(11\) −6.23607 −1.88025 −0.940123 0.340836i \(-0.889290\pi\)
−0.940123 + 0.340836i \(0.889290\pi\)
\(12\) 0 0
\(13\) 2.38197 0.660639 0.330319 0.943869i \(-0.392844\pi\)
0.330319 + 0.943869i \(0.392844\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.23607 −0.542326 −0.271163 0.962533i \(-0.587408\pi\)
−0.271163 + 0.962533i \(0.587408\pi\)
\(18\) 0 0
\(19\) 4.09017 0.938349 0.469175 0.883105i \(-0.344551\pi\)
0.469175 + 0.883105i \(0.344551\pi\)
\(20\) 0 0
\(21\) 6.85410 1.49569
\(22\) 0 0
\(23\) −5.23607 −1.09180 −0.545898 0.837852i \(-0.683811\pi\)
−0.545898 + 0.837852i \(0.683811\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.47214 1.05311
\(28\) 0 0
\(29\) 10.2361 1.90079 0.950395 0.311045i \(-0.100679\pi\)
0.950395 + 0.311045i \(0.100679\pi\)
\(30\) 0 0
\(31\) 5.85410 1.05143 0.525714 0.850661i \(-0.323798\pi\)
0.525714 + 0.850661i \(0.323798\pi\)
\(32\) 0 0
\(33\) 10.0902 1.75647
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.23607 −0.203208 −0.101604 0.994825i \(-0.532398\pi\)
−0.101604 + 0.994825i \(0.532398\pi\)
\(38\) 0 0
\(39\) −3.85410 −0.617150
\(40\) 0 0
\(41\) −3.00000 −0.468521 −0.234261 0.972174i \(-0.575267\pi\)
−0.234261 + 0.972174i \(0.575267\pi\)
\(42\) 0 0
\(43\) −2.70820 −0.412997 −0.206499 0.978447i \(-0.566207\pi\)
−0.206499 + 0.978447i \(0.566207\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.32624 0.922777 0.461388 0.887198i \(-0.347352\pi\)
0.461388 + 0.887198i \(0.347352\pi\)
\(48\) 0 0
\(49\) 10.9443 1.56347
\(50\) 0 0
\(51\) 3.61803 0.506626
\(52\) 0 0
\(53\) 9.85410 1.35357 0.676783 0.736183i \(-0.263374\pi\)
0.676783 + 0.736183i \(0.263374\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −6.61803 −0.876580
\(58\) 0 0
\(59\) −3.38197 −0.440294 −0.220147 0.975467i \(-0.570654\pi\)
−0.220147 + 0.975467i \(0.570654\pi\)
\(60\) 0 0
\(61\) 12.5623 1.60844 0.804219 0.594333i \(-0.202584\pi\)
0.804219 + 0.594333i \(0.202584\pi\)
\(62\) 0 0
\(63\) 1.61803 0.203853
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 2.61803 0.319844 0.159922 0.987130i \(-0.448876\pi\)
0.159922 + 0.987130i \(0.448876\pi\)
\(68\) 0 0
\(69\) 8.47214 1.01993
\(70\) 0 0
\(71\) −0.236068 −0.0280161 −0.0140081 0.999902i \(-0.504459\pi\)
−0.0140081 + 0.999902i \(0.504459\pi\)
\(72\) 0 0
\(73\) −6.14590 −0.719323 −0.359661 0.933083i \(-0.617108\pi\)
−0.359661 + 0.933083i \(0.617108\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 26.4164 3.01043
\(78\) 0 0
\(79\) 1.76393 0.198458 0.0992289 0.995065i \(-0.468362\pi\)
0.0992289 + 0.995065i \(0.468362\pi\)
\(80\) 0 0
\(81\) −7.70820 −0.856467
\(82\) 0 0
\(83\) −6.94427 −0.762233 −0.381116 0.924527i \(-0.624460\pi\)
−0.381116 + 0.924527i \(0.624460\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −16.5623 −1.77567
\(88\) 0 0
\(89\) 0.472136 0.0500463 0.0250232 0.999687i \(-0.492034\pi\)
0.0250232 + 0.999687i \(0.492034\pi\)
\(90\) 0 0
\(91\) −10.0902 −1.05774
\(92\) 0 0
\(93\) −9.47214 −0.982215
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −11.5623 −1.17397 −0.586987 0.809596i \(-0.699686\pi\)
−0.586987 + 0.809596i \(0.699686\pi\)
\(98\) 0 0
\(99\) 2.38197 0.239397
\(100\) 0 0
\(101\) 4.52786 0.450539 0.225270 0.974296i \(-0.427674\pi\)
0.225270 + 0.974296i \(0.427674\pi\)
\(102\) 0 0
\(103\) −4.52786 −0.446144 −0.223072 0.974802i \(-0.571608\pi\)
−0.223072 + 0.974802i \(0.571608\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 14.2705 1.37958 0.689791 0.724008i \(-0.257702\pi\)
0.689791 + 0.724008i \(0.257702\pi\)
\(108\) 0 0
\(109\) −14.8541 −1.42276 −0.711382 0.702805i \(-0.751931\pi\)
−0.711382 + 0.702805i \(0.751931\pi\)
\(110\) 0 0
\(111\) 2.00000 0.189832
\(112\) 0 0
\(113\) −9.00000 −0.846649 −0.423324 0.905978i \(-0.639137\pi\)
−0.423324 + 0.905978i \(0.639137\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −0.909830 −0.0841138
\(118\) 0 0
\(119\) 9.47214 0.868309
\(120\) 0 0
\(121\) 27.8885 2.53532
\(122\) 0 0
