Properties

Label 81.2.e.a.10.2
Level $81$
Weight $2$
Character 81.10
Analytic conductor $0.647$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,2,Mod(10,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.10");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 81.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.646788256372\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: 12.0.1952986685049.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 27 x^{10} - 80 x^{9} + 186 x^{8} - 330 x^{7} + 463 x^{6} - 504 x^{5} + 420 x^{4} + \cdots + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 10.2
Root \(0.500000 - 1.68614i\) of defining polynomial
Character \(\chi\) \(=\) 81.10
Dual form 81.2.e.a.73.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.417037 + 2.36514i) q^{2} +(-3.54056 + 1.28866i) q^{4} +(-0.0713060 - 0.0598329i) q^{5} +(0.544891 + 0.198324i) q^{7} +(-2.12277 - 3.67675i) q^{8} +(0.111776 - 0.193601i) q^{10} +(2.36944 - 1.98820i) q^{11} +(0.729623 - 4.13790i) q^{13} +(-0.241824 + 1.37145i) q^{14} +(2.03816 - 1.71022i) q^{16} +(-0.995493 + 1.72424i) q^{17} +(1.92271 + 3.33023i) q^{19} +(0.329567 + 0.119953i) q^{20} +(5.69050 + 4.77489i) q^{22} +(-4.18428 + 1.52295i) q^{23} +(-0.866736 - 4.91551i) q^{25} +10.0910 q^{26} -2.18479 q^{28} +(-1.11126 - 6.30229i) q^{29} +(-1.55754 + 0.566898i) q^{31} +(-1.60967 - 1.35067i) q^{32} +(-4.49323 - 1.63540i) q^{34} +(-0.0269877 - 0.0467441i) q^{35} +(-2.01505 + 3.49016i) q^{37} +(-7.07461 + 5.93630i) q^{38} +(-0.0686240 + 0.389186i) q^{40} +(0.190345 - 1.07950i) q^{41} +(-5.28657 + 4.43596i) q^{43} +(-5.82704 + 10.0927i) q^{44} +(-5.34699 - 9.26126i) q^{46} +(3.37650 + 1.22894i) q^{47} +(-5.10474 - 4.28338i) q^{49} +(11.2644 - 4.09990i) q^{50} +(2.74906 + 15.5907i) q^{52} -5.40034 q^{53} -0.287915 q^{55} +(-0.427492 - 2.42443i) q^{56} +(14.4423 - 5.25657i) q^{58} +(7.87850 + 6.61085i) q^{59} +(12.4005 + 4.51341i) q^{61} +(-1.99034 - 3.44738i) q^{62} +(5.18386 - 8.97871i) q^{64} +(-0.299609 + 0.251402i) q^{65} +(-1.53458 + 8.70304i) q^{67} +(1.30264 - 7.38764i) q^{68} +(0.0993013 - 0.0833237i) q^{70} +(0.572473 - 0.991553i) q^{71} +(-0.0977361 - 0.169284i) q^{73} +(-9.09506 - 3.31033i) q^{74} +(-11.0990 - 9.31317i) q^{76} +(1.68539 - 0.613433i) q^{77} +(-1.25166 - 7.09849i) q^{79} -0.247661 q^{80} +2.63255 q^{82} +(2.58744 + 14.6741i) q^{83} +(0.174151 - 0.0633858i) q^{85} +(-12.6963 - 10.6535i) q^{86} +(-12.3399 - 4.49135i) q^{88} +(-0.776563 - 1.34505i) q^{89} +(1.21821 - 2.11000i) q^{91} +(12.8521 - 10.7842i) q^{92} +(-1.49850 + 8.49839i) q^{94} +(0.0621565 - 0.352507i) q^{95} +(4.05661 - 3.40390i) q^{97} +(8.00191 - 13.8597i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{2} - 6 q^{4} + 3 q^{5} - 6 q^{7} - 6 q^{8} - 3 q^{10} - 3 q^{11} - 6 q^{13} - 15 q^{14} - 9 q^{17} - 3 q^{19} + 3 q^{20} + 3 q^{22} + 12 q^{23} + 3 q^{25} + 30 q^{26} - 12 q^{28} + 6 q^{29}+ \cdots + 45 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{4}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.417037 + 2.36514i 0.294890 + 1.67240i 0.667650 + 0.744475i \(0.267300\pi\)
−0.372760 + 0.927928i \(0.621589\pi\)
\(3\) 0 0
\(4\) −3.54056 + 1.28866i −1.77028 + 0.644329i
\(5\) −0.0713060 0.0598329i −0.0318890 0.0267581i 0.626704 0.779258i \(-0.284404\pi\)
−0.658593 + 0.752499i \(0.728848\pi\)
\(6\) 0 0
\(7\) 0.544891 + 0.198324i 0.205950 + 0.0749595i 0.442935 0.896554i \(-0.353937\pi\)
−0.236986 + 0.971513i \(0.576159\pi\)
\(8\) −2.12277 3.67675i −0.750514 1.29993i
\(9\) 0 0
\(10\) 0.111776 0.193601i 0.0353465 0.0612220i
\(11\) 2.36944 1.98820i 0.714413 0.599464i −0.211421 0.977395i \(-0.567809\pi\)
0.925834 + 0.377932i \(0.123365\pi\)
\(12\) 0 0
\(13\) 0.729623 4.13790i 0.202361 1.14765i −0.699178 0.714948i \(-0.746450\pi\)
0.901539 0.432699i \(-0.142439\pi\)
\(14\) −0.241824 + 1.37145i −0.0646301 + 0.366536i
\(15\) 0 0
\(16\) 2.03816 1.71022i 0.509540 0.427555i
\(17\) −0.995493 + 1.72424i −0.241443 + 0.418191i −0.961125 0.276112i \(-0.910954\pi\)
0.719683 + 0.694303i \(0.244287\pi\)
\(18\) 0 0
\(19\) 1.92271 + 3.33023i 0.441100 + 0.764008i 0.997771 0.0667249i \(-0.0212550\pi\)
−0.556671 + 0.830733i \(0.687922\pi\)
\(20\) 0.329567 + 0.119953i 0.0736935 + 0.0268222i
\(21\) 0 0
\(22\) 5.69050 + 4.77489i 1.21322 + 1.01801i
\(23\) −4.18428 + 1.52295i −0.872482 + 0.317558i −0.739172 0.673517i \(-0.764783\pi\)
−0.133310 + 0.991074i \(0.542561\pi\)
\(24\) 0 0
\(25\) −0.866736 4.91551i −0.173347 0.983101i
\(26\) 10.0910 1.97900
\(27\) 0 0
\(28\) −2.18479 −0.412887
\(29\) −1.11126 6.30229i −0.206356 1.17031i −0.895291 0.445482i \(-0.853032\pi\)
0.688935 0.724823i \(-0.258079\pi\)
\(30\) 0 0
\(31\) −1.55754 + 0.566898i −0.279743 + 0.101818i −0.478081 0.878316i \(-0.658668\pi\)
0.198339 + 0.980134i \(0.436445\pi\)
\(32\) −1.60967 1.35067i −0.284552 0.238767i
\(33\) 0 0
\(34\) −4.49323 1.63540i −0.770582 0.280469i
\(35\) −0.0269877 0.0467441i −0.00456176 0.00790120i
\(36\) 0 0
\(37\) −2.01505 + 3.49016i −0.331272 + 0.573779i −0.982761 0.184878i \(-0.940811\pi\)
0.651490 + 0.758657i \(0.274144\pi\)
\(38\) −7.07461 + 5.93630i −1.14765 + 0.962996i
\(39\) 0 0
\(40\) −0.0686240 + 0.389186i −0.0108504 + 0.0615358i
\(41\) 0.190345 1.07950i 0.0297270 0.168590i −0.966330 0.257306i \(-0.917165\pi\)
0.996057 + 0.0887159i \(0.0282763\pi\)
\(42\) 0 0
\(43\) −5.28657 + 4.43596i −0.806194 + 0.676477i −0.949696 0.313173i \(-0.898608\pi\)
0.143502 + 0.989650i \(0.454164\pi\)
\(44\) −5.82704 + 10.0927i −0.878459 + 1.52154i
\(45\) 0 0
\(46\) −5.34699 9.26126i −0.788370 1.36550i
\(47\) 3.37650 + 1.22894i 0.492513 + 0.179260i 0.576323 0.817222i \(-0.304487\pi\)
−0.0838106 + 0.996482i \(0.526709\pi\)
\(48\) 0 0
\(49\) −5.10474 4.28338i −0.729248 0.611912i
\(50\) 11.2644 4.09990i 1.59302 0.579813i
\(51\) 0 0
\(52\) 2.74906 + 15.5907i 0.381226 + 2.16204i
\(53\) −5.40034 −0.741793 −0.370897 0.928674i \(-0.620950\pi\)
−0.370897 + 0.928674i \(0.620950\pi\)
\(54\) 0 0
\(55\) −0.287915 −0.0388224
\(56\) −0.427492 2.42443i −0.0571260 0.323978i
\(57\) 0 0
\(58\) 14.4423 5.25657i 1.89637 0.690222i
\(59\) 7.87850 + 6.61085i 1.02569 + 0.860659i 0.990332 0.138715i \(-0.0442973\pi\)
0.0353615 + 0.999375i \(0.488742\pi\)
\(60\) 0 0
\(61\) 12.4005 + 4.51341i 1.58772 + 0.577883i 0.976864 0.213860i \(-0.0686036\pi\)
0.610855 + 0.791742i \(0.290826\pi\)
\(62\) −1.99034 3.44738i −0.252774 0.437817i
\(63\) 0 0
\(64\) 5.18386 8.97871i 0.647982 1.12234i
\(65\) −0.299609 + 0.251402i −0.0371619 + 0.0311825i
