Properties

Label 81.10.c.c.55.1
Level $81$
Weight $10$
Character 81.55
Analytic conductor $41.718$
Analytic rank $0$
Dimension $2$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,10,Mod(28,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.28");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 81.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(41.7179027293\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 9)
Sato-Tate group: $\mathrm{U}(1)[D_{3}]$

Embedding invariants

Embedding label 55.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 81.55
Dual form 81.10.c.c.28.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(256.000 + 443.405i) q^{4} +(6290.00 - 10894.6i) q^{7} +(-59185.0 - 102511. i) q^{13} +(-131072. + 227023. i) q^{16} -976696. q^{19} +(976562. - 1.69146e6i) q^{25} +6.44096e6 q^{28} +(-845614. - 1.46465e6i) q^{31} -1.53845e7 q^{37} +(8.28854e6 - 1.43562e7i) q^{43} +(-5.89514e7 - 1.02107e8i) q^{49} +(3.03027e7 - 5.24859e7i) q^{52} +(5.89515e7 - 1.02107e8i) q^{61} -1.34218e8 q^{64} +(-5.62712e7 - 9.74645e7i) q^{67} +2.96368e8 q^{73} +(-2.50034e8 - 4.33072e8i) q^{76} +(3.08366e8 - 5.34106e8i) q^{79} -1.48909e9 q^{91} +(-6.44464e8 + 1.11624e9i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 512 q^{4} + 12580 q^{7} - 118370 q^{13} - 262144 q^{16} - 1953392 q^{19} + 1953125 q^{25} + 12881920 q^{28} - 1691228 q^{31} - 30768980 q^{37} + 16577080 q^{43} - 117902793 q^{49} + 60605440 q^{52}+ \cdots - 1288928270 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(3\) 0 0
\(4\) 256.000 + 443.405i 0.500000 + 0.866025i
\(5\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(6\) 0 0
\(7\) 6290.00 10894.6i 0.990169 1.71502i 0.373950 0.927449i \(-0.378003\pi\)
0.616219 0.787575i \(-0.288664\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(12\) 0 0
\(13\) −59185.0 102511.i −0.574734 0.995468i −0.996071 0.0885636i \(-0.971772\pi\)
0.421337 0.906904i \(-0.361561\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −131072. + 227023.i −0.500000 + 0.866025i
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) −976696. −1.71937 −0.859683 0.510828i \(-0.829339\pi\)
−0.859683 + 0.510828i \(0.829339\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(24\) 0 0
\(25\) 976562. 1.69146e6i 0.500000 0.866025i
\(26\) 0 0
\(27\) 0 0
\(28\) 6.44096e6 1.98034
\(29\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(30\) 0 0
\(31\) −845614. 1.46465e6i −0.164454 0.284843i 0.772007 0.635614i \(-0.219253\pi\)
−0.936461 + 0.350771i \(0.885920\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.53845e7 −1.34951 −0.674754 0.738043i \(-0.735750\pi\)
−0.674754 + 0.738043i \(0.735750\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(42\) 0 0
\(43\) 8.28854e6 1.43562e7i 0.369717 0.640369i −0.619804 0.784757i \(-0.712788\pi\)
0.989521 + 0.144387i \(0.0461211\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(48\) 0 0
\(49\) −5.89514e7 1.02107e8i −1.46087 2.53030i
\(50\) 0 0
\(51\) 0 0
\(52\) 3.03027e7 5.24859e7i 0.574734 0.995468i
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(60\) 0 0
\(61\) 5.89515e7 1.02107e8i 0.545143 0.944216i −0.453454 0.891279i \(-0.649809\pi\)
0.998598 0.0529367i \(-0.0168582\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −1.34218e8 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) −5.62712e7 9.74645e7i −0.341153 0.590894i 0.643494 0.765451i \(-0.277484\pi\)
−0.984647 + 0.174557i \(0.944151\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 2.96368e8 1.22146 0.610729 0.791839i \(-0.290876\pi\)
0.610729 + 0.791839i \(0.290876\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −2.50034e8 4.33072e8i −0.859683 1.48901i
\(77\) 0 0
\(78\) 0 0
\(79\) 3.08366e8 5.34106e8i 0.890727 1.54279i 0.0517223 0.998662i \(-0.483529\pi\)
0.839005 0.544124i \(-0.183138\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) −1.48909e9 −2.27633