\(123\) 4.85410 0.437680
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −2.29180 −0.203364 −0.101682 0.994817i \(-0.532422\pi\)
−0.101682 + 0.994817i \(0.532422\pi\)
\(128\) 0 0
\(129\) 4.38197 0.385811
\(130\) 0 0
\(131\) 13.3262 1.16432 0.582159 0.813075i \(-0.302208\pi\)
0.582159 + 0.813075i \(0.302208\pi\)
\(132\) 0 0
\(133\) −17.3262 −1.50238
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.5623 0.902399 0.451199 0.892423i \(-0.350996\pi\)
0.451199 + 0.892423i \(0.350996\pi\)
\(138\) 0 0
\(139\) −18.8885 −1.60211 −0.801053 0.598594i \(-0.795726\pi\)
−0.801053 + 0.598594i \(0.795726\pi\)
\(140\) 0 0
\(141\) −10.2361 −0.862032
\(142\) 0 0
\(143\) −14.8541 −1.24216
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −17.7082 −1.46055
\(148\) 0 0
\(149\) 1.47214 0.120602 0.0603010 0.998180i \(-0.480794\pi\)
0.0603010 + 0.998180i \(0.480794\pi\)
\(150\) 0 0
\(151\) −8.90983 −0.725072 −0.362536 0.931970i \(-0.618089\pi\)
−0.362536 + 0.931970i \(0.618089\pi\)
\(152\) 0 0
\(153\) 0.854102 0.0690501
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −13.0344 −1.04026 −0.520131 0.854087i \(-0.674117\pi\)
−0.520131 + 0.854087i \(0.674117\pi\)
\(158\) 0 0
\(159\) −15.9443 −1.26446
\(160\) 0 0
\(161\) 22.1803 1.74806
\(162\) 0 0
\(163\) −19.3820 −1.51811 −0.759056 0.651025i \(-0.774339\pi\)
−0.759056 + 0.651025i \(0.774339\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −10.7639 −0.832938 −0.416469 0.909150i \(-0.636733\pi\)
−0.416469 + 0.909150i \(0.636733\pi\)
\(168\) 0 0
\(169\) −7.32624 −0.563557
\(170\) 0 0
\(171\) −1.56231 −0.119473
\(172\) 0 0
\(173\) −6.41641 −0.487830 −0.243915 0.969797i \(-0.578432\pi\)
−0.243915 + 0.969797i \(0.578432\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 5.47214 0.411311
\(178\) 0 0
\(179\) 6.52786 0.487915 0.243958 0.969786i \(-0.421554\pi\)
0.243958 + 0.969786i \(0.421554\pi\)
\(180\) 0 0
\(181\) 5.23607 0.389194 0.194597 0.980883i \(-0.437660\pi\)
0.194597 + 0.980883i \(0.437660\pi\)
\(182\) 0 0
\(183\) −20.3262 −1.50256
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 13.9443 1.01971
\(188\) 0 0
\(189\) −23.1803 −1.68612
\(190\) 0 0
\(191\) 20.0000 1.44715 0.723575 0.690246i \(-0.242498\pi\)
0.723575 + 0.690246i \(0.242498\pi\)
\(192\) 0 0
\(193\) −26.9787 −1.94197 −0.970985 0.239140i \(-0.923135\pi\)
−0.970985 + 0.239140i \(0.923135\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −8.52786 −0.607585 −0.303793 0.952738i \(-0.598253\pi\)
−0.303793 + 0.952738i \(0.598253\pi\)
\(198\) 0 0
\(199\) 18.6525 1.32224 0.661119 0.750281i \(-0.270082\pi\)
0.661119 + 0.750281i \(0.270082\pi\)
\(200\) 0 0
\(201\) −4.23607 −0.298789
\(202\) 0 0
\(203\) −43.3607 −3.04332
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 2.00000 0.139010
\(208\) 0 0
\(209\) −25.5066 −1.76433
\(210\) 0 0
\(211\) 14.6525 1.00872 0.504359 0.863494i \(-0.331729\pi\)
0.504359 + 0.863494i \(0.331729\pi\)
\(212\) 0 0
\(213\) 0.381966 0.0261719
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −24.7984 −1.68342
\(218\) 0 0
\(219\) 9.94427 0.671972
\(220\) 0 0
\(221\) −5.32624 −0.358282
\(222\) 0 0
\(223\) −20.7984 −1.39276 −0.696381 0.717672i \(-0.745208\pi\)
−0.696381 + 0.717672i \(0.745208\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2.79837 0.185735 0.0928673 0.995678i \(-0.470397\pi\)
0.0928673 + 0.995678i \(0.470397\pi\)
\(228\) 0 0
\(229\) −17.0902 −1.12935 −0.564675 0.825313i \(-0.690999\pi\)
−0.564675 + 0.825313i \(0.690999\pi\)
\(230\) 0 0
\(231\) −42.7426 −2.81226
\(232\) 0 0
\(233\) 11.0000 0.720634 0.360317 0.932830i \(-0.382669\pi\)
0.360317 + 0.932830i \(0.382669\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −2.85410 −0.185394
\(238\) 0 0
\(239\) 12.5066 0.808983 0.404492 0.914542i \(-0.367448\pi\)
0.404492 + 0.914542i \(0.367448\pi\)
\(240\) 0 0
\(241\) 20.2361 1.30352 0.651760 0.758425i \(-0.274031\pi\)
0.651760 + 0.758425i \(0.274031\pi\)
\(242\) 0 0