\(66\) 0 0
\(67\) −1.53458 + 8.70304i −0.187479 + 1.06324i 0.735250 + 0.677796i \(0.237065\pi\)
−0.922729 + 0.385449i \(0.874046\pi\)
\(68\) 1.30264 7.38764i 0.157968 0.895883i
\(69\) 0 0
\(70\) 0.0993013 0.0833237i 0.0118688 0.00995909i
\(71\) 0.572473 0.991553i 0.0679401 0.117676i −0.830054 0.557683i \(-0.811691\pi\)
0.897994 + 0.440007i \(0.145024\pi\)
\(72\) 0 0
\(73\) −0.0977361 0.169284i −0.0114391 0.0198132i 0.860249 0.509874i \(-0.170308\pi\)
−0.871688 + 0.490061i \(0.836975\pi\)
\(74\) −9.09506 3.31033i −1.05728 0.384818i
\(75\) 0 0
\(76\) −11.0990 9.31317i −1.27314 1.06829i
\(77\) 1.68539 0.613433i 0.192069 0.0699072i
\(78\) 0 0
\(79\) −1.25166 7.09849i −0.140822 0.798642i −0.970627 0.240589i \(-0.922659\pi\)
0.829805 0.558054i \(-0.188452\pi\)
\(80\) −0.247661 −0.0276893
\(81\) 0 0
\(82\) 2.63255 0.290717
\(83\) 2.58744 + 14.6741i 0.284008 + 1.61069i 0.708808 + 0.705402i \(0.249233\pi\)
−0.424800 + 0.905287i \(0.639656\pi\)
\(84\) 0 0
\(85\) 0.174151 0.0633858i 0.0188893 0.00687516i
\(86\) −12.6963 10.6535i −1.36908 1.14879i
\(87\) 0 0
\(88\) −12.3399 4.49135i −1.31544 0.478780i
\(89\) −0.776563 1.34505i −0.0823155 0.142575i 0.821929 0.569590i \(-0.192898\pi\)
−0.904244 + 0.427016i \(0.859565\pi\)
\(90\) 0 0
\(91\) 1.21821 2.11000i 0.127703 0.221189i
\(92\) 12.8521 10.7842i 1.33993 1.12433i
\(93\) 0 0
\(94\) −1.49850 + 8.49839i −0.154558 + 0.876542i
\(95\) 0.0621565 0.352507i 0.00637712 0.0361665i
\(96\) 0 0
\(97\) 4.05661 3.40390i 0.411887 0.345614i −0.413180 0.910649i \(-0.635582\pi\)
0.825067 + 0.565035i \(0.191137\pi\)
\(98\) 8.00191 13.8597i 0.808315 1.40004i
\(99\) 0 0
\(100\) 9.40314 + 16.2867i 0.940314 + 1.62867i
\(101\) −6.83061 2.48614i −0.679671 0.247380i −0.0209647 0.999780i \(-0.506674\pi\)
−0.658706 + 0.752400i \(0.728896\pi\)
\(102\) 0 0
\(103\) 4.90374 + 4.11472i 0.483179 + 0.405436i 0.851574 0.524234i \(-0.175648\pi\)
−0.368395 + 0.929669i \(0.620093\pi\)
\(104\) −16.7629 + 6.10118i −1.64373 + 0.598270i
\(105\) 0 0
\(106\) −2.25214 12.7725i −0.218747 1.24058i
\(107\) 5.54365 0.535925 0.267963 0.963429i \(-0.413650\pi\)
0.267963 + 0.963429i \(0.413650\pi\)
\(108\) 0 0
\(109\) −6.23137 −0.596857 −0.298428 0.954432i \(-0.596462\pi\)
−0.298428 + 0.954432i \(0.596462\pi\)
\(110\) −0.120071 0.680957i −0.0114483 0.0649267i
\(111\) 0 0
\(112\) 1.44975 0.527668i 0.136989 0.0498599i
\(113\) 9.07301 + 7.61316i 0.853517 + 0.716186i 0.960561 0.278068i \(-0.0896941\pi\)
−0.107044 + 0.994254i \(0.534139\pi\)
\(114\) 0 0
\(115\) 0.389487 + 0.141762i 0.0363198 + 0.0132193i
\(116\) 12.0560 + 20.8816i 1.11937 + 1.93881i
\(117\) 0 0
\(118\) −12.3499 + 21.3907i −1.13690 + 1.96917i
\(119\) −0.884395 + 0.742096i −0.0810724 + 0.0680278i
\(120\) 0 0
\(121\) −0.248809 + 1.41107i −0.0226190 + 0.128279i
\(122\) −5.50336 + 31.2111i −0.498250 + 2.82572i
\(123\) 0 0
\(124\) 4.78403 4.01427i 0.429618 0.360492i
\(125\) −0.465014 + 0.805428i −0.0415921 + 0.0720396i
\(126\) 0 0
\(127\) −5.76469 9.98473i −0.511533 0.886002i −0.999911 0.0133693i \(-0.995744\pi\)
0.488377 0.872633i \(-0.337589\pi\)
\(128\) 19.4486 + 7.07872i 1.71903 + 0.625676i
\(129\) 0 0
\(130\) −0.719547 0.603772i −0.0631085 0.0529543i
\(131\) −8.46830 + 3.08221i −0.739879 + 0.269294i −0.684340 0.729163i \(-0.739910\pi\)
−0.0555383 + 0.998457i \(0.517688\pi\)
\(132\) 0 0
\(133\) 0.387203 + 2.19594i 0.0335747 + 0.190412i
\(134\) −21.2238 −1.83346
\(135\) 0 0
\(136\) 8.45283 0.724824
\(137\) −2.00047 11.3452i −0.170911 0.969287i −0.942758 0.333478i \(-0.891778\pi\)
0.771846 0.635809i \(-0.219333\pi\)
\(138\) 0 0
\(139\) −1.60108 + 0.582746i −0.135802 + 0.0494279i −0.409027 0.912522i \(-0.634132\pi\)
0.273225 + 0.961950i \(0.411910\pi\)
\(140\) 0.155789 + 0.130722i 0.0131666 + 0.0110481i
\(141\) 0 0
\(142\) 2.58390 + 0.940462i 0.216836 + 0.0789219i
\(143\) −6.49816 11.2551i −0.543403 0.941202i
\(144\) 0 0
\(145\) −0.297844 + 0.515881i −0.0247346 + 0.0428416i
\(146\) 0.359620 0.301757i 0.0297623 0.0249736i
\(147\) 0 0
\(148\) 2.63677 14.9538i 0.216741 1.22920i
\(149\) 3.75996 21.3238i 0.308028 1.74691i −0.300869 0.953666i \(-0.597277\pi\)
0.608897 0.793249i \(-0.291612\pi\)
\(150\) 0 0
\(151\) −3.63222 + 3.04779i −0.295586 + 0.248026i −0.778504 0.627640i \(-0.784021\pi\)
0.482918 + 0.875665i \(0.339577\pi\)
\(152\) 8.16296 14.1387i 0.662104 1.14680i
\(153\) 0 0
\(154\) 2.15373 + 3.73036i 0.173552 + 0.300601i
\(155\) 0.144981 + 0.0527688i 0.0116452 + 0.00423849i
\(156\) 0 0
\(157\) −0.160261 0.134475i −0.0127902 0.0107323i 0.636370 0.771384i \(-0.280435\pi\)
−0.649160 + 0.760652i \(0.724880\pi\)
\(158\) 16.2669 5.92067i 1.29412 0.471023i
\(159\) 0 0
\(160\) 0.0339644 + 0.192622i 0.00268513 + 0.0152281i
\(161\) −2.58202 −0.203491
\(162\) 0 0
\(163\) 5.62384 0.440493 0.220247 0.975444i \(-0.429314\pi\)
0.220247 + 0.975444i \(0.429314\pi\)
\(164\) 0.717181 + 4.06733i 0.0560024 + 0.317605i
\(165\) 0 0
\(166\) −33.6271 + 12.2393i −2.60997 + 0.949951i
\(167\) −12.7780 10.7220i −0.988791 0.829695i −0.00339914 0.999994i \(-0.501082\pi\)
−0.985392 + 0.170300i \(0.945526\pi\)
\(168\) 0 0
\(169\) −4.37386 1.59195i −0.336451 0.122458i
\(170\) 0.222544 + 0.385457i 0.0170683 + 0.0295632i
\(171\) 0 0
\(172\) 13.0010 22.5183i 0.991315 1.71701i
\(173\) −14.5565 + 12.2143i −1.10671 + 0.928639i −0.997858 0.0654187i \(-0.979162\pi\)
−0.108851 + 0.994058i \(0.534717\pi\)
\(174\) 0 0
\(175\) 0.502587 2.85031i 0.0379920 0.215463i
\(176\) 1.42905 8.10453i 0.107718 0.610902i
\(177\) 0 0
\(178\) 2.85736 2.39761i 0.214168 0.179709i
\(179\) 8.11761 14.0601i 0.606739 1.05090i −0.385035 0.922902i \(-0.625811\pi\)
0.991774 0.128001i \(-0.0408560\pi\)
\(180\) 0 0
\(181\) 1.49579 + 2.59078i 0.111181 + 0.192571i 0.916247 0.400614i \(-0.131203\pi\)
−0.805066 + 0.593186i \(0.797870\pi\)
\(182\) 5.49848 + 2.00128i 0.407575 + 0.148345i
\(183\) 0 0
\(184\) 14.4818 + 12.1517i 1.06761 + 0.895833i
\(185\) 0.352512 0.128304i 0.0259172 0.00943308i
\(186\) 0 0
\(187\) 1.06938 + 6.06473i 0.0782005 + 0.443497i
\(188\) −13.5384 −0.987388
\(189\) 0 0
\(190\) 0.859649 0.0623655
\(191\) 0.391371 + 2.21958i 0.0283186 + 0.160603i 0.995688 0.0927685i \(-0.0295716\pi\)
−0.967369 + 0.253371i \(0.918461\pi\)
\(192\) 0 0
\(193\) 0.827186 0.301071i 0.0595422 0.0216716i −0.312077 0.950057i \(-0.601025\pi\)
0.371620 + 0.928385i \(0.378803\pi\)
\(194\) 9.74245 + 8.17489i 0.699467 + 0.586923i
\(195\) 0 0
\(196\) 23.5934 + 8.58731i 1.68525 + 0.613379i