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −6.44464e8 + 1.11624e9i −0.739139 + 1.28023i 0.213745 + 0.976890i \(0.431434\pi\)
−0.952884 + 0.303336i \(0.901899\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 1.00000e9 1.00000
\(101\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(102\) 0 0
\(103\) −3.11393e7 5.39348e7i −0.0272610 0.0472174i 0.852073 0.523423i \(-0.175345\pi\)
−0.879334 + 0.476205i \(0.842012\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 2.24018e9 1.52007 0.760035 0.649882i \(-0.225182\pi\)
0.760035 + 0.649882i \(0.225182\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.64889e9 + 2.85595e9i 0.990169 + 1.71502i
\(113\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.17897e9 + 2.04204e9i 0.500000 + 0.866025i
\(122\) 0 0
\(123\) 0 0
\(124\) 4.32954e8 7.49899e8i 0.164454 0.284843i
\(125\) 0 0
\(126\) 0 0
\(127\) −2.28028e9 −0.777808 −0.388904 0.921278i \(-0.627146\pi\)
−0.388904 + 0.921278i \(0.627146\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(132\) 0 0
\(133\) −6.14342e9 + 1.06407e10i −1.70246 + 2.94875i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(138\) 0 0
\(139\) 1.83035e9 + 3.17026e9i 0.415880 + 0.720325i 0.995520 0.0945470i \(-0.0301403\pi\)
−0.579640 + 0.814872i \(0.696807\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −3.93843e9 6.82156e9i −0.674754 1.16871i
\(149\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(150\) 0 0
\(151\) 6.35691e9 1.10105e10i 0.995061 1.72350i 0.411562 0.911382i \(-0.364983\pi\)
0.583499 0.812114i \(-0.301683\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 6.18468e9 + 1.07122e10i 0.812398 + 1.40711i 0.911181 + 0.412006i \(0.135172\pi\)
−0.0987834 + 0.995109i \(0.531495\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 4.86962e9 0.540320 0.270160 0.962815i \(-0.412923\pi\)
0.270160 + 0.962815i \(0.412923\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(168\) 0 0
\(169\) −1.70348e9 + 2.95051e9i −0.160637 + 0.278232i
\(170\) 0 0
\(171\) 0 0
\(172\) 8.48746e9 0.739435
\(173\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(174\) 0 0
\(175\) −1.22852e10 2.12785e10i −0.990169 1.71502i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −2.01652e10 −1.39652 −0.698262 0.715842i \(-0.746043\pi\)
−0.698262 + 0.715842i \(0.746043\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(192\) 0 0
\(193\) −1.16407e10 2.01623e10i −0.603908 1.04600i −0.992223 0.124472i \(-0.960276\pi\)
0.388315 0.921527i \(-0.373057\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 3.01831e10 5.22787e10i 1.46087 2.53030i
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) −1.97601e10 −0.893205 −0.446602 0.894733i \(-0.647366\pi\)
−0.446602 + 0.894733i \(0.647366\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 3.10300e10 1.14947
\(209\) 0 0
\(210\) 0 0
\(211\) −2.47409e10 4.28526e10i −0.859301 1.48835i −0.872597 0.488441i \(-0.837566\pi\)
0.0132960 0.999912i \(-0.495768\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −2.12756e10 −0.651349
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −3.68695e10 + 6.38598e10i −0.998378 + 1.72924i −0.449890 + 0.893084i \(0.648537\pi\)
−0.548488 + 0.836158i \(0.684796\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(228\) 0 0
\(229\) 3.59107e10 + 6.21991e10i 0.862907 + 1.49460i 0.869110 + 0.494618i \(0.164692\pi\)
−0.00620342 + 0.999981i \(0.501975\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(240\) 0 0
\(241\) 4.58997e10 7.95007e10i 0.876463 1.51808i 0.0212660 0.999774i \(-0.493230\pi\)
0.855197 0.518304i \(-0.173436\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 6.03664e10 1.09029
\(245\) 0 0
\(246\) 0 0
\(247\) 5.78058e10 + 1.00123e11i 0.988177 + 1.71157i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −3.43597e10 5.95128e10i −0.500000 0.866025i
\(257\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(258\) 0 0