\(243\) −3.94427 −0.253025
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 9.74265 0.619910
\(248\) 0 0
\(249\) 11.2361 0.712057
\(250\) 0 0
\(251\) 17.0344 1.07520 0.537602 0.843199i \(-0.319330\pi\)
0.537602 + 0.843199i \(0.319330\pi\)
\(252\) 0 0
\(253\) 32.6525 2.05284
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 28.4164 1.77257 0.886283 0.463143i \(-0.153278\pi\)
0.886283 + 0.463143i \(0.153278\pi\)
\(258\) 0 0
\(259\) 5.23607 0.325353
\(260\) 0 0
\(261\) −3.90983 −0.242012
\(262\) 0 0
\(263\) 4.14590 0.255647 0.127824 0.991797i \(-0.459201\pi\)
0.127824 + 0.991797i \(0.459201\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −0.763932 −0.0467519
\(268\) 0 0
\(269\) 14.7426 0.898875 0.449437 0.893312i \(-0.351624\pi\)
0.449437 + 0.893312i \(0.351624\pi\)
\(270\) 0 0
\(271\) −5.90983 −0.358997 −0.179498 0.983758i \(-0.557447\pi\)
−0.179498 + 0.983758i \(0.557447\pi\)
\(272\) 0 0
\(273\) 16.3262 0.988109
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 9.76393 0.586658 0.293329 0.956012i \(-0.405237\pi\)
0.293329 + 0.956012i \(0.405237\pi\)
\(278\) 0 0
\(279\) −2.23607 −0.133870
\(280\) 0 0
\(281\) −12.0000 −0.715860 −0.357930 0.933748i \(-0.616517\pi\)
−0.357930 + 0.933748i \(0.616517\pi\)
\(282\) 0 0
\(283\) 24.6525 1.46544 0.732719 0.680532i \(-0.238251\pi\)
0.732719 + 0.680532i \(0.238251\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 12.7082 0.750142
\(288\) 0 0
\(289\) −12.0000 −0.705882
\(290\) 0 0
\(291\) 18.7082 1.09669
\(292\) 0 0
\(293\) −23.0000 −1.34367 −0.671837 0.740699i \(-0.734495\pi\)
−0.671837 + 0.740699i \(0.734495\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −34.1246 −1.98011
\(298\) 0 0
\(299\) −12.4721 −0.721282
\(300\) 0 0
\(301\) 11.4721 0.661243
\(302\) 0 0
\(303\) −7.32624 −0.420881
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −18.3820 −1.04911 −0.524557 0.851375i \(-0.675769\pi\)
−0.524557 + 0.851375i \(0.675769\pi\)
\(308\) 0 0
\(309\) 7.32624 0.416775
\(310\) 0 0
\(311\) −8.79837 −0.498910 −0.249455 0.968386i \(-0.580251\pi\)
−0.249455 + 0.968386i \(0.580251\pi\)
\(312\) 0 0
\(313\) 11.4164 0.645294 0.322647 0.946519i \(-0.395427\pi\)
0.322647 + 0.946519i \(0.395427\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.94427 0.390029 0.195015 0.980800i \(-0.437525\pi\)
0.195015 + 0.980800i \(0.437525\pi\)
\(318\) 0 0
\(319\) −63.8328 −3.57395
\(320\) 0 0
\(321\) −23.0902 −1.28877
\(322\) 0 0
\(323\) −9.14590 −0.508891
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 24.0344 1.32911
\(328\) 0 0
\(329\) −26.7984 −1.47744
\(330\) 0 0
\(331\) −24.0344 −1.32105 −0.660526 0.750803i \(-0.729667\pi\)
−0.660526 + 0.750803i \(0.729667\pi\)
\(332\) 0 0
\(333\) 0.472136 0.0258729
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 26.8885 1.46471 0.732356 0.680922i \(-0.238421\pi\)
0.732356 + 0.680922i \(0.238421\pi\)
\(338\) 0 0
\(339\) 14.5623 0.790916
\(340\) 0 0
\(341\) −36.5066 −1.97694
\(342\) 0 0
\(343\) −16.7082 −0.902158
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −14.7082 −0.789578 −0.394789 0.918772i \(-0.629182\pi\)
−0.394789 + 0.918772i \(0.629182\pi\)
\(348\) 0 0
\(349\) −4.88854 −0.261678 −0.130839 0.991404i \(-0.541767\pi\)
−0.130839 + 0.991404i \(0.541767\pi\)
\(350\) 0 0
\(351\) 13.0344 0.695727
\(352\) 0 0
\(353\) 30.0000 1.59674 0.798369 0.602168i \(-0.205696\pi\)
0.798369 + 0.602168i \(0.205696\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −15.3262 −0.811151
\(358\) 0 0
\(359\) 30.5623 1.61302 0.806508 0.591223i \(-0.201355\pi\)
0.806508 + 0.591223i \(0.201355\pi\)
\(360\) 0 0
\(361\) −2.27051 −0.119501
\(362\) 0 0
\(363\) −45.1246 −2.36843
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 2.56231 0.133751 0.0668756 0.997761i \(-0.478697\pi\)
0.0668756 + 0.997761i \(0.478697\pi\)
\(368\) 0 0
\(369\) 1.14590 0.0596531
\(370\) 0 0
\(371\) −41.7426 −2.16717
\(372\) 0 0
\(373\) 29.9230 1.54935 0.774677 0.632357i \(-0.217913\pi\)