\(197\) 10.1383 + 17.5600i 0.722322 + 1.25110i 0.960067 + 0.279771i \(0.0902586\pi\)
−0.237744 + 0.971328i \(0.576408\pi\)
\(198\) 0 0
\(199\) 9.50472 16.4627i 0.673772 1.16701i −0.303054 0.952973i \(-0.598006\pi\)
0.976826 0.214034i \(-0.0686603\pi\)
\(200\) −16.2332 + 13.6213i −1.14786 + 0.963170i
\(201\) 0 0
\(202\) 3.03144 17.1921i 0.213291 1.20963i
\(203\) 0.644379 3.65445i 0.0452265 0.256492i
\(204\) 0 0
\(205\) −0.0781625 + 0.0655862i −0.00545911 + 0.00458074i
\(206\) −7.68684 + 13.3140i −0.535567 + 0.927630i
\(207\) 0 0
\(208\) −5.58963 9.68152i −0.387571 0.671293i
\(209\) 11.1769 + 4.06806i 0.773123 + 0.281394i
\(210\) 0 0
\(211\) 12.3977 + 10.4029i 0.853494 + 0.716166i 0.960556 0.278086i \(-0.0897000\pi\)
−0.107062 + 0.994252i \(0.534144\pi\)
\(212\) 19.1202 6.95919i 1.31318 0.477959i
\(213\) 0 0
\(214\) 2.31191 + 13.1115i 0.158039 + 0.896283i
\(215\) 0.642380 0.0438100
\(216\) 0 0
\(217\) −0.961120 −0.0652451
\(218\) −2.59871 14.7380i −0.176007 0.998186i
\(219\) 0 0
\(220\) 1.01938 0.371024i 0.0687265 0.0250144i
\(221\) 6.40842 + 5.37730i 0.431077 + 0.361716i
\(222\) 0 0
\(223\) −20.1633 7.33883i −1.35023 0.491444i −0.437212 0.899359i \(-0.644034\pi\)
−0.913020 + 0.407914i \(0.866256\pi\)
\(224\) −0.609223 1.05520i −0.0407054 0.0705038i
\(225\) 0 0
\(226\) −14.2224 + 24.6339i −0.946058 + 1.63862i
\(227\) 14.6424 12.2864i 0.971848 0.815477i −0.0109918 0.999940i \(-0.503499\pi\)
0.982840 + 0.184462i \(0.0590544\pi\)
\(228\) 0 0
\(229\) 3.90190 22.1288i 0.257845 1.46231i −0.530818 0.847486i \(-0.678115\pi\)
0.788663 0.614826i \(-0.210774\pi\)
\(230\) −0.172855 + 0.980309i −0.0113977 + 0.0646397i
\(231\) 0 0
\(232\) −20.8130 + 17.4642i −1.36644 + 1.14658i
\(233\) −8.84074 + 15.3126i −0.579176 + 1.00316i 0.416398 + 0.909182i \(0.363292\pi\)
−0.995574 + 0.0939796i \(0.970041\pi\)
\(234\) 0 0
\(235\) −0.167233 0.289657i −0.0109091 0.0188951i
\(236\) −36.4134 13.2534i −2.37031 0.862723i
\(237\) 0 0
\(238\) −2.12398 1.78223i −0.137677 0.115525i
\(239\) −14.4904 + 5.27406i −0.937303 + 0.341151i −0.765100 0.643911i \(-0.777311\pi\)
−0.172203 + 0.985061i \(0.555088\pi\)
\(240\) 0 0
\(241\) 2.28373 + 12.9516i 0.147108 + 0.834289i 0.965651 + 0.259844i \(0.0836711\pi\)
−0.818543 + 0.574445i \(0.805218\pi\)
\(242\) −3.44113 −0.221204
\(243\) 0 0
\(244\) −49.7209 −3.18305
\(245\) 0.107711 + 0.610862i 0.00688143 + 0.0390265i
\(246\) 0 0
\(247\) 15.1830 5.52617i 0.966073 0.351622i
\(248\) 5.39065 + 4.52329i 0.342307 + 0.287229i
\(249\) 0 0
\(250\) −2.09887 0.763927i −0.132744 0.0483150i
\(251\) 8.70830 + 15.0832i 0.549663 + 0.952045i 0.998297 + 0.0583292i \(0.0185773\pi\)
−0.448634 + 0.893716i \(0.648089\pi\)
\(252\) 0 0
\(253\) −6.88646 + 11.9277i −0.432948 + 0.749889i
\(254\) 21.2112 17.7983i 1.33091 1.11676i
\(255\) 0 0
\(256\) −5.03066 + 28.5303i −0.314416 + 1.78314i
\(257\) −1.94270 + 11.0176i −0.121182 + 0.687260i 0.862320 + 0.506364i \(0.169011\pi\)
−0.983502 + 0.180896i \(0.942100\pi\)
\(258\) 0 0
\(259\) −1.79017 + 1.50213i −0.111236 + 0.0933377i
\(260\) 0.736812 1.27620i 0.0456952 0.0791463i
\(261\) 0 0
\(262\) −10.8214 18.7433i −0.668550 1.15796i
\(263\) −19.4619 7.08354i −1.20007 0.436790i −0.336821 0.941569i \(-0.609352\pi\)
−0.863249 + 0.504779i \(0.831574\pi\)
\(264\) 0 0
\(265\) 0.385077 + 0.323118i 0.0236551 + 0.0198490i
\(266\) −5.03221 + 1.83157i −0.308544 + 0.112301i
\(267\) 0 0
\(268\) −5.78197 32.7912i −0.353190 2.00304i
\(269\) 28.2449 1.72212 0.861060 0.508504i \(-0.169801\pi\)
0.861060 + 0.508504i \(0.169801\pi\)
\(270\) 0 0
\(271\) 17.2626 1.04863 0.524316 0.851524i \(-0.324321\pi\)
0.524316 + 0.851524i \(0.324321\pi\)
\(272\) 0.919863 + 5.21680i 0.0557749 + 0.316315i
\(273\) 0 0
\(274\) 25.9987 9.46275i 1.57064 0.571666i
\(275\) −11.8267 9.92375i −0.713175 0.598425i
\(276\) 0 0
\(277\) −4.85725 1.76789i −0.291844 0.106222i 0.191949 0.981405i \(-0.438519\pi\)
−0.483793 + 0.875182i \(0.660741\pi\)
\(278\) −2.04598 3.54375i −0.122710 0.212540i
\(279\) 0 0
\(280\) −0.114578 + 0.198454i −0.00684733 + 0.0118599i
\(281\) 2.52522 2.11891i 0.150642 0.126404i −0.564352 0.825534i \(-0.690874\pi\)
0.714994 + 0.699131i \(0.246429\pi\)
\(282\) 0 0
\(283\) −1.58553 + 8.99200i −0.0942501 + 0.534519i 0.900724 + 0.434391i \(0.143036\pi\)
−0.994975 + 0.100128i \(0.968075\pi\)
\(284\) −0.749103 + 4.24837i −0.0444511 + 0.252095i
\(285\) 0 0
\(286\) 23.9099 20.0628i 1.41382 1.18634i
\(287\) 0.317809 0.550462i 0.0187597 0.0324927i
\(288\) 0 0
\(289\) 6.51799 + 11.2895i 0.383411 + 0.664087i
\(290\) −1.34434 0.489300i −0.0789424 0.0287327i
\(291\) 0 0
\(292\) 0.564189 + 0.473411i 0.0330167 + 0.0277043i
\(293\) −2.65598 + 0.966697i −0.155164 + 0.0564750i −0.418434 0.908247i \(-0.637421\pi\)
0.263271 + 0.964722i \(0.415199\pi\)
\(294\) 0 0
\(295\) −0.166239 0.942787i −0.00967880 0.0548912i
\(296\) 17.1100 0.994496
\(297\) 0 0
\(298\) 52.0017 3.01238
\(299\) 3.24888 + 18.4253i 0.187887 + 1.06556i
\(300\) 0 0
\(301\) −3.76036 + 1.36866i −0.216744 + 0.0788882i
\(302\) −8.72321 7.31964i −0.501964 0.421198i
\(303\) 0 0
\(304\) 9.61423 + 3.49929i 0.551414 + 0.200698i
\(305\) −0.614179 1.06379i −0.0351678 0.0609124i
\(306\) 0 0
\(307\) −3.14723 + 5.45116i −0.179622 + 0.311114i −0.941751 0.336311i \(-0.890821\pi\)
0.762129 + 0.647425i \(0.224154\pi\)
\(308\) −5.17673 + 4.34380i −0.294972 + 0.247511i
\(309\) 0 0
\(310\) −0.0643429 + 0.364907i −0.00365443 + 0.0207253i
\(311\) 1.28029 7.26088i 0.0725985 0.411727i −0.926751 0.375675i \(-0.877411\pi\)
0.999350 0.0360515i \(-0.0114780\pi\)
\(312\) 0 0
\(313\) −3.27159 + 2.74519i −0.184921 + 0.155167i −0.730549 0.682860i \(-0.760736\pi\)
0.545628 + 0.838028i \(0.316291\pi\)
\(314\) 0.251217 0.435120i 0.0141770 0.0245552i
\(315\) 0 0
\(316\) 13.5791 + 23.5197i 0.763883 + 1.32308i
\(317\) 15.1738 + 5.52279i 0.852243 + 0.310191i 0.730954 0.682426i \(-0.239075\pi\)
0.121288 + 0.992617i \(0.461297\pi\)
\(318\) 0 0
\(319\) −15.1632 12.7235i −0.848979 0.712378i
\(320\) −0.906862 + 0.330071i −0.0506951 + 0.0184515i
\(321\) 0 0
\(322\) −1.07680 6.10682i −0.0600075 0.340320i
\(323\) −7.65618 −0.426001
\(324\) 0 0
\(325\) −20.9723 −1.16333
\(326\) 2.34535 + 13.3012i 0.129897 + 0.736683i
\(327\) 0 0
\(328\) −4.37313 + 1.59169i −0.241465 + 0.0878862i
\(329\) 1.59610 + 1.33928i 0.0879956 + 0.0738371i
\(330\) 0 0
\(331\) −18.0686 6.57644i −0.993142 0.361474i −0.206206 0.978509i \(-0.566112\pi\)
−0.786936 + 0.617035i \(0.788334\pi\)
\(332\) −28.0708 48.6201i −1.54059 2.66838i
\(333\) 0 0