\(259\) −9.67684e10 + 1.67608e11i −1.33624 + 2.31444i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 2.88108e10 4.99018e10i 0.341153 0.590894i
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −4.79471e10 −0.540009 −0.270004 0.962859i \(-0.587025\pi\)
−0.270004 + 0.962859i \(0.587025\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −9.57546e10 + 1.65852e11i −0.977239 + 1.69263i −0.304899 + 0.952385i \(0.598623\pi\)
−0.672340 + 0.740243i \(0.734711\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(282\) 0 0
\(283\) 1.02580e11 + 1.77673e11i 0.950653 + 1.64658i 0.744017 + 0.668161i \(0.232918\pi\)
0.206636 + 0.978418i \(0.433748\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −1.18588e11 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 7.58703e10 + 1.31411e11i 0.610729 + 1.05781i
\(293\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −1.04270e11 1.80601e11i −0.732166 1.26815i
\(302\) 0 0
\(303\) 0 0
\(304\) 1.28017e11 2.21733e11i 0.859683 1.48901i
\(305\) 0 0
\(306\) 0 0
\(307\) 2.80963e11 1.80520 0.902601 0.430477i \(-0.141655\pi\)
0.902601 + 0.430477i \(0.141655\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(312\) 0 0
\(313\) −4.10771e10 + 7.11476e10i −0.241908 + 0.418997i −0.961258 0.275651i \(-0.911107\pi\)
0.719350 + 0.694648i \(0.244440\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 3.15767e11 1.78145
\(317\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −2.31191e11 −1.14947
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 5.34738e10 9.26193e10i 0.244858 0.424107i −0.717233 0.696833i \(-0.754592\pi\)
0.962092 + 0.272726i \(0.0879252\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −2.23115e11 3.86447e11i −0.942313 1.63213i −0.761044 0.648700i \(-0.775313\pi\)
−0.181268 0.983434i \(-0.558020\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −9.75569e11 −3.80570
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(348\) 0 0
\(349\) 8.58865e10 1.48760e11i 0.309892 0.536749i −0.668446 0.743760i \(-0.733040\pi\)
0.978339 + 0.207011i \(0.0663737\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 6.31247e11 1.95622
\(362\) 0 0
\(363\) 0 0
\(364\) −3.81208e11 6.60272e11i −1.13817 1.97136i
\(365\) 0 0
\(366\) 0 0
\(367\) 2.80922e11 4.86571e11i 0.808329 1.40007i −0.105692 0.994399i \(-0.533706\pi\)
0.914021 0.405667i \(-0.132961\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 1.95306e10 + 3.38280e10i 0.0522427 + 0.0904871i 0.890964 0.454074i \(-0.150030\pi\)
−0.838721 + 0.544561i \(0.816696\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 7.69425e11 1.91553 0.957767 0.287546i \(-0.0928396\pi\)
0.957767 + 0.287546i \(0.0928396\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) −6.59931e11 −1.47828
\(389\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −2.21693e11 −0.447913 −0.223957 0.974599i \(-0.571897\pi\)
−0.223957 + 0.974599i \(0.571897\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 2.56000e11 + 4.43405e11i 0.500000 + 0.866025i
\(401\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(402\) 0 0
\(403\) −1.00095e11 + 1.73370e11i −0.189035 + 0.327417i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 5.65912e11 + 9.80188e11i 0.999986 + 1.73203i 0.504617 + 0.863343i \(0.331634\pi\)
0.495369 + 0.868683i \(0.335033\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 1.59433e10 2.76146e10i 0.0272610 0.0472174i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(420\) 0 0
\(421\) −5.98593e11 + 1.03679e12i −0.928672 + 1.60851i −0.143125 + 0.989705i \(0.545715\pi\)
−0.785547 + 0.618802i \(0.787618\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −7.41610e11 1.28451e12i −1.07957 1.86987i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 6.13416e11 0.838609 0.419304 0.907846i \(-0.362274\pi\)
0.419304 + 0.907846i \(0.362274\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 5.73486e11 + 9.93307e11i 0.760035 + 1.31642i
\(437\) 0 0
\(438\) 0 0
\(439\) 2.31977e11 4.01796e11i 0.298095 0.516316i −0.677605 0.735426i \(-0.736982\pi\)