0.774677 + 0.632357i \(0.217913\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 24.3820 1.25574
\(378\) 0 0
\(379\) 20.3262 1.04409 0.522044 0.852918i \(-0.325170\pi\)
0.522044 + 0.852918i \(0.325170\pi\)
\(380\) 0 0
\(381\) 3.70820 0.189977
\(382\) 0 0
\(383\) −2.70820 −0.138383 −0.0691914 0.997603i \(-0.522042\pi\)
−0.0691914 + 0.997603i \(0.522042\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1.03444 0.0525836
\(388\) 0 0
\(389\) −2.88854 −0.146455 −0.0732275 0.997315i \(-0.523330\pi\)
−0.0732275 + 0.997315i \(0.523330\pi\)
\(390\) 0 0
\(391\) 11.7082 0.592109
\(392\) 0 0
\(393\) −21.5623 −1.08767
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −7.94427 −0.398712 −0.199356 0.979927i \(-0.563885\pi\)
−0.199356 + 0.979927i \(0.563885\pi\)
\(398\) 0 0
\(399\) 28.0344 1.40348
\(400\) 0 0
\(401\) −15.0557 −0.751847 −0.375924 0.926651i \(-0.622674\pi\)
−0.375924 + 0.926651i \(0.622674\pi\)
\(402\) 0 0
\(403\) 13.9443 0.694614
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 7.70820 0.382081
\(408\) 0 0
\(409\) 6.76393 0.334455 0.167227 0.985918i \(-0.446519\pi\)
0.167227 + 0.985918i \(0.446519\pi\)
\(410\) 0 0
\(411\) −17.0902 −0.842996
\(412\) 0 0
\(413\) 14.3262 0.704948
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 30.5623 1.49664
\(418\) 0 0
\(419\) −9.58359 −0.468189 −0.234095 0.972214i \(-0.575213\pi\)
−0.234095 + 0.972214i \(0.575213\pi\)
\(420\) 0 0
\(421\) 0.618034 0.0301211 0.0150606 0.999887i \(-0.495206\pi\)
0.0150606 + 0.999887i \(0.495206\pi\)
\(422\) 0 0
\(423\) −2.41641 −0.117490
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −53.2148 −2.57524
\(428\) 0 0
\(429\) 24.0344 1.16039
\(430\) 0 0
\(431\) −4.74265 −0.228445 −0.114223 0.993455i \(-0.536438\pi\)
−0.114223 + 0.993455i \(0.536438\pi\)
\(432\) 0 0
\(433\) −16.1803 −0.777578 −0.388789 0.921327i \(-0.627106\pi\)
−0.388789 + 0.921327i \(0.627106\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −21.4164 −1.02449
\(438\) 0 0
\(439\) −24.4164 −1.16533 −0.582666 0.812712i \(-0.697990\pi\)
−0.582666 + 0.812712i \(0.697990\pi\)
\(440\) 0 0
\(441\) −4.18034 −0.199064
\(442\) 0 0
\(443\) −6.52786 −0.310148 −0.155074 0.987903i \(-0.549562\pi\)
−0.155074 + 0.987903i \(0.549562\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −2.38197 −0.112663
\(448\) 0 0
\(449\) 3.56231 0.168116 0.0840578 0.996461i \(-0.473212\pi\)
0.0840578 + 0.996461i \(0.473212\pi\)
\(450\) 0 0
\(451\) 18.7082 0.880935
\(452\) 0 0
\(453\) 14.4164 0.677342
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3.88854 0.181898 0.0909492 0.995856i \(-0.471010\pi\)
0.0909492 + 0.995856i \(0.471010\pi\)
\(458\) 0 0
\(459\) −12.2361 −0.571131
\(460\) 0 0
\(461\) −16.2705 −0.757793 −0.378897 0.925439i \(-0.623696\pi\)
−0.378897 + 0.925439i \(0.623696\pi\)
\(462\) 0 0
\(463\) −31.3607 −1.45745 −0.728727 0.684804i \(-0.759888\pi\)
−0.728727 + 0.684804i \(0.759888\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8.18034 0.378541 0.189270 0.981925i \(-0.439388\pi\)
0.189270 + 0.981925i \(0.439388\pi\)
\(468\) 0 0
\(469\) −11.0902 −0.512096
\(470\) 0 0
\(471\) 21.0902 0.971784
\(472\) 0 0
\(473\) 16.8885 0.776536
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −3.76393 −0.172339
\(478\) 0 0
\(479\) −17.9787 −0.821468 −0.410734 0.911755i \(-0.634728\pi\)
−0.410734 + 0.911755i \(0.634728\pi\)
\(480\) 0 0
\(481\) −2.94427 −0.134247
\(482\) 0 0
\(483\) −35.8885 −1.63299
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −11.3475 −0.514205 −0.257103 0.966384i \(-0.582768\pi\)
−0.257103 + 0.966384i \(0.582768\pi\)
\(488\) 0 0
\(489\) 31.3607 1.41818
\(490\) 0 0
\(491\) −14.8541 −0.670356 −0.335178 0.942155i \(-0.608796\pi\)
−0.335178 + 0.942155i \(0.608796\pi\)
\(492\) 0 0
\(493\) −22.8885 −1.03085
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.00000 0.0448561
\(498\) 0 0
\(499\) 6.00000 0.268597 0.134298 0.990941i \(-0.457122\pi\)