\(334\) 20.0301 34.6932i 1.09600 1.89833i
\(335\) 0.630152 0.528761i 0.0344289 0.0288893i
\(336\) 0 0
\(337\) −5.11615 + 29.0152i −0.278695 + 1.58056i 0.448281 + 0.893893i \(0.352036\pi\)
−0.726976 + 0.686663i \(0.759075\pi\)
\(338\) 1.94112 11.0087i 0.105583 0.598792i
\(339\) 0 0
\(340\) −0.534910 + 0.448843i −0.0290096 + 0.0243419i
\(341\) −2.56339 + 4.43993i −0.138815 + 0.240435i
\(342\) 0 0
\(343\) −3.96154 6.86159i −0.213903 0.370491i
\(344\) 27.5321 + 10.0209i 1.48443 + 0.540289i
\(345\) 0 0
\(346\) −34.9592 29.3342i −1.87942 1.57702i
\(347\) 10.7097 3.89801i 0.574927 0.209256i −0.0381600 0.999272i \(-0.512150\pi\)
0.613087 + 0.790015i \(0.289927\pi\)
\(348\) 0 0
\(349\) 4.89021 + 27.7338i 0.261767 + 1.48456i 0.778085 + 0.628158i \(0.216191\pi\)
−0.516318 + 0.856397i \(0.672698\pi\)
\(350\) 6.95097 0.371545
\(351\) 0 0
\(352\) −6.49941 −0.346419
\(353\) −4.97573 28.2188i −0.264831 1.50193i −0.769515 0.638629i \(-0.779502\pi\)
0.504683 0.863305i \(-0.331609\pi\)
\(354\) 0 0
\(355\) −0.100148 + 0.0364510i −0.00531532 + 0.00193462i
\(356\) 4.48277 + 3.76149i 0.237586 + 0.199359i
\(357\) 0 0
\(358\) 36.6394 + 13.3357i 1.93645 + 0.704812i
\(359\) −15.5161 26.8747i −0.818909 1.41839i −0.906486 0.422235i \(-0.861246\pi\)
0.0875770 0.996158i \(-0.472088\pi\)
\(360\) 0 0
\(361\) 2.10636 3.64833i 0.110861 0.192017i
\(362\) −5.50376 + 4.61820i −0.289271 + 0.242727i
\(363\) 0 0
\(364\) −1.59408 + 9.04045i −0.0835523 + 0.473848i
\(365\) −0.00315957 + 0.0179188i −0.000165379 + 0.000937912i
\(366\) 0 0
\(367\) 18.4802 15.5067i 0.964660 0.809446i −0.0170450 0.999855i \(-0.505426\pi\)
0.981705 + 0.190409i \(0.0609814\pi\)
\(368\) −5.92365 + 10.2601i −0.308791 + 0.534843i
\(369\) 0 0
\(370\) 0.450466 + 0.780230i 0.0234186 + 0.0405622i
\(371\) −2.94260 1.07102i −0.152772 0.0556045i
\(372\) 0 0
\(373\) −9.64114 8.08988i −0.499199 0.418878i 0.358110 0.933679i \(-0.383421\pi\)
−0.857309 + 0.514801i \(0.827866\pi\)
\(374\) −13.8979 + 5.05843i −0.718645 + 0.261565i
\(375\) 0 0
\(376\) −2.64902 15.0233i −0.136613 0.774769i
\(377\) −26.8890 −1.38486
\(378\) 0 0
\(379\) −7.70522 −0.395790 −0.197895 0.980223i \(-0.563411\pi\)
−0.197895 + 0.980223i \(0.563411\pi\)
\(380\) 0.234192 + 1.32817i 0.0120138 + 0.0681337i
\(381\) 0 0
\(382\) −5.08638 + 1.85129i −0.260242 + 0.0947203i
\(383\) 13.6828 + 11.4812i 0.699159 + 0.586664i 0.921534 0.388297i \(-0.126937\pi\)
−0.222376 + 0.974961i \(0.571381\pi\)
\(384\) 0 0
\(385\) −0.156882 0.0571005i −0.00799546 0.00291011i
\(386\) 1.05704 + 1.83085i 0.0538020 + 0.0931878i
\(387\) 0 0
\(388\) −9.97622 + 17.2793i −0.506466 + 0.877224i
\(389\) −20.9808 + 17.6050i −1.06377 + 0.892607i −0.994473 0.104989i \(-0.966519\pi\)
−0.0692941 + 0.997596i \(0.522075\pi\)
\(390\) 0 0
\(391\) 1.53948 8.73081i 0.0778547 0.441536i
\(392\) −4.91274 + 27.8615i −0.248131 + 1.40722i
\(393\) 0 0
\(394\) −37.3038 + 31.3016i −1.87934 + 1.57695i
\(395\) −0.335472 + 0.581055i −0.0168794 + 0.0292361i
\(396\) 0 0
\(397\) −2.10799 3.65115i −0.105797 0.183246i 0.808266 0.588817i \(-0.200406\pi\)
−0.914064 + 0.405571i \(0.867073\pi\)
\(398\) 42.9002 + 15.6144i 2.15039 + 0.782680i
\(399\) 0 0
\(400\) −10.1731 8.53628i −0.508657 0.426814i
\(401\) 14.2575 5.18930i 0.711985 0.259141i 0.0394656 0.999221i \(-0.487434\pi\)
0.672519 + 0.740080i \(0.265212\pi\)
\(402\) 0 0
\(403\) 1.20935 + 6.85857i 0.0602420 + 0.341650i
\(404\) 27.3880 1.36260
\(405\) 0 0
\(406\) 8.91200 0.442295
\(407\) 2.16460 + 12.2760i 0.107295 + 0.608501i
\(408\) 0 0
\(409\) −4.42559 + 1.61078i −0.218831 + 0.0796481i −0.449109 0.893477i \(-0.648259\pi\)
0.230278 + 0.973125i \(0.426036\pi\)
\(410\) −0.187717 0.157513i −0.00927067 0.00777902i
\(411\) 0 0
\(412\) −22.6644 8.24918i −1.11660 0.406408i
\(413\) 2.98184 + 5.16469i 0.146727 + 0.254138i
\(414\) 0 0
\(415\) 0.693492 1.20116i 0.0340422 0.0589628i
\(416\) −6.76339 + 5.67516i −0.331602 + 0.278248i
\(417\) 0 0
\(418\) −4.96033 + 28.1314i −0.242618 + 1.37595i
\(419\) −3.43669 + 19.4905i −0.167894 + 0.952171i 0.778137 + 0.628094i \(0.216165\pi\)
−0.946031 + 0.324077i \(0.894946\pi\)
\(420\) 0 0
\(421\) 21.5915 18.1174i 1.05231 0.882989i 0.0589715 0.998260i \(-0.481218\pi\)
0.993334 + 0.115270i \(0.0367734\pi\)
\(422\) −19.4340 + 33.6607i −0.946032 + 1.63858i
\(423\) 0 0
\(424\) 11.4637 + 19.8557i 0.556726 + 0.964278i
\(425\) 9.33836 + 3.39889i 0.452977 + 0.164870i
\(426\) 0 0
\(427\) 5.86180 + 4.91863i 0.283672 + 0.238029i
\(428\) −19.6276 + 7.14387i −0.948737 + 0.345312i
\(429\) 0 0
\(430\) 0.267896 + 1.51932i 0.0129191 + 0.0732679i
\(431\) 5.19681 0.250321 0.125161 0.992136i \(-0.460055\pi\)
0.125161 + 0.992136i \(0.460055\pi\)
\(432\) 0 0
\(433\) 25.3285 1.21721 0.608605 0.793473i \(-0.291730\pi\)
0.608605 + 0.793473i \(0.291730\pi\)
\(434\) −0.400823 2.27318i −0.0192401 0.109116i
\(435\) 0 0
\(436\) 22.0625 8.03011i 1.05660 0.384572i
\(437\) −13.1169 11.0064i −0.627469 0.526509i
\(438\) 0 0
\(439\) 14.7167 + 5.35646i 0.702392 + 0.255650i 0.668432 0.743773i \(-0.266966\pi\)
0.0339602 + 0.999423i \(0.489188\pi\)
\(440\) 0.611178 + 1.05859i 0.0291368 + 0.0504664i
\(441\) 0 0
\(442\) −10.0455 + 17.3993i −0.477815 + 0.827600i
\(443\) 13.9833 11.7333i 0.664365 0.557468i −0.247027 0.969009i \(-0.579454\pi\)
0.911391 + 0.411541i \(0.135009\pi\)
\(444\) 0 0
\(445\) −0.0251044 + 0.142374i −0.00119006 + 0.00674917i
\(446\) 8.94849 50.7494i 0.423723 2.40305i
\(447\) 0 0
\(448\) 4.60534 3.86434i 0.217582 0.182573i
\(449\) 14.3608 24.8737i 0.677729 1.17386i −0.297934 0.954586i \(-0.596298\pi\)
0.975663 0.219274i \(-0.0703690\pi\)
\(450\) 0 0
\(451\) −1.69525 2.93626i −0.0798262 0.138263i
\(452\) −41.9343 15.2628i −1.97242 0.717904i
\(453\) 0 0
\(454\) 35.1654 + 29.5073i 1.65039 + 1.38485i
\(455\) −0.213113 + 0.0775669i −0.00999091 + 0.00363639i
\(456\) 0 0
\(457\) −6.14505 34.8503i −0.287453 1.63023i −0.696389 0.717665i \(-0.745211\pi\)
0.408936 0.912563i \(-0.365900\pi\)
\(458\) 53.9648 2.52161
\(459\) 0 0
\(460\) −1.56168 −0.0728139
\(461\) −0.395350 2.24214i −0.0184133 0.104427i 0.974216 0.225617i \(-0.0724399\pi\)
−0.992629 + 0.121190i \(0.961329\pi\)
\(462\) 0 0
\(463\) −17.2664 + 6.28446i −0.802438 + 0.292064i −0.710496 0.703701i \(-0.751530\pi\)
−0.0919417 + 0.995764i \(0.529307\pi\)
\(464\) −13.0432 10.9446i −0.605517 0.508089i
\(465\) 0 0
\(466\) −39.9033 14.5236i −1.84848 0.672793i
\(467\) 2.32935 + 4.03455i 0.107789 + 0.186697i 0.914874 0.403738i \(-0.132289\pi\)
−0.807085 + 0.590435i \(0.798956\pi\)
