Properties

Label 81.7.d.b
Level $81$
Weight $7$
Character orbit 81.d
Analytic conductor $18.634$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,7,Mod(26,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 7, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.26");
 
S:= CuspForms(chi, 7);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 81.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6343807732\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - 28 \beta_{2} q^{4} + ( - 40 \beta_{3} + 40 \beta_1) q^{5} + (299 \beta_{2} - 299) q^{7} - 92 \beta_{3} q^{8} + 1440 q^{10} - 104 \beta_1 q^{11} - 2495 \beta_{2} q^{13} + (299 \beta_{3} - 299 \beta_1) q^{14}+ \cdots + 28248 \beta_{3} q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 56 q^{4} - 598 q^{7} + 5760 q^{10} - 4990 q^{13} + 3040 q^{16} - 10036 q^{19} - 7488 q^{22} + 83950 q^{25} + 33488 q^{28} - 10660 q^{31} + 22464 q^{34} + 130364 q^{37} - 264960 q^{40} + 141260 q^{43}+ \cdots - 441454 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( 6\zeta_{12} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \zeta_{12}^{2} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 6\zeta_{12}^{3} \) Copy content Toggle raw display
\(\zeta_{12}\)\(=\) \( ( \beta_1 ) / 6 \) Copy content Toggle raw display
\(\zeta_{12}^{2}\)\(=\) \( \beta_{2} \) Copy content Toggle raw display
\(\zeta_{12}^{3}\)\(=\) \( ( \beta_{3} ) / 6 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
26.1
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i
0.866025 0.500000i
−5.19615 3.00000i 0 −14.0000 24.2487i −207.846 + 120.000i 0 −149.500 + 258.942i 552.000i 0 1440.00
26.2 5.19615 + 3.00000i 0 −14.0000 24.2487i 207.846 120.000i 0 −149.500 + 258.942i 552.000i 0 1440.00
53.1 −5.19615 + 3.00000i 0 −14.0000 + 24.2487i −207.846 120.000i 0 −149.500 258.942i 552.000i 0 1440.00
53.2 5.19615 3.00000i 0 −14.0000 + 24.2487i 207.846 + 120.000i 0 −149.500 258.942i 552.000i 0 1440.00
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
9.c even 3 1 inner
9.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 81.7.d.b 4
3.b odd 2 1 inner 81.7.d.b 4
9.c even 3 1 27.7.b.b 2
9.c even 3 1 inner 81.7.d.b 4
9.d odd 6 1 27.7.b.b 2
9.d odd 6 1 inner 81.7.d.b 4
36.f odd 6 1 432.7.e.d 2
36.h even 6 1 432.7.e.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
27.7.b.b 2 9.c even 3 1
27.7.b.b 2 9.d odd 6 1
81.7.d.b 4 1.a even 1 1 trivial
81.7.d.b 4 3.b odd 2 1 inner
81.7.d.b 4 9.c even 3 1 inner
81.7.d.b 4 9.d odd 6 1 inner
432.7.e.d 2 36.f odd 6 1
432.7.e.d 2 36.h even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 36T_{2}^{2} + 1296 \) acting on \(S_{7}^{\mathrm{new}}(81, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 36T^{2} + 1296 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 3317760000 \) Copy content Toggle raw display
$7$ \( (T^{2} + 299 T + 89401)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 151613669376 \) Copy content Toggle raw display
$13$ \( (T^{2} + 2495 T + 6225025)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 3504384)^{2} \) Copy content Toggle raw display
$19$ \( (T + 2509)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 42\!\cdots\!16 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 31\!\cdots\!36 \) Copy content Toggle raw display
$31$ \( (T^{2} + 5330 T + 28408900)^{2} \) Copy content Toggle raw display
$37$ \( (T - 32591)^{4} \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 19\!\cdots\!96 \) Copy content Toggle raw display
$43$ \( (T^{2} - 70630 T + 4988596900)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 251928510529536 \) Copy content Toggle raw display
$53$ \( (T^{2} + 36459611136)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 31\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( (T^{2} - 61801 T + 3819363601)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 430261 T + 185124528121)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 63358930944)^{2} \) Copy content Toggle raw display
$73$ \( (T - 251615)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + 660827 T + 436692323929)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 40\!\cdots\!96 \) Copy content Toggle raw display
$89$ \( (T^{2} + 73211371776)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 220727 T + 48720408529)^{2} \) Copy content Toggle raw display
show more
show less