0.134298 + 0.990941i \(0.457122\pi\)
\(500\) 0 0
\(501\) 17.4164 0.778108
\(502\) 0 0
\(503\) 11.4377 0.509982 0.254991 0.966943i \(-0.417928\pi\)
0.254991 + 0.966943i \(0.417928\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 11.8541 0.526459
\(508\) 0 0
\(509\) 11.5279 0.510964 0.255482 0.966814i \(-0.417766\pi\)
0.255482 + 0.966814i \(0.417766\pi\)
\(510\) 0 0
\(511\) 26.0344 1.15170
\(512\) 0 0
\(513\) 22.3820 0.988188
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −39.4508 −1.73505
\(518\) 0 0
\(519\) 10.3820 0.455718
\(520\) 0 0
\(521\) −27.0344 −1.18440 −0.592200 0.805791i \(-0.701741\pi\)
−0.592200 + 0.805791i \(0.701741\pi\)
\(522\) 0 0
\(523\) −18.9443 −0.828375 −0.414188 0.910192i \(-0.635934\pi\)
−0.414188 + 0.910192i \(0.635934\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −13.0902 −0.570217
\(528\) 0 0
\(529\) 4.41641 0.192018
\(530\) 0 0
\(531\) 1.29180 0.0560592
\(532\) 0 0
\(533\) −7.14590 −0.309523
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −10.5623 −0.455797
\(538\) 0 0
\(539\) −68.2492 −2.93970
\(540\) 0 0
\(541\) 23.7082 1.01930 0.509648 0.860383i \(-0.329776\pi\)
0.509648 + 0.860383i \(0.329776\pi\)
\(542\) 0 0
\(543\) −8.47214 −0.363574
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 35.2705 1.50806 0.754029 0.656841i \(-0.228108\pi\)
0.754029 + 0.656841i \(0.228108\pi\)
\(548\) 0 0
\(549\) −4.79837 −0.204790
\(550\) 0 0
\(551\) 41.8673 1.78361
\(552\) 0 0
\(553\) −7.47214 −0.317748
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 40.3607 1.71014 0.855068 0.518515i \(-0.173515\pi\)
0.855068 + 0.518515i \(0.173515\pi\)
\(558\) 0 0
\(559\) −6.45085 −0.272842
\(560\) 0 0
\(561\) −22.5623 −0.952581
\(562\) 0 0
\(563\) 28.0000 1.18006 0.590030 0.807382i \(-0.299116\pi\)
0.590030 + 0.807382i \(0.299116\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 32.6525 1.37128
\(568\) 0 0
\(569\) −16.9443 −0.710341 −0.355170 0.934802i \(-0.615577\pi\)
−0.355170 + 0.934802i \(0.615577\pi\)
\(570\) 0 0
\(571\) 4.34752 0.181938 0.0909691 0.995854i \(-0.471004\pi\)
0.0909691 + 0.995854i \(0.471004\pi\)
\(572\) 0 0
\(573\) −32.3607 −1.35189
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 18.5066 0.770439 0.385219 0.922825i \(-0.374126\pi\)
0.385219 + 0.922825i \(0.374126\pi\)
\(578\) 0 0
\(579\) 43.6525 1.81413
\(580\) 0 0
\(581\) 29.4164 1.22040
\(582\) 0 0
\(583\) −61.4508 −2.54503
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −8.58359 −0.354283 −0.177141 0.984185i \(-0.556685\pi\)
−0.177141 + 0.984185i \(0.556685\pi\)
\(588\) 0 0
\(589\) 23.9443 0.986607
\(590\) 0 0
\(591\) 13.7984 0.567589
\(592\) 0 0
\(593\) −4.41641 −0.181360 −0.0906801 0.995880i \(-0.528904\pi\)
−0.0906801 + 0.995880i \(0.528904\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −30.1803 −1.23520
\(598\) 0 0
\(599\) 27.0344 1.10460 0.552299 0.833646i \(-0.313751\pi\)
0.552299 + 0.833646i \(0.313751\pi\)
\(600\) 0 0
\(601\) −31.4721 −1.28378 −0.641888 0.766799i \(-0.721848\pi\)
−0.641888 + 0.766799i \(0.721848\pi\)
\(602\) 0 0
\(603\) −1.00000 −0.0407231
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −17.2361 −0.699590 −0.349795 0.936826i \(-0.613749\pi\)
−0.349795 + 0.936826i \(0.613749\pi\)
\(608\) 0 0
\(609\) 70.1591 2.84299
\(610\) 0 0
\(611\) 15.0689 0.609622
\(612\) 0 0
\(613\) 32.8885 1.32836 0.664178 0.747575i \(-0.268782\pi\)
0.664178 + 0.747575i \(0.268782\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −29.1803 −1.17476 −0.587378 0.809313i \(-0.699840\pi\)
−0.587378 + 0.809313i \(0.699840\pi\)
\(618\) 0 0
\(619\) 23.0689 0.927217 0.463608 0.886040i \(-0.346554\pi\)
0.463608 + 0.886040i \(0.346554\pi\)
\(620\) 0 0
\(621\) −28.6525 −1.14978
\(622\) 0 0
\(623\) −2.00000 −0.0801283
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 41.2705 1.64819
\(628\) 0 0
\(629\) 2.76393 0.110205
\(630\) 0 0
\(631\) −4.47214 −0.178033 −0.0890165 0.996030i \(-0.528372\pi\)