\(468\) 0 0
\(469\) −2.56220 + 4.43786i −0.118312 + 0.204922i
\(470\) 0.615335 0.516327i 0.0283833 0.0238164i
\(471\) 0 0
\(472\) 7.58218 43.0007i 0.348998 1.97927i
\(473\) −3.70665 + 21.0215i −0.170432 + 0.966568i
\(474\) 0 0
\(475\) 14.7033 12.3375i 0.674634 0.566085i
\(476\) 2.17495 3.76712i 0.0996885 0.172666i
\(477\) 0 0
\(478\) −18.5169 32.0722i −0.846942 1.46695i
\(479\) −13.3210 4.84844i −0.608651 0.221531i 0.0192617 0.999814i \(-0.493868\pi\)
−0.627913 + 0.778283i \(0.716091\pi\)
\(480\) 0 0
\(481\) 12.9717 + 10.8846i 0.591460 + 0.496294i
\(482\) −29.6800 + 10.8026i −1.35189 + 0.492047i
\(483\) 0 0
\(484\) −0.937459 5.31660i −0.0426118 0.241663i
\(485\) −0.492926 −0.0223826
\(486\) 0 0
\(487\) −21.4338 −0.971258 −0.485629 0.874165i \(-0.661409\pi\)
−0.485629 + 0.874165i \(0.661409\pi\)
\(488\) −9.72875 55.1745i −0.440400 2.49763i
\(489\) 0 0
\(490\) −1.39985 + 0.509504i −0.0632389 + 0.0230171i
\(491\) 10.7919 + 9.05550i 0.487033 + 0.408669i 0.852961 0.521974i \(-0.174804\pi\)
−0.365929 + 0.930643i \(0.619249\pi\)
\(492\) 0 0
\(493\) 11.9729 + 4.35779i 0.539234 + 0.196265i
\(494\) 19.4020 + 33.6053i 0.872938 + 1.51197i
\(495\) 0 0
\(496\) −2.20500 + 3.81917i −0.0990073 + 0.171486i
\(497\) 0.508585 0.426753i 0.0228131 0.0191425i
\(498\) 0 0
\(499\) 2.58898 14.6828i 0.115899 0.657294i −0.870403 0.492340i \(-0.836142\pi\)
0.986301 0.164953i \(-0.0527473\pi\)
\(500\) 0.608488 3.45091i 0.0272124 0.154329i
\(501\) 0 0
\(502\) −32.0422 + 26.8866i −1.43011 + 1.20001i
\(503\) −7.93153 + 13.7378i −0.353650 + 0.612539i −0.986886 0.161420i \(-0.948393\pi\)
0.633236 + 0.773958i \(0.281726\pi\)
\(504\) 0 0
\(505\) 0.338311 + 0.585972i 0.0150546 + 0.0260754i
\(506\) −31.0826 11.3131i −1.38179 0.502930i
\(507\) 0 0
\(508\) 33.2771 + 27.9228i 1.47643 + 1.23888i
\(509\) 31.8807 11.6036i 1.41309 0.514321i 0.481052 0.876692i \(-0.340255\pi\)
0.932034 + 0.362371i \(0.118033\pi\)
\(510\) 0 0
\(511\) −0.0196825 0.111625i −0.000870700 0.00493799i
\(512\) −28.1824 −1.24550
\(513\) 0 0
\(514\) −26.8683 −1.18511
\(515\) −0.103470 0.586809i −0.00455945 0.0258579i
\(516\) 0 0
\(517\) 10.4438 3.80123i 0.459317 0.167178i
\(518\) −4.29930 3.60754i −0.188900 0.158506i
\(519\) 0 0
\(520\) 1.56034 + 0.567919i 0.0684256 + 0.0249049i
\(521\) −21.3899 37.0484i −0.937108 1.62312i −0.770831 0.637040i \(-0.780159\pi\)
−0.166277 0.986079i \(-0.553175\pi\)
\(522\) 0 0
\(523\) 1.38893 2.40569i 0.0607335 0.105193i −0.834060 0.551674i \(-0.813989\pi\)
0.894793 + 0.446480i \(0.147323\pi\)
\(524\) 26.0106 21.8255i 1.13628 0.953451i
\(525\) 0 0
\(526\) 8.63721 48.9840i 0.376600 2.13581i
\(527\) 0.573049 3.24992i 0.0249624 0.141569i
\(528\) 0 0
\(529\) −2.43023 + 2.03920i −0.105662 + 0.0886609i
\(530\) −0.603626 + 1.04551i −0.0262198 + 0.0454141i
\(531\) 0 0
\(532\) −4.20073 7.27587i −0.182125 0.315449i
\(533\) −4.32799 1.57526i −0.187466 0.0682321i
\(534\) 0 0
\(535\) −0.395296 0.331693i −0.0170901 0.0143403i
\(536\) 35.2565 12.8323i 1.52285 0.554271i
\(537\) 0 0
\(538\) 11.7792 + 66.8029i 0.507835 + 2.88008i
\(539\) −20.6116 −0.887803
\(540\) 0 0
\(541\) −3.59390 −0.154514 −0.0772570 0.997011i \(-0.524616\pi\)
−0.0772570 + 0.997011i \(0.524616\pi\)
\(542\) 7.19917 + 40.8285i 0.309231 + 1.75373i
\(543\) 0 0
\(544\) 3.93130 1.43088i 0.168553 0.0613483i
\(545\) 0.444334 + 0.372841i 0.0190332 + 0.0159707i
\(546\) 0 0
\(547\) 37.1985 + 13.5392i 1.59049 + 0.578892i 0.977452 0.211158i \(-0.0677235\pi\)
0.613042 + 0.790051i \(0.289946\pi\)
\(548\) 21.7029 + 37.5905i 0.927101 + 1.60579i
\(549\) 0 0
\(550\) 18.5389 32.1102i 0.790499 1.36919i
\(551\) 18.8514 15.8182i 0.803099 0.673880i
\(552\) 0 0
\(553\) 0.725786 4.11614i 0.0308636 0.175036i
\(554\) 2.15566 12.2253i 0.0915850 0.519405i
\(555\) 0 0
\(556\) 4.91776 4.12649i 0.208560 0.175002i
\(557\) −5.71731 + 9.90267i −0.242250 + 0.419590i −0.961355 0.275312i \(-0.911219\pi\)
0.719105 + 0.694902i \(0.244552\pi\)
\(558\) 0 0
\(559\) 14.4983 + 25.1119i 0.613214 + 1.06212i
\(560\) −0.134948 0.0491171i −0.00570260 0.00207558i
\(561\) 0 0
\(562\) 6.06462 + 5.08882i 0.255821 + 0.214659i
\(563\) 13.6357 4.96298i 0.574676 0.209165i −0.0383005 0.999266i \(-0.512194\pi\)
0.612976 + 0.790101i \(0.289972\pi\)
\(564\) 0 0
\(565\) −0.191443 1.08573i −0.00805408 0.0456770i
\(566\) −21.9285 −0.921725
\(567\) 0 0
\(568\) −4.86093 −0.203960
\(569\) 0.225601 + 1.27945i 0.00945767 + 0.0536371i 0.989171 0.146765i \(-0.0468862\pi\)
−0.979714 + 0.200402i \(0.935775\pi\)
\(570\) 0 0
\(571\) −15.0890 + 5.49193i −0.631453 + 0.229830i −0.637864 0.770149i \(-0.720182\pi\)
0.00641065 + 0.999979i \(0.497959\pi\)
\(572\) 37.5111 + 31.4756i 1.56842 + 1.31606i
\(573\) 0 0
\(574\) 1.43445 + 0.522099i 0.0598730 + 0.0217920i
\(575\) 11.1127 + 19.2478i 0.463434 + 0.802691i
\(576\) 0 0
\(577\) 4.23017 7.32686i 0.176104 0.305021i −0.764439 0.644696i \(-0.776984\pi\)
0.940543 + 0.339675i \(0.110317\pi\)
\(578\) −23.9829 + 20.1241i −0.997558 + 0.837050i
\(579\) 0 0
\(580\) 0.389740 2.21033i 0.0161831 0.0917788i
\(581\) −1.50035 + 8.50893i −0.0622452 + 0.353010i
\(582\) 0 0
\(583\) −12.7958 + 10.7369i −0.529947 + 0.444678i
\(584\) −0.414943 + 0.718703i −0.0171705 + 0.0297401i
\(585\) 0 0
\(586\) −3.39401 5.87860i −0.140205 0.242843i
\(587\) −17.2764 6.28811i −0.713075 0.259538i −0.0400919 0.999196i \(-0.512765\pi\)
−0.672983 + 0.739658i \(0.734987\pi\)
\(588\) 0 0
\(589\) −4.88260 4.09699i −0.201184 0.168814i
\(590\) 2.16049 0.786354i 0.0889460 0.0323737i
\(591\) 0 0
\(592\) 1.86196 + 10.5597i 0.0765260 + 0.434001i
\(593\) −13.5128 −0.554905 −0.277452 0.960739i \(-0.589490\pi\)
−0.277452 + 0.960739i \(0.589490\pi\)
\(594\) 0 0
\(595\) 0.107464 0.00440561
\(596\) 14.1667 + 80.3435i 0.580292 + 3.29100i
\(597\) 0 0
\(598\) −42.2234 + 15.3681i −1.72664 + 0.628447i
\(599\) −8.44772 7.08848i −0.345165 0.289627i 0.453680 0.891164i \(-0.350111\pi\)
−0.798845 + 0.601537i \(0.794555\pi\)
\(600\) 0 0
\(601\) −24.2421 8.82341i −0.988856 0.359914i −0.203579 0.979058i \(-0.565257\pi\)
−0.785277 + 0.619144i \(0.787480\pi\)
\(602\) −4.80528 8.32298i −0.195848 0.339219i
\(603\) 0 0
\(604\) 8.93252 15.4716i 0.363459 0.629529i
\(605\) 0.102170 0.0857306i 0.00415379 0.00348545i
\(606\) 0 0
\(607\) −2.56823 + 14.5652i −0.104241 + 0.591182i 0.887279 + 0.461233i \(0.152593\pi\)
−0.991521 + 0.129950i \(0.958518\pi\)
\(608\) 1.40312 7.95752i 0.0569042 0.322720i
\(609\) 0 0
\(610\) 2.25987 1.89626i 0.0914995 0.0767772i