0.975700 + 0.219110i \(0.0703155\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −8.44230e11 + 1.46225e12i −0.990169 + 1.71502i
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 7.93027e11 1.37356e12i 0.850482 1.47308i −0.0302922 0.999541i \(-0.509644\pi\)
0.880774 0.473537i \(-0.157023\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(462\) 0 0
\(463\) 9.24615e11 + 1.60148e12i 0.935075 + 1.61960i 0.774501 + 0.632573i \(0.218001\pi\)
0.160574 + 0.987024i \(0.448665\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) −1.41578e12 −1.35120
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −9.53805e11 + 1.65204e12i −0.859683 + 1.48901i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(480\) 0 0
\(481\) 9.10531e11 + 1.57709e12i 0.775607 + 1.34339i
\(482\) 0 0
\(483\) 0 0
\(484\) −6.03635e11 + 1.04553e12i −0.500000 + 0.866025i
\(485\) 0 0
\(486\) 0 0
\(487\) 1.88740e12 1.52049 0.760244 0.649638i \(-0.225079\pi\)
0.760244 + 0.649638i \(0.225079\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 4.43345e11 0.328908
\(497\) 0 0
\(498\) 0 0
\(499\) −1.08719e12 1.88307e12i −0.784969 1.35961i −0.929018 0.370035i \(-0.879346\pi\)
0.144049 0.989571i \(-0.453988\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −5.83753e11 1.01109e12i −0.388904 0.673601i
\(509\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(510\) 0 0
\(511\) 1.86416e12 3.22881e12i 1.20945 2.09483i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 3.42183e12 1.99987 0.999934 0.0115124i \(-0.00366460\pi\)
0.999934 + 0.0115124i \(0.00366460\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 9.00576e11 1.55984e12i 0.500000 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) −6.29086e12 −3.40493
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −8.90575e11 −0.446974 −0.223487 0.974707i \(-0.571744\pi\)
−0.223487 + 0.974707i \(0.571744\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 4.00416e11 6.93541e11i 0.191236 0.331230i −0.754424 0.656387i \(-0.772084\pi\)
0.945660 + 0.325157i \(0.105417\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −3.87925e12 6.71905e12i −1.76394 3.05524i
\(554\) 0 0
\(555\) 0 0
\(556\) −9.37140e11 + 1.62317e12i −0.415880 + 0.720325i
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) −1.96223e12 −0.849956
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(570\) 0 0
\(571\) 1.75526e11 + 3.04021e11i 0.0691003 + 0.119685i 0.898506 0.438962i \(-0.144654\pi\)
−0.829405 + 0.558647i \(0.811320\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 4.65164e12 1.74709 0.873544 0.486745i \(-0.161816\pi\)
0.873544 + 0.486745i \(0.161816\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(588\) 0 0
\(589\) 8.25908e11 + 1.43051e12i 0.282757 + 0.489749i
\(590\) 0 0
\(591\) 0 0
\(592\) 2.01648e12 3.49264e12i 0.674754 1.16871i
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(600\) 0 0
\(601\) 3.03806e12 5.26207e12i 0.949863 1.64521i 0.204154 0.978939i \(-0.434556\pi\)
0.745709 0.666272i \(-0.232111\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 6.50947e12 1.99012
\(605\) 0 0
\(606\) 0 0
\(607\) 1.94323e12 + 3.36577e12i 0.580998 + 1.00632i 0.995361 + 0.0962067i \(0.0306710\pi\)
−0.414363 + 0.910112i \(0.635996\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −6.75823e12 −1.93313 −0.966564 0.256426i \(-0.917455\pi\)
−0.966564 + 0.256426i \(0.917455\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(618\) 0 0
\(619\) −1.31633e10 + 2.27995e10i −0.00360376 + 0.00624190i −0.867822 0.496876i \(-0.834480\pi\)
0.864218 + 0.503118i \(0.167814\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −1.90735e12 3.30362e12i −0.500000 0.866025i
\(626\) 0 0
\(627\) 0 0
\(628\) −3.16656e12 + 5.48464e12i −0.812398 + 1.40711i
\(629\) 0 0
\(630\) 0 0
\(631\) −1.41926e12 −0.356394 −0.178197 0.983995i \(-0.557026\pi\)