−0.0890165 + 0.996030i \(0.528372\pi\)
\(632\) 0 0
\(633\) −23.7082 −0.942317
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 26.0689 1.03289
\(638\) 0 0
\(639\) 0.0901699 0.00356707
\(640\) 0 0
\(641\) −20.1459 −0.795715 −0.397858 0.917447i \(-0.630246\pi\)
−0.397858 + 0.917447i \(0.630246\pi\)
\(642\) 0 0
\(643\) −40.0902 −1.58100 −0.790501 0.612461i \(-0.790180\pi\)
−0.790501 + 0.612461i \(0.790180\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 47.4721 1.86632 0.933161 0.359458i \(-0.117039\pi\)
0.933161 + 0.359458i \(0.117039\pi\)
\(648\) 0 0
\(649\) 21.0902 0.827862
\(650\) 0 0
\(651\) 40.1246 1.57261
\(652\) 0 0
\(653\) −25.5967 −1.00168 −0.500839 0.865540i \(-0.666975\pi\)
−0.500839 + 0.865540i \(0.666975\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 2.34752 0.0915856
\(658\) 0 0
\(659\) −0.798374 −0.0311002 −0.0155501 0.999879i \(-0.504950\pi\)
−0.0155501 + 0.999879i \(0.504950\pi\)
\(660\) 0 0
\(661\) −19.5279 −0.759546 −0.379773 0.925080i \(-0.623998\pi\)
−0.379773 + 0.925080i \(0.623998\pi\)
\(662\) 0 0
\(663\) 8.61803 0.334697
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −53.5967 −2.07527
\(668\) 0 0
\(669\) 33.6525 1.30108
\(670\) 0 0
\(671\) −78.3394 −3.02426
\(672\) 0 0
\(673\) −23.6869 −0.913064 −0.456532 0.889707i \(-0.650909\pi\)
−0.456532 + 0.889707i \(0.650909\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −6.94427 −0.266890 −0.133445 0.991056i \(-0.542604\pi\)
−0.133445 + 0.991056i \(0.542604\pi\)
\(678\) 0 0
\(679\) 48.9787 1.87963
\(680\) 0 0
\(681\) −4.52786 −0.173508
\(682\) 0 0
\(683\) −21.9443 −0.839674 −0.419837 0.907599i \(-0.637913\pi\)
−0.419837 + 0.907599i \(0.637913\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 27.6525 1.05501
\(688\) 0 0
\(689\) 23.4721 0.894217
\(690\) 0 0
\(691\) −44.6525 −1.69866 −0.849330 0.527862i \(-0.822994\pi\)
−0.849330 + 0.527862i \(0.822994\pi\)
\(692\) 0 0
\(693\) −10.0902 −0.383294
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 6.70820 0.254091
\(698\) 0 0
\(699\) −17.7984 −0.673196
\(700\) 0 0
\(701\) −18.5066 −0.698984 −0.349492 0.936939i \(-0.613646\pi\)
−0.349492 + 0.936939i \(0.613646\pi\)
\(702\) 0 0
\(703\) −5.05573 −0.190680
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −19.1803 −0.721351
\(708\) 0 0
\(709\) 33.9787 1.27610 0.638049 0.769996i \(-0.279742\pi\)
0.638049 + 0.769996i \(0.279742\pi\)
\(710\) 0 0
\(711\) −0.673762 −0.0252681
\(712\) 0 0
\(713\) −30.6525 −1.14794
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −20.2361 −0.755730
\(718\) 0 0
\(719\) 18.7984 0.701061 0.350531 0.936551i \(-0.386001\pi\)
0.350531 + 0.936551i \(0.386001\pi\)
\(720\) 0 0
\(721\) 19.1803 0.714313
\(722\) 0 0
\(723\) −32.7426 −1.21771
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −8.00000 −0.296704 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(728\) 0 0
\(729\) 29.5066 1.09284
\(730\) 0 0
\(731\) 6.05573 0.223979
\(732\) 0 0
\(733\) −12.5066 −0.461941 −0.230970 0.972961i \(-0.574190\pi\)
−0.230970 + 0.972961i \(0.574190\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −16.3262 −0.601385
\(738\) 0 0
\(739\) −8.52786 −0.313703 −0.156851 0.987622i \(-0.550134\pi\)
−0.156851 + 0.987622i \(0.550134\pi\)
\(740\) 0 0
\(741\) −15.7639 −0.579103
\(742\) 0 0
\(743\) 31.5066 1.15586 0.577932 0.816085i \(-0.303860\pi\)
0.577932 + 0.816085i \(0.303860\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 2.65248 0.0970490
\(748\) 0 0
\(749\) −60.4508 −2.20883
\(750\) 0 0
\(751\) −19.6525 −0.717129 −0.358565 0.933505i \(-0.616734\pi\)
−0.358565 + 0.933505i \(0.616734\pi\)
\(752\) 0 0
\(753\) −27.5623 −1.00443
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −1.47214 −0.0535057 −0.0267528 0.999642i \(-0.508517\pi\)
−0.0267528 + 0.999642i \(0.508517\pi\)
\(758\) 0 0
\(759\) −52.8328 −1.91771
\(760\) 0 0
\(761\) −33.7771 −1.22442 −0.612209 0.790696i \(-0.709719\pi\)
−0.612209 + 0.790696i \(0.709719\pi\)