\(611\) 7.54882 13.0749i 0.305393 0.528956i
\(612\) 0 0
\(613\) −18.1370 31.4141i −0.732545 1.26880i −0.955792 0.294043i \(-0.904999\pi\)
0.223248 0.974762i \(-0.428334\pi\)
\(614\) −14.2053 5.17029i −0.573277 0.208656i
\(615\) 0 0
\(616\) −5.83316 4.89460i −0.235025 0.197209i
\(617\) −37.9387 + 13.8086i −1.52736 + 0.555912i −0.962972 0.269601i \(-0.913108\pi\)
−0.564383 + 0.825513i \(0.690886\pi\)
\(618\) 0 0
\(619\) −1.19701 6.78858i −0.0481119 0.272856i 0.951256 0.308402i \(-0.0997941\pi\)
−0.999368 + 0.0355458i \(0.988683\pi\)
\(620\) −0.581315 −0.0233462
\(621\) 0 0
\(622\) 17.7069 0.709981
\(623\) −0.156387 0.886916i −0.00626552 0.0355335i
\(624\) 0 0
\(625\) −23.3703 + 8.50608i −0.934810 + 0.340243i
\(626\) −7.85711 6.59290i −0.314033 0.263505i
\(627\) 0 0
\(628\) 0.740705 + 0.269595i 0.0295574 + 0.0107580i
\(629\) −4.01193 6.94887i −0.159966 0.277070i
\(630\) 0 0
\(631\) −14.9095 + 25.8241i −0.593539 + 1.02804i 0.400212 + 0.916423i \(0.368936\pi\)
−0.993751 + 0.111617i \(0.964397\pi\)
\(632\) −23.4424 + 19.6705i −0.932489 + 0.782451i
\(633\) 0 0
\(634\) −6.73414 + 38.1912i −0.267447 + 1.51677i
\(635\) −0.186358 + 1.05689i −0.00739540 + 0.0419414i
\(636\) 0 0
\(637\) −21.4487 + 17.9976i −0.849830 + 0.713092i
\(638\) 23.7691 41.1693i 0.941028 1.62991i
\(639\) 0 0
\(640\) −0.963264 1.66842i −0.0380763 0.0659502i
\(641\) 40.2947 + 14.6661i 1.59155 + 0.579275i 0.977673 0.210131i \(-0.0673889\pi\)
0.613872 + 0.789406i \(0.289611\pi\)
\(642\) 0 0
\(643\) −20.9998 17.6209i −0.828150 0.694901i 0.126715 0.991939i \(-0.459557\pi\)
−0.954866 + 0.297038i \(0.904001\pi\)
\(644\) 9.14178 3.32734i 0.360237 0.131115i
\(645\) 0 0
\(646\) −3.19291 18.1079i −0.125623 0.712446i
\(647\) 16.1623 0.635407 0.317703 0.948190i \(-0.397088\pi\)
0.317703 + 0.948190i \(0.397088\pi\)
\(648\) 0 0
\(649\) 31.8113 1.24870
\(650\) −8.74621 49.6022i −0.343055 1.94556i
\(651\) 0 0
\(652\) −19.9116 + 7.24721i −0.779797 + 0.283823i
\(653\) −24.7021 20.7275i −0.966668 0.811130i 0.0153573 0.999882i \(-0.495111\pi\)
−0.982025 + 0.188752i \(0.939556\pi\)
\(654\) 0 0
\(655\) 0.788258 + 0.286903i 0.0307998 + 0.0112102i
\(656\) −1.45823 2.52573i −0.0569344 0.0986133i
\(657\) 0 0
\(658\) −2.50195 + 4.33351i −0.0975363 + 0.168938i
\(659\) −21.3103 + 17.8814i −0.830130 + 0.696562i −0.955321 0.295571i \(-0.904490\pi\)
0.125191 + 0.992133i \(0.460046\pi\)
\(660\) 0 0
\(661\) 5.34639 30.3209i 0.207950 1.17934i −0.684779 0.728751i \(-0.740101\pi\)
0.892729 0.450594i \(-0.148788\pi\)
\(662\) 8.01889 45.4774i 0.311663 1.76753i
\(663\) 0 0
\(664\) 48.4604 40.6631i 1.88063 1.57803i
\(665\) 0.103779 0.179751i 0.00402439 0.00697044i
\(666\) 0 0
\(667\) 14.2479 + 24.6781i 0.551682 + 0.955540i
\(668\) 59.0583 + 21.4955i 2.28503 + 0.831684i
\(669\) 0 0
\(670\) 1.51339 + 1.26988i 0.0584673 + 0.0490598i
\(671\) 38.3557 13.9603i 1.48071 0.538933i
\(672\) 0 0
\(673\) −4.53753 25.7336i −0.174909 0.991959i −0.938249 0.345961i \(-0.887553\pi\)
0.763340 0.645997i \(-0.223558\pi\)
\(674\) −70.7584 −2.72551
\(675\) 0 0
\(676\) 17.5374 0.674515
\(677\) −3.15944 17.9181i −0.121427 0.688648i −0.983366 0.181635i \(-0.941861\pi\)
0.861939 0.507012i \(-0.169250\pi\)
\(678\) 0 0
\(679\) 2.88549 1.05023i 0.110735 0.0403042i
\(680\) −0.602738 0.505757i −0.0231139 0.0193949i
\(681\) 0 0
\(682\) −11.5701 4.21116i −0.443040 0.161253i
\(683\) 11.7486 + 20.3491i 0.449546 + 0.778636i 0.998356 0.0573104i \(-0.0182525\pi\)
−0.548811 + 0.835947i \(0.684919\pi\)
\(684\) 0 0
\(685\) −0.536171 + 0.928676i −0.0204860 + 0.0354829i
\(686\) 14.5765 12.2311i 0.556533 0.466987i
\(687\) 0 0
\(688\) −3.18841 + 18.0824i −0.121557 + 0.689384i
\(689\) −3.94021 + 22.3460i −0.150110 + 0.851317i
\(690\) 0 0
\(691\) −34.1180 + 28.6284i −1.29791 + 1.08908i −0.307409 + 0.951577i \(0.599462\pi\)
−0.990502 + 0.137499i \(0.956094\pi\)
\(692\) 35.7980 62.0039i 1.36084 2.35704i
\(693\) 0 0
\(694\) 13.6857 + 23.7043i 0.519501 + 0.899802i
\(695\) 0.149034 + 0.0542440i 0.00565318 + 0.00205759i
\(696\) 0 0
\(697\) 1.67184 + 1.40284i 0.0633254 + 0.0531363i
\(698\) −63.5547 + 23.1320i −2.40558 + 0.875560i
\(699\) 0 0
\(700\) 1.89364 + 10.7394i 0.0715728 + 0.405910i
\(701\) 25.2567 0.953934 0.476967 0.878921i \(-0.341736\pi\)
0.476967 + 0.878921i \(0.341736\pi\)
\(702\) 0 0
\(703\) −15.4974 −0.584496
\(704\) −5.56859 31.5810i −0.209874 1.19025i
\(705\) 0 0
\(706\) 64.6662 23.5366i 2.43374 0.885810i
\(707\) −3.22888 2.70935i −0.121434 0.101896i
\(708\) 0 0
\(709\) 14.7382 + 5.36425i 0.553503 + 0.201459i 0.603602 0.797286i \(-0.293731\pi\)
−0.0500991 + 0.998744i \(0.515954\pi\)
\(710\) −0.127977 0.221663i −0.00480289 0.00831886i
\(711\) 0 0
\(712\) −3.29694 + 5.71046i −0.123558 + 0.214009i
\(713\) 5.65382 4.74412i 0.211737 0.177669i
\(714\) 0 0
\(715\) −0.210069 + 1.19136i −0.00785615 + 0.0445544i
\(716\) −10.6222 + 60.2415i −0.396970 + 2.25133i
\(717\) 0 0
\(718\) 57.0915 47.9055i 2.13064 1.78782i
\(719\) −26.5804 + 46.0385i −0.991280 + 1.71695i −0.381523 + 0.924359i \(0.624600\pi\)
−0.609757 + 0.792588i \(0.708733\pi\)
\(720\) 0 0
\(721\) 1.85595 + 3.21461i 0.0691194 + 0.119718i
\(722\) 9.50721 + 3.46034i 0.353822 + 0.128781i
\(723\) 0 0
\(724\) −8.63457 7.24526i −0.320901 0.269268i
\(725\) −30.0158 + 10.9248i −1.11476 + 0.405738i
\(726\) 0 0
\(727\) 0.0814709 + 0.462044i 0.00302159 + 0.0171363i 0.986281 0.165073i \(-0.0527861\pi\)
−0.983260 + 0.182210i \(0.941675\pi\)
\(728\) −10.3440 −0.383372
\(729\) 0 0
\(730\) −0.0436980 −0.00161734
\(731\) −2.38593 13.5313i −0.0882469 0.500473i
\(732\) 0 0
\(733\) 43.6076 15.8719i 1.61068 0.586241i 0.629109 0.777317i \(-0.283420\pi\)
0.981575 + 0.191075i \(0.0611975\pi\)
\(734\) 44.3825 + 37.2413i 1.63819 + 1.37460i
\(735\) 0 0
\(736\) 8.79230 + 3.20014i 0.324088 + 0.117959i
\(737\) 13.6672 + 23.6724i 0.503439 + 0.871983i
\(738\) 0 0
\(739\) −12.9047 + 22.3515i −0.474706 + 0.822214i −0.999580 0.0289653i \(-0.990779\pi\)
0.524875 + 0.851179i \(0.324112\pi\)
\(740\) −1.08275 + 0.908534i −0.0398026 + 0.0333984i
\(741\) 0 0
\(742\) 1.30593 7.40629i 0.0479422 0.271894i
\(743\) −6.02726 + 34.1823i −0.221119 + 1.25403i 0.648848 + 0.760918i \(0.275251\pi\)
−0.869967 + 0.493110i \(0.835860\pi\)
\(744\) 0 0
\(745\) −1.54397 + 1.29555i −0.0565668 + 0.0474652i
\(746\) 15.1129 26.1764i 0.553324 0.958385i
\(747\) 0 0
\(748\) −11.6015 20.0945i −0.424195 0.734727i
\(749\) 3.02069 + 1.09944i 0.110374 + 0.0401727i
\(750\) 0 0
\(751\) 18.3742 + 15.4178i 0.670485 + 0.562604i 0.913209 0.407492i \(-0.133596\pi\)