−0.178197 + 0.983995i \(0.557026\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −6.97808e12 + 1.20864e13i −1.67922 + 2.90850i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(642\) 0 0
\(643\) 4.10827e12 + 7.11574e12i 0.947785 + 1.64161i 0.750077 + 0.661351i \(0.230017\pi\)
0.197709 + 0.980261i \(0.436650\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 1.24662e12 + 2.15921e12i 0.270160 + 0.467931i
\(653\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(660\) 0 0
\(661\) −4.57672e12 7.92712e12i −0.932498 1.61513i −0.779035 0.626980i \(-0.784291\pi\)
−0.153463 0.988154i \(-0.549043\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 4.04114e12 6.99945e12i 0.759339 1.31521i −0.183849 0.982954i \(-0.558856\pi\)
0.943188 0.332259i \(-0.107811\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −1.74436e12 −0.321275
\(677\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(678\) 0 0
\(679\) 8.10736e12 + 1.40424e13i 1.46374 + 2.53528i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 2.17279e12 + 3.76338e12i 0.369717 + 0.640369i
\(689\) 0 0
\(690\) 0 0
\(691\) −5.87841e12 + 1.01817e13i −0.980863 + 1.69890i −0.321817 + 0.946802i \(0.604294\pi\)
−0.659046 + 0.752103i \(0.729040\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 6.29000e12 1.08946e13i 0.990169 1.71502i
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 1.50260e13 2.32030
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −4.28928e12 + 7.42925e12i −0.637494 + 1.10417i 0.348486 + 0.937314i \(0.386696\pi\)
−0.985981 + 0.166859i \(0.946638\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) −7.83465e11 −0.107972
\(722\) 0 0
\(723\) 0 0
\(724\) −5.16229e12 8.94134e12i −0.698262 1.20943i
\(725\) 0 0
\(726\) 0 0
\(727\) −5.58681e12 + 9.67663e12i −0.741752 + 1.28475i 0.209945 + 0.977713i \(0.432672\pi\)
−0.951697 + 0.307039i \(0.900662\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 7.18634e12 + 1.24471e13i 0.919476 + 1.59258i 0.800213 + 0.599716i \(0.204720\pi\)
0.119262 + 0.992863i \(0.461947\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −7.10029e12 −0.875742 −0.437871 0.899038i \(-0.644267\pi\)
−0.437871 + 0.899038i \(0.644267\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −8.45090e12 1.46374e13i −0.969446 1.67913i −0.697164 0.716911i \(-0.745555\pi\)
−0.272281 0.962218i \(-0.587778\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −1.73497e13 −1.92026 −0.960129 0.279557i \(-0.909812\pi\)
−0.960129 + 0.279557i \(0.909812\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(762\) 0 0
\(763\) 1.40907e13 2.44059e13i 1.50513 2.60696i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −3.09305e12 5.35733e12i −0.318947 0.552433i 0.661321 0.750103i \(-0.269996\pi\)
−0.980269 + 0.197670i \(0.936663\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 5.96003e12 1.03231e13i 0.603908 1.04600i
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) −3.30318e12 −0.328908
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 3.09075e13 2.92174
\(785\) 0 0
\(786\) 0 0
\(787\) −9.14069e12 1.58321e13i −0.849361 1.47114i −0.881779 0.471663i \(-0.843654\pi\)
0.0324177 0.999474i \(-0.489679\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −1.39562e13 −1.25325
\(794\) 0 0
\(795\) 0 0
\(796\) −5.05859e12 8.76174e12i −0.446602 0.773538i
\(797\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) −1.98398e12 −0.161044 −0.0805218 0.996753i \(-0.525659\pi\)
−0.0805218 + 0.996753i \(0.525659\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −8.09538e12 + 1.40216e13i −0.635679 + 1.10103i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(822\) 0 0
\(823\) −9.30551e12 1.61176e13i −0.707035 1.22462i −0.965952 0.258721i \(-0.916699\pi\)
0.258917 0.965900i \(-0.416634\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) −2.41982e13 −1.77946 −0.889730 0.456488i \(-0.849107\pi\)
−0.889730 + 0.456488i \(0.849107\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 7.94368e12 + 1.37589e13i 0.574734 + 0.995468i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(840\) 0 0