\(762\) 0 0
\(763\) 62.9230 2.27797
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −8.05573 −0.290875
\(768\) 0 0
\(769\) −51.7214 −1.86512 −0.932560 0.361015i \(-0.882430\pi\)
−0.932560 + 0.361015i \(0.882430\pi\)
\(770\) 0 0
\(771\) −45.9787 −1.65588
\(772\) 0 0
\(773\) −37.2361 −1.33929 −0.669644 0.742682i \(-0.733553\pi\)
−0.669644 + 0.742682i \(0.733553\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −8.47214 −0.303936
\(778\) 0 0
\(779\) −12.2705 −0.439637
\(780\) 0 0
\(781\) 1.47214 0.0526772
\(782\) 0 0
\(783\) 56.0132 2.00175
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −23.8328 −0.849548 −0.424774 0.905299i \(-0.639646\pi\)
−0.424774 + 0.905299i \(0.639646\pi\)
\(788\) 0 0
\(789\) −6.70820 −0.238818
\(790\) 0 0
\(791\) 38.1246 1.35556
\(792\) 0 0
\(793\) 29.9230 1.06260
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 40.5623 1.43679 0.718395 0.695635i \(-0.244877\pi\)
0.718395 + 0.695635i \(0.244877\pi\)
\(798\) 0 0
\(799\) −14.1459 −0.500446
\(800\) 0 0
\(801\) −0.180340 −0.00637200
\(802\) 0 0
\(803\) 38.3262 1.35250
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −23.8541 −0.839704
\(808\) 0 0
\(809\) −22.6525 −0.796419 −0.398209 0.917295i \(-0.630368\pi\)
−0.398209 + 0.917295i \(0.630368\pi\)
\(810\) 0 0
\(811\) 0.180340 0.00633259 0.00316629 0.999995i \(-0.498992\pi\)
0.00316629 + 0.999995i \(0.498992\pi\)
\(812\) 0 0
\(813\) 9.56231 0.335365
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −11.0770 −0.387536
\(818\) 0 0
\(819\) 3.85410 0.134673
\(820\) 0 0
\(821\) −48.1033 −1.67882 −0.839409 0.543501i \(-0.817099\pi\)
−0.839409 + 0.543501i \(0.817099\pi\)
\(822\) 0 0
\(823\) −7.87539 −0.274519 −0.137259 0.990535i \(-0.543829\pi\)
−0.137259 + 0.990535i \(0.543829\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.61803 0.0562646 0.0281323 0.999604i \(-0.491044\pi\)
0.0281323 + 0.999604i \(0.491044\pi\)
\(828\) 0 0
\(829\) −13.0902 −0.454640 −0.227320 0.973820i \(-0.572996\pi\)
−0.227320 + 0.973820i \(0.572996\pi\)
\(830\) 0 0
\(831\) −15.7984 −0.548040
\(832\) 0 0
\(833\) −24.4721 −0.847909
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 32.0344 1.10727
\(838\) 0 0
\(839\) −25.9098 −0.894507 −0.447253 0.894407i \(-0.647598\pi\)
−0.447253 + 0.894407i \(0.647598\pi\)
\(840\) 0 0
\(841\) 75.7771 2.61300
\(842\) 0 0
\(843\) 19.4164 0.668737
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −118.138 −4.05926
\(848\) 0 0
\(849\) −39.8885 −1.36897
\(850\) 0 0
\(851\) 6.47214 0.221862
\(852\) 0 0
\(853\) −27.4721 −0.940628 −0.470314 0.882499i \(-0.655859\pi\)
−0.470314 + 0.882499i \(0.655859\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −35.4853 −1.21215 −0.606077 0.795406i \(-0.707258\pi\)
−0.606077 + 0.795406i \(0.707258\pi\)
\(858\) 0 0
\(859\) −0.180340 −0.00615312 −0.00307656 0.999995i \(-0.500979\pi\)
−0.00307656 + 0.999995i \(0.500979\pi\)
\(860\) 0 0
\(861\) −20.5623 −0.700762
\(862\) 0 0
\(863\) −39.7082 −1.35168 −0.675841 0.737047i \(-0.736220\pi\)
−0.675841 + 0.737047i \(0.736220\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 19.4164 0.659416
\(868\) 0 0
\(869\) −11.0000 −0.373149
\(870\) 0 0
\(871\) 6.23607 0.211301
\(872\) 0 0
\(873\) 4.41641 0.149473
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 32.5066 1.09767 0.548835 0.835931i \(-0.315072\pi\)
0.548835 + 0.835931i \(0.315072\pi\)
\(878\) 0 0
\(879\) 37.2148 1.25522
\(880\) 0 0
\(881\) 3.29180 0.110903 0.0554517 0.998461i \(-0.482340\pi\)
0.0554517 + 0.998461i \(0.482340\pi\)
\(882\) 0 0
\(883\) 0.124612 0.00419352 0.00209676 0.999998i \(-0.499333\pi\)
0.00209676 + 0.999998i \(0.499333\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −11.4164 −0.383325 −0.191663 0.981461i \(-0.561388\pi\)
−0.191663 + 0.981461i \(0.561388\pi\)
\(888\) 0 0
\(889\) 9.70820 0.325603
\(890\) 0 0
\(891\) 48.0689 1.61037
\(892\) 0 0
\(893\) 25.8754 0.865887