−0.242724 + 0.970095i \(0.578041\pi\)
\(752\) 8.98361 3.26977i 0.327599 0.119236i
\(753\) 0 0
\(754\) −11.2137 63.5962i −0.408380 2.31604i
\(755\) 0.441357 0.0160626
\(756\) 0 0
\(757\) −8.78780 −0.319398 −0.159699 0.987166i \(-0.551052\pi\)
−0.159699 + 0.987166i \(0.551052\pi\)
\(758\) −3.21336 18.2239i −0.116715 0.661921i
\(759\) 0 0
\(760\) −1.42803 + 0.519759i −0.0517999 + 0.0188536i
\(761\) −10.5361 8.84082i −0.381933 0.320479i 0.431528 0.902100i \(-0.357975\pi\)
−0.813461 + 0.581620i \(0.802419\pi\)
\(762\) 0 0
\(763\) −3.39542 1.23583i −0.122922 0.0447401i
\(764\) −4.24595 7.35420i −0.153613 0.266066i
\(765\) 0 0
\(766\) −21.4484 + 37.1498i −0.774963 + 1.34228i
\(767\) 33.1034 27.7770i 1.19529 1.00297i
\(768\) 0 0
\(769\) −5.44525 + 30.8815i −0.196361 + 1.11362i 0.714107 + 0.700036i \(0.246833\pi\)
−0.910468 + 0.413580i \(0.864278\pi\)
\(770\) 0.0696246 0.394861i 0.00250910 0.0142298i
\(771\) 0 0
\(772\) −2.54072 + 2.13192i −0.0914426 + 0.0767295i
\(773\) 14.0607 24.3539i 0.505729 0.875948i −0.494249 0.869320i \(-0.664557\pi\)
0.999978 0.00662776i \(-0.00210970\pi\)
\(774\) 0 0
\(775\) 4.13657 + 7.16475i 0.148590 + 0.257365i
\(776\) −21.1266 7.68945i −0.758400 0.276035i
\(777\) 0 0
\(778\) −50.3879 42.2804i −1.80649 1.51583i
\(779\) 3.96098 1.44168i 0.141917 0.0516535i
\(780\) 0 0
\(781\) −0.614960 3.48761i −0.0220050 0.124797i
\(782\) 21.2916 0.761385
\(783\) 0 0
\(784\) −17.7298 −0.633207
\(785\) 0.00338155 + 0.0191777i 0.000120693 + 0.000684483i
\(786\) 0 0
\(787\) 34.0170 12.3812i 1.21258 0.441342i 0.344979 0.938610i \(-0.387886\pi\)
0.867597 + 0.497269i \(0.165664\pi\)
\(788\) −58.5240 49.1075i −2.08483 1.74938i
\(789\) 0 0
\(790\) −1.51418 0.551116i −0.0538721 0.0196078i
\(791\) 3.43393 + 5.94775i 0.122097 + 0.211478i
\(792\) 0 0
\(793\) 27.7237 48.0189i 0.984498 1.70520i
\(794\) 7.75636 6.50836i 0.275263 0.230973i
\(795\) 0 0
\(796\) −12.4373 + 70.5354i −0.440828 + 2.50006i
\(797\) 5.14000 29.1504i 0.182068 1.03256i −0.747596 0.664153i \(-0.768792\pi\)
0.929665 0.368407i \(-0.120097\pi\)
\(798\) 0 0
\(799\) −5.48028 + 4.59850i −0.193878 + 0.162683i
\(800\) −5.24407 + 9.08300i −0.185406 + 0.321133i
\(801\) 0 0
\(802\) 18.2193 + 31.5568i 0.643346 + 1.11431i
\(803\) −0.568149 0.206789i −0.0200495 0.00729744i
\(804\) 0 0
\(805\) 0.184113 + 0.154489i 0.00648914 + 0.00544504i
\(806\) −15.7171 + 5.72055i −0.553611 + 0.201498i
\(807\) 0 0
\(808\) 5.35892 + 30.3920i 0.188526 + 1.06919i
\(809\) 5.75943 0.202491 0.101245 0.994861i \(-0.467717\pi\)
0.101245 + 0.994861i \(0.467717\pi\)
\(810\) 0 0
\(811\) 12.4896 0.438569 0.219284 0.975661i \(-0.429628\pi\)
0.219284 + 0.975661i \(0.429628\pi\)
\(812\) 2.42788 + 13.7692i 0.0852019 + 0.483204i
\(813\) 0 0
\(814\) −28.1318 + 10.2391i −0.986018 + 0.358881i
\(815\) −0.401014 0.336491i −0.0140469 0.0117868i
\(816\) 0 0
\(817\) −24.9373 9.07644i −0.872446 0.317544i
\(818\) −5.65535 9.79536i −0.197735 0.342487i
\(819\) 0 0
\(820\) 0.192221 0.332936i 0.00671265 0.0116266i
\(821\) −32.9911 + 27.6828i −1.15140 + 0.966136i −0.999751 0.0222995i \(-0.992901\pi\)
−0.151644 + 0.988435i \(0.548457\pi\)
\(822\) 0 0
\(823\) 1.78581 10.1279i 0.0622496 0.353035i −0.937734 0.347353i \(-0.887080\pi\)
0.999984 0.00568141i \(-0.00180846\pi\)
\(824\) 4.71930 26.7645i 0.164404 0.932384i
\(825\) 0 0
\(826\) −10.9717 + 9.20632i −0.381753 + 0.320329i
\(827\) 3.04731 5.27810i 0.105965 0.183538i −0.808167 0.588954i \(-0.799540\pi\)
0.914132 + 0.405416i \(0.132873\pi\)
\(828\) 0 0
\(829\) 16.8489 + 29.1832i 0.585188 + 1.01358i 0.994852 + 0.101339i \(0.0323126\pi\)
−0.409664 + 0.912236i \(0.634354\pi\)
\(830\) 3.13013 + 1.13927i 0.108648 + 0.0395447i
\(831\) 0 0
\(832\) −33.3707 28.0014i −1.15692 0.970772i
\(833\) 12.4673 4.53774i 0.431967 0.157223i
\(834\) 0 0
\(835\) 0.269620 + 1.52909i 0.00933057 + 0.0529163i
\(836\) −44.8148 −1.54995
\(837\) 0 0
\(838\) −47.5308 −1.64192
\(839\) 7.33250 + 41.5847i 0.253146 + 1.43566i 0.800787 + 0.598950i \(0.204415\pi\)
−0.547641 + 0.836714i \(0.684474\pi\)
\(840\) 0 0
\(841\) −11.2328 + 4.08841i −0.387339 + 0.140980i
\(842\) 51.8546 + 43.5112i 1.78703 + 1.49949i
\(843\) 0 0
\(844\) −57.3007 20.8557i −1.97237 0.717884i
\(845\) 0.216631 + 0.375216i 0.00745234 + 0.0129078i
\(846\) 0 0
\(847\) −0.415423 + 0.719533i −0.0142741 + 0.0247235i
\(848\) −11.0068 + 9.23576i −0.377973 + 0.317157i
\(849\) 0 0
\(850\) −4.14438 + 23.5040i −0.142151 + 0.806179i
\(851\) 3.11616 17.6726i 0.106821 0.605810i
\(852\) 0 0
\(853\) −27.3705 + 22.9665i −0.937147 + 0.786359i −0.977086 0.212843i \(-0.931728\pi\)
0.0399399 + 0.999202i \(0.487283\pi\)
\(854\) −9.18865 + 15.9152i −0.314429 + 0.544607i
\(855\) 0 0
\(856\) −11.7679 20.3826i −0.402219 0.696664i
\(857\) 7.43170 + 2.70492i 0.253862 + 0.0923983i 0.465817 0.884881i \(-0.345761\pi\)
−0.211954 + 0.977280i \(0.567983\pi\)
\(858\) 0 0
\(859\) −34.2569 28.7449i −1.16883 0.980764i −0.168841 0.985643i \(-0.554002\pi\)
−0.999988 + 0.00487963i \(0.998447\pi\)
\(860\) −2.27438 + 0.827808i −0.0775559 + 0.0282280i
\(861\) 0 0
\(862\) 2.16726 + 12.2911i 0.0738172 + 0.418638i
\(863\) 22.9170 0.780103 0.390052 0.920793i \(-0.372457\pi\)
0.390052 + 0.920793i \(0.372457\pi\)
\(864\) 0 0
\(865\) 1.76878 0.0601405
\(866\) 10.5629 + 59.9053i 0.358943 + 2.03567i
\(867\) 0 0
\(868\) 3.40290 1.23856i 0.115502 0.0420393i
\(869\) −17.0789 14.3309i −0.579362 0.486143i
\(870\) 0 0
\(871\) 34.8926 + 12.6999i 1.18229 + 0.430319i
\(872\) 13.2278 + 22.9112i 0.447950 + 0.775871i
\(873\) 0 0
\(874\) 20.5614 35.6134i 0.695501 1.20464i
\(875\) −0.413118 + 0.346647i −0.0139659 + 0.0117188i
\(876\) 0 0
\(877\) −3.84416 + 21.8013i −0.129808 + 0.736178i 0.848527 + 0.529152i \(0.177490\pi\)
−0.978335 + 0.207026i \(0.933621\pi\)
\(878\) −6.53132 + 37.0409i −0.220421 + 1.25007i
\(879\) 0 0
\(880\) −0.586817 + 0.492398i −0.0197816 + 0.0165987i
\(881\) 4.93202 8.54251i 0.166164 0.287804i −0.770904 0.636951i \(-0.780195\pi\)
0.937068 + 0.349147i \(0.113529\pi\)
\(882\) 0 0
\(883\) −23.7865 41.1995i −0.800481 1.38647i −0.919300 0.393558i \(-0.871244\pi\)
0.118819 0.992916i \(-0.462089\pi\)
\(884\) −29.6189 10.7804i −0.996191 0.362584i
\(885\) 0 0
\(886\) 33.5825 + 28.1791i 1.12823 + 0.946694i
\(887\) 12.5517 4.56846i 0.421446 0.153394i −0.122587 0.992458i \(-0.539119\pi\)
0.544033 + 0.839064i \(0.316897\pi\)
\(888\) 0 0
\(889\) −1.16091 6.58387i −0.0389358 0.220816i
\(890\) −0.347203 −0.0116383
\(891\) 0 0
\(892\) 80.8465 2.70694