\(841\) 7.25357e12 + 1.25636e13i 0.500000 + 0.866025i
\(842\) 0 0
\(843\) 0 0
\(844\) 1.26674e13 2.19405e13i 0.859301 1.48835i
\(845\) 0 0
\(846\) 0 0
\(847\) 2.96630e13 1.98034
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 7.42382e12 1.28584e13i 0.480128 0.831606i −0.519612 0.854402i \(-0.673924\pi\)
0.999740 + 0.0227966i \(0.00725700\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(858\) 0 0
\(859\) 1.44246e13 + 2.49841e13i 0.903927 + 1.56565i 0.822352 + 0.568979i \(0.192662\pi\)
0.0815748 + 0.996667i \(0.474005\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) −5.44657e12 9.43373e12i −0.325675 0.564085i
\(869\) 0 0
\(870\) 0 0
\(871\) −6.66082e12 + 1.15369e13i −0.392144 + 0.679214i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1.23230e13 2.13440e13i −0.703424 1.21837i −0.967257 0.253797i \(-0.918320\pi\)
0.263834 0.964568i \(-0.415013\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 3.38683e13 1.87487 0.937434 0.348163i \(-0.113194\pi\)
0.937434 + 0.348163i \(0.113194\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(888\) 0 0
\(889\) −1.43430e13 + 2.48428e13i −0.770161 + 1.33396i
\(890\) 0 0
\(891\) 0 0
\(892\) −3.77544e13 −1.99676
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 5.10733e12 8.84615e12i 0.250588 0.434032i −0.713100 0.701063i \(-0.752709\pi\)
0.963688 + 0.267031i \(0.0860426\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −1.83863e13 + 3.18460e13i −0.862907 + 1.49460i
\(917\) 0 0
\(918\) 0 0
\(919\) −6.39629e12 −0.295807 −0.147903 0.989002i \(-0.547252\pi\)
−0.147903 + 0.989002i \(0.547252\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −1.50239e13 + 2.60222e13i −0.674754 + 1.16871i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(930\) 0 0
\(931\) 5.75776e13 + 9.97273e13i 2.51177 + 4.35051i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −3.40492e13 −1.44304 −0.721521 0.692392i \(-0.756557\pi\)
−0.721521 + 0.692392i \(0.756557\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(948\) 0 0
\(949\) −1.75406e13 3.03811e13i −0.702013 1.21592i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 1.17897e13 2.04203e13i 0.445910 0.772338i
\(962\) 0 0
\(963\) 0 0
\(964\) 4.70013e13 1.75293
\(965\) 0 0
\(966\) 0 0
\(967\) −5.26943e12 9.12691e12i −0.193796 0.335664i 0.752709 0.658353i \(-0.228747\pi\)
−0.946505 + 0.322689i \(0.895413\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 4.60517e13 1.64717
\(974\) 0 0
\(975\) 0 0
\(976\) 1.54538e13 + 2.67667e13i 0.545143 + 0.944216i
\(977\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −2.95965e13 + 5.12627e13i −0.988177 + 1.71157i
\(989\) 0 0
\(990\) 0 0
\(991\) 3.82277e13 1.25906 0.629531 0.776976i \(-0.283247\pi\)
0.629531 + 0.776976i \(0.283247\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 3.08946e13 5.35110e13i 0.990271 1.71520i 0.374624 0.927177i \(-0.377772\pi\)
0.615647 0.788022i \(-0.288895\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.10.c.c.55.1 2
3.2 odd 2 CM 81.10.c.c.55.1 2
9.2 odd 6 9.10.a.b.1.1 1
9.4 even 3 inner 81.10.c.c.28.1 2
9.5 odd 6 inner 81.10.c.c.28.1 2
9.7 even 3 9.10.a.b.1.1 1
36.7 odd 6 144.10.a.h.1.1 1
36.11 even 6 144.10.a.h.1.1 1
45.2 even 12 225.10.b.f.199.1 2
45.7 odd 12 225.10.b.f.199.1 2
45.29 odd 6 225.10.a.d.1.1 1
45.34 even 6 225.10.a.d.1.1 1
45.38 even 12 225.10.b.f.199.2 2
45.43 odd 12 225.10.b.f.199.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9.10.a.b.1.1 1 9.2 odd 6
9.10.a.b.1.1 1 9.7 even 3
81.10.c.c.28.1 2 9.4 even 3 inner
81.10.c.c.28.1 2 9.5 odd 6 inner
81.10.c.c.55.1 2 1.1 even 1 trivial
81.10.c.c.55.1 2 3.2 odd 2 CM
144.10.a.h.1.1 1 36.7 odd 6
144.10.a.h.1.1 1 36.11 even 6
225.10.a.d.1.1 1 45.29 odd 6
225.10.a.d.1.1 1 45.34 even 6
225.10.b.f.199.1 2 45.2 even 12
225.10.b.f.199.1 2 45.7 odd 12
225.10.b.f.199.2 2 45.38 even 12
225.10.b.f.199.2 2 45.43 odd 12