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 20.1803 0.673802
\(898\) 0 0
\(899\) 59.9230 1.99854
\(900\) 0 0
\(901\) −22.0344 −0.734074
\(902\) 0 0
\(903\) −18.5623 −0.617715
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 23.9098 0.793913 0.396956 0.917837i \(-0.370066\pi\)
0.396956 + 0.917837i \(0.370066\pi\)
\(908\) 0 0
\(909\) −1.72949 −0.0573636
\(910\) 0 0
\(911\) −6.29180 −0.208457 −0.104228 0.994553i \(-0.533237\pi\)
−0.104228 + 0.994553i \(0.533237\pi\)
\(912\) 0 0
\(913\) 43.3050 1.43318
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −56.4508 −1.86417
\(918\) 0 0
\(919\) 22.5410 0.743560 0.371780 0.928321i \(-0.378748\pi\)
0.371780 + 0.928321i \(0.378748\pi\)
\(920\) 0 0
\(921\) 29.7426 0.980053
\(922\) 0 0
\(923\) −0.562306 −0.0185085
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 1.72949 0.0568039
\(928\) 0 0
\(929\) −54.4853 −1.78760 −0.893802 0.448461i \(-0.851972\pi\)
−0.893802 + 0.448461i \(0.851972\pi\)
\(930\) 0 0
\(931\) 44.7639 1.46708
\(932\) 0 0
\(933\) 14.2361 0.466068
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −40.4508 −1.32147 −0.660736 0.750619i \(-0.729756\pi\)
−0.660736 + 0.750619i \(0.729756\pi\)
\(938\) 0 0
\(939\) −18.4721 −0.602815
\(940\) 0 0
\(941\) 0.798374 0.0260262 0.0130131 0.999915i \(-0.495858\pi\)
0.0130131 + 0.999915i \(0.495858\pi\)
\(942\) 0 0
\(943\) 15.7082 0.511529
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 42.8885 1.39369 0.696845 0.717222i \(-0.254586\pi\)
0.696845 + 0.717222i \(0.254586\pi\)
\(948\) 0 0
\(949\) −14.6393 −0.475212
\(950\) 0 0
\(951\) −11.2361 −0.364354
\(952\) 0 0
\(953\) 51.0476 1.65359 0.826797 0.562501i \(-0.190161\pi\)
0.826797 + 0.562501i \(0.190161\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 103.284 3.33869
\(958\) 0 0
\(959\) −44.7426 −1.44482
\(960\) 0 0
\(961\) 3.27051 0.105500
\(962\) 0 0
\(963\) −5.45085 −0.175651
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −0.978714 −0.0314733 −0.0157367 0.999876i \(-0.505009\pi\)
−0.0157367 + 0.999876i \(0.505009\pi\)
\(968\) 0 0
\(969\) 14.7984 0.475392
\(970\) 0 0
\(971\) 17.9443 0.575859 0.287930 0.957652i \(-0.407033\pi\)
0.287930 + 0.957652i \(0.407033\pi\)
\(972\) 0 0
\(973\) 80.0132 2.56510
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 41.2705 1.32036 0.660180 0.751107i \(-0.270480\pi\)
0.660180 + 0.751107i \(0.270480\pi\)
\(978\) 0 0
\(979\) −2.94427 −0.0940993
\(980\) 0 0
\(981\) 5.67376 0.181149
\(982\) 0 0
\(983\) 23.7984 0.759050 0.379525 0.925181i \(-0.376087\pi\)
0.379525 + 0.925181i \(0.376087\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 43.3607 1.38019
\(988\) 0 0
\(989\) 14.1803 0.450909
\(990\) 0 0
\(991\) −25.3607 −0.805609 −0.402804 0.915286i \(-0.631964\pi\)
−0.402804 + 0.915286i \(0.631964\pi\)
\(992\) 0 0
\(993\) 38.8885 1.23409
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −12.2705 −0.388611 −0.194305 0.980941i \(-0.562245\pi\)
−0.194305 + 0.980941i \(0.562245\pi\)
\(998\) 0 0
\(999\) −6.76393 −0.214001
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8000.2.a.g.1.1 2
4.3 odd 2 8000.2.a.r.1.2 2
5.4 even 2 8000.2.a.q.1.2 2
8.3 odd 2 1000.2.a.b.1.1 2
8.5 even 2 2000.2.a.g.1.2 2
20.19 odd 2 8000.2.a.h.1.1 2
24.11 even 2 9000.2.a.o.1.2 2
40.3 even 4 1000.2.c.a.249.1 4
40.13 odd 4 2000.2.c.h.1249.4 4
40.19 odd 2 1000.2.a.c.1.2 yes 2
40.27 even 4 1000.2.c.a.249.4 4
40.29 even 2 2000.2.a.f.1.1 2
40.37 odd 4 2000.2.c.h.1249.1 4
120.59 even 2 9000.2.a.c.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1000.2.a.b.1.1 2 8.3 odd 2
1000.2.a.c.1.2 yes 2 40.19 odd 2
1000.2.c.a.249.1 4 40.3 even 4
1000.2.c.a.249.4 4 40.27 even 4
2000.2.a.f.1.1 2 40.29 even 2
2000.2.a.g.1.2 2 8.5 even 2
2000.2.c.h.1249.1 4 40.37 odd 4
2000.2.c.h.1249.4 4 40.13 odd 4
8000.2.a.g.1.1 2 1.1 even 1 trivial
8000.2.a.h.1.1 2 20.19 odd 2
8000.2.a.q.1.2 2 5.4 even 2
8000.2.a.r.1.2 2 4.3 odd 2
9000.2.a.c.1.1 2 120.59 even 2
9000.2.a.o.1.2 2 24.11 even 2