\(893\) 2.39936 + 13.6074i 0.0802914 + 0.455355i
\(894\) 0 0
\(895\) −1.42009 + 0.516871i −0.0474684 + 0.0172771i
\(896\) 9.19350 + 7.71427i 0.307133 + 0.257716i
\(897\) 0 0
\(898\) 64.8186 + 23.5920i 2.16302 + 0.787276i
\(899\) 5.30359 + 9.18609i 0.176885 + 0.306373i
\(900\) 0 0
\(901\) 5.37600 9.31150i 0.179100 0.310211i
\(902\) 6.23767 5.23403i 0.207692 0.174274i
\(903\) 0 0
\(904\) 8.73176 49.5203i 0.290414 1.64702i
\(905\) 0.0483552 0.274236i 0.00160738 0.00911591i
\(906\) 0 0
\(907\) 28.3135 23.7578i 0.940134 0.788866i −0.0374746 0.999298i \(-0.511931\pi\)
0.977609 + 0.210431i \(0.0674869\pi\)
\(908\) −36.0092 + 62.3697i −1.19501 + 2.06981i
\(909\) 0 0
\(910\) −0.272332 0.471694i −0.00902773 0.0156365i
\(911\) −45.4916 16.5576i −1.50720 0.548577i −0.549288 0.835633i \(-0.685101\pi\)
−0.957914 + 0.287056i \(0.907323\pi\)
\(912\) 0 0
\(913\) 35.3057 + 29.6250i 1.16845 + 0.980445i
\(914\) 79.8629 29.0677i 2.64163 0.961475i
\(915\) 0 0
\(916\) 14.7015 + 83.3765i 0.485752 + 2.75484i
\(917\) −5.22558 −0.172564
\(918\) 0 0
\(919\) 8.93459 0.294725 0.147363 0.989083i \(-0.452922\pi\)
0.147363 + 0.989083i \(0.452922\pi\)
\(920\) −0.305570 1.73297i −0.0100744 0.0571345i
\(921\) 0 0
\(922\) 5.13809 1.87011i 0.169214 0.0615889i
\(923\) −3.68526 3.09230i −0.121302 0.101784i
\(924\) 0 0
\(925\) 18.9024 + 6.87992i 0.621508 + 0.226211i
\(926\) −22.0643 38.2165i −0.725079 1.25587i
\(927\) 0 0
\(928\) −6.72355 + 11.6455i −0.220711 + 0.382283i
\(929\) 4.78330 4.01366i 0.156935 0.131684i −0.560939 0.827857i \(-0.689560\pi\)
0.717874 + 0.696173i \(0.245115\pi\)
\(930\) 0 0
\(931\) 4.44973 25.2357i 0.145834 0.827066i
\(932\) 11.5684 65.6079i 0.378937 2.14906i
\(933\) 0 0
\(934\) −8.57084 + 7.19179i −0.280446 + 0.235322i
\(935\) 0.286617 0.496435i 0.00937338 0.0162352i
\(936\) 0 0
\(937\) −22.9212 39.7006i −0.748802 1.29696i −0.948397 0.317085i \(-0.897296\pi\)
0.199595 0.979878i \(-0.436037\pi\)
\(938\) −11.5647 4.20920i −0.377600 0.137435i
\(939\) 0 0
\(940\) 0.965368 + 0.810040i 0.0314868 + 0.0264206i
\(941\) −4.09014 + 1.48869i −0.133335 + 0.0485298i −0.407826 0.913060i \(-0.633713\pi\)
0.274491 + 0.961590i \(0.411491\pi\)
\(942\) 0 0
\(943\) 0.847573 + 4.80683i 0.0276008 + 0.156532i
\(944\) 27.3637 0.890612
\(945\) 0 0
\(946\) −51.2644 −1.66675
\(947\) −0.350202 1.98610i −0.0113800 0.0645395i 0.978589 0.205825i \(-0.0659877\pi\)
−0.989969 + 0.141285i \(0.954877\pi\)
\(948\) 0 0
\(949\) −0.771790 + 0.280909i −0.0250534 + 0.00911868i
\(950\) 35.3118 + 29.6301i 1.14566 + 0.961327i
\(951\) 0 0
\(952\) 4.60587 + 1.67640i 0.149277 + 0.0543325i
\(953\) −17.8644 30.9420i −0.578684 1.00231i −0.995631 0.0933786i \(-0.970233\pi\)
0.416947 0.908931i \(-0.363100\pi\)
\(954\) 0 0
\(955\) 0.104896 0.181686i 0.00339437 0.00587922i
\(956\) 44.5075 37.3462i 1.43948 1.20786i
\(957\) 0 0
\(958\) 5.91188 33.5279i 0.191004 1.08324i
\(959\) 1.15999 6.57865i 0.0374581 0.212436i
\(960\) 0 0
\(961\) −21.6428 + 18.1605i −0.698155 + 0.585822i
\(962\) −20.3338 + 35.2191i −0.655587 + 1.13551i
\(963\) 0 0
\(964\) −24.7759 42.9131i −0.797978 1.38214i
\(965\) −0.0769973 0.0280247i −0.00247863 0.000902148i
\(966\) 0 0
\(967\) −0.531112 0.445656i −0.0170794 0.0143313i 0.634208 0.773163i \(-0.281326\pi\)
−0.651287 + 0.758831i \(0.725771\pi\)
\(968\) 5.71631 2.08057i 0.183729 0.0668719i
\(969\) 0 0
\(970\) −0.205569 1.16584i −0.00660041 0.0374328i
\(971\) −47.4942 −1.52416 −0.762081 0.647482i \(-0.775822\pi\)
−0.762081 + 0.647482i \(0.775822\pi\)
\(972\) 0 0
\(973\) −0.987988 −0.0316734
\(974\) −8.93869 50.6938i −0.286414 1.62434i
\(975\) 0 0
\(976\) 32.9931 12.0085i 1.05608 0.384383i
\(977\) 9.65470 + 8.10126i 0.308881 + 0.259182i 0.784029 0.620724i \(-0.213161\pi\)
−0.475148 + 0.879906i \(0.657606\pi\)
\(978\) 0 0
\(979\) −4.51423 1.64305i −0.144276 0.0525120i
\(980\) −1.16855 2.02399i −0.0373280 0.0646540i
\(981\) 0 0
\(982\) −16.9168 + 29.3008i −0.539838 + 0.935027i
\(983\) −8.84400 + 7.42100i −0.282080 + 0.236693i −0.772839 0.634602i \(-0.781164\pi\)
0.490759 + 0.871295i \(0.336720\pi\)
\(984\) 0 0
\(985\) 0.327745 1.85874i 0.0104428 0.0592243i
\(986\) −5.31361 + 30.1350i −0.169220 + 0.959693i
\(987\) 0 0
\(988\) −46.6351 + 39.1315i −1.48366 + 1.24494i
\(989\) 15.3647 26.6125i 0.488569 0.846227i
\(990\) 0 0
\(991\) −9.34676 16.1891i −0.296910 0.514263i 0.678518 0.734584i \(-0.262623\pi\)
−0.975427 + 0.220322i \(0.929289\pi\)
\(992\) 3.27281 + 1.19121i 0.103912 + 0.0378209i
\(993\) 0 0
\(994\) 1.22143 + 1.02490i 0.0387413 + 0.0325079i
\(995\) −1.66275 + 0.605192i −0.0527128 + 0.0191859i
\(996\) 0 0
\(997\) 0.583250 + 3.30778i 0.0184717 + 0.104758i 0.992650 0.121023i \(-0.0386175\pi\)
−0.974178 + 0.225782i \(0.927506\pi\)
\(998\) 35.8066 1.13344
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.2.e.a.10.2 12
3.2 odd 2 27.2.e.a.13.1 12
9.2 odd 6 243.2.e.c.109.1 12
9.4 even 3 243.2.e.a.190.1 12
9.5 odd 6 243.2.e.d.190.2 12
9.7 even 3 243.2.e.b.109.2 12
12.11 even 2 432.2.u.c.337.1 12
15.2 even 4 675.2.u.b.499.4 24
15.8 even 4 675.2.u.b.499.1 24
15.14 odd 2 675.2.l.c.526.2 12
27.2 odd 18 27.2.e.a.25.1 yes 12
27.4 even 9 729.2.c.b.487.1 12
27.5 odd 18 729.2.a.a.1.1 6
27.7 even 9 243.2.e.b.136.2 12
27.11 odd 18 243.2.e.d.55.2 12
27.13 even 9 729.2.c.b.244.1 12
27.14 odd 18 729.2.c.e.244.6 12
27.16 even 9 243.2.e.a.55.1 12
27.20 odd 18 243.2.e.c.136.1 12
27.22 even 9 729.2.a.d.1.6 6
27.23 odd 18 729.2.c.e.487.6 12
27.25 even 9 inner 81.2.e.a.73.2 12
108.83 even 18 432.2.u.c.241.1 12
135.2 even 36 675.2.u.b.349.1 24
135.29 odd 18 675.2.l.c.376.2 12
135.83 even 36 675.2.u.b.349.4 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.2.e.a.13.1 12 3.2 odd 2
27.2.e.a.25.1 yes 12 27.2 odd 18
81.2.e.a.10.2 12 1.1 even 1 trivial
81.2.e.a.73.2 12 27.25 even 9 inner
243.2.e.a.55.1 12 27.16 even 9
243.2.e.a.190.1 12 9.4 even 3
243.2.e.b.109.2 12 9.7 even 3
243.2.e.b.136.2 12 27.7 even 9
243.2.e.c.109.1 12 9.2 odd 6
243.2.e.c.136.1 12 27.20 odd 18
243.2.e.d.55.2 12 27.11 odd 18
243.2.e.d.190.2 12 9.5 odd 6
432.2.u.c.241.1 12 108.83 even 18
432.2.u.c.337.1 12 12.11 even 2
675.2.l.c.376.2 12 135.29 odd 18
675.2.l.c.526.2 12 15.14 odd 2
675.2.u.b.349.1 24 135.2 even 36
675.2.u.b.349.4 24 135.83 even 36
675.2.u.b.499.1 24 15.8 even 4
675.2.u.b.499.4 24 15.2 even 4
729.2.a.a.1.1 6 27.5 odd 18
729.2.a.d.1.6 6 27.22 even 9
729.2.c.b.244.1 12 27.13 even 9
729.2.c.b.487.1 12 27.4 even 9
729.2.c.e.244.6 12 27.14 odd 18
729.2.c.e.487.6 12 27.23 odd 18