Properties

Label 81.7.f.a.8.14
Level $81$
Weight $7$
Character 81.8
Analytic conductor $18.634$
Analytic rank $0$
Dimension $102$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,7,Mod(8,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 7, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.8");
 
S:= CuspForms(chi, 7);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 81.f (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6343807732\)
Analytic rank: \(0\)
Dimension: \(102\)
Relative dimension: \(17\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 8.14
Character \(\chi\) \(=\) 81.8
Dual form 81.7.f.a.71.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(9.97059 + 1.75808i) q^{2} +(36.1814 + 13.1690i) q^{4} +(-60.9980 - 72.6946i) q^{5} +(-133.791 + 48.6960i) q^{7} +(-223.553 - 129.069i) q^{8} +(-480.383 - 832.047i) q^{10} +(-1624.00 + 1935.41i) q^{11} +(-126.490 - 717.362i) q^{13} +(-1419.59 + 250.312i) q^{14} +(-3889.75 - 3263.89i) q^{16} +(-4210.29 + 2430.81i) q^{17} +(62.0141 - 107.412i) q^{19} +(-1249.68 - 3433.47i) q^{20} +(-19594.9 + 16442.1i) q^{22} +(4137.25 - 11367.0i) q^{23} +(1149.51 - 6519.18i) q^{25} -7374.90i q^{26} -5482.03 q^{28} +(-22191.9 - 3913.03i) q^{29} +(14120.1 + 5139.28i) q^{31} +(-22425.5 - 26725.7i) q^{32} +(-46252.6 + 16834.6i) q^{34} +(11700.9 + 6755.53i) q^{35} +(17270.1 + 29912.7i) q^{37} +(807.155 - 961.930i) q^{38} +(4253.72 + 24124.0i) q^{40} +(87091.6 - 15356.6i) q^{41} +(-4953.54 - 4156.52i) q^{43} +(-84246.1 + 48639.5i) q^{44} +(61235.0 - 106062. i) q^{46} +(-59675.6 - 163957. i) q^{47} +(-74595.6 + 62593.1i) q^{49} +(22922.5 - 62979.1i) q^{50} +(4870.32 - 27620.9i) q^{52} +277335. i q^{53} +239755. q^{55} +(36194.6 + 6382.08i) q^{56} +(-214387. - 78030.5i) q^{58} +(-66748.6 - 79547.9i) q^{59} +(-284660. + 103608. i) q^{61} +(131750. + 76065.9i) q^{62} +(-14123.1 - 24462.0i) q^{64} +(-44432.7 + 52952.8i) q^{65} +(-7050.75 - 39986.8i) q^{67} +(-184345. + 32505.1i) q^{68} +(104788. + 87927.9i) q^{70} +(8731.10 - 5040.90i) q^{71} +(159295. - 275906. i) q^{73} +(119604. + 328610. i) q^{74} +(3658.26 - 3069.64i) q^{76} +(123031. - 338024. i) q^{77} +(11705.7 - 66386.4i) q^{79} +481854. i q^{80} +895353. q^{82} +(975779. + 172056. i) q^{83} +(433526. + 157790. i) q^{85} +(-42082.2 - 50151.7i) q^{86} +(612852. - 223060. i) q^{88} +(169602. + 97919.9i) q^{89} +(51856.0 + 89817.2i) q^{91} +(299383. - 356791. i) q^{92} +(-306750. - 1.73967e6i) q^{94} +(-11591.0 + 2043.80i) q^{95} +(981600. + 823660. i) q^{97} +(-853806. + 492945. i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 102 q + 6 q^{2} - 6 q^{4} - 210 q^{5} - 6 q^{7} + 9 q^{8} - 3 q^{10} + 492 q^{11} - 6 q^{13} + 12183 q^{14} - 198 q^{16} + 9 q^{17} - 3 q^{19} + 19767 q^{20} - 10806 q^{22} - 14466 q^{23} - 15990 q^{25}+ \cdots - 1179270 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 9.97059 + 1.75808i 1.24632 + 0.219760i 0.757624 0.652692i \(-0.226360\pi\)
0.488700 + 0.872452i \(0.337471\pi\)
\(3\) 0 0
\(4\) 36.1814 + 13.1690i 0.565335 + 0.205765i
\(5\) −60.9980 72.6946i −0.487984 0.581556i 0.464720 0.885458i \(-0.346155\pi\)
−0.952703 + 0.303901i \(0.901711\pi\)
\(6\) 0 0
\(7\) −133.791 + 48.6960i −0.390062 + 0.141971i −0.529604 0.848245i \(-0.677659\pi\)
0.139542 + 0.990216i \(0.455437\pi\)
\(8\) −223.553 129.069i −0.436628 0.252087i
\(9\) 0 0
\(10\) −480.383 832.047i −0.480383 0.832047i
\(11\) −1624.00 + 1935.41i −1.22014 + 1.45410i −0.368782 + 0.929516i \(0.620225\pi\)
−0.851356 + 0.524588i \(0.824219\pi\)
\(12\) 0 0
\(13\) −126.490 717.362i −0.0575741 0.326519i 0.942394 0.334505i \(-0.108569\pi\)
−0.999968 + 0.00798588i \(0.997458\pi\)
\(14\) −1419.59 + 250.312i −0.517343 + 0.0912215i
\(15\) 0 0
\(16\) −3889.75 3263.89i −0.949645 0.796847i
\(17\) −4210.29 + 2430.81i −0.856968 + 0.494771i −0.862996 0.505211i \(-0.831415\pi\)
0.00602755 + 0.999982i \(0.498081\pi\)
\(18\) 0 0
\(19\) 62.0141 107.412i 0.00904127 0.0156599i −0.861469 0.507810i \(-0.830455\pi\)
0.870511 + 0.492150i \(0.163789\pi\)
\(20\) −1249.68 3433.47i −0.156210 0.429184i
\(21\) 0 0
\(22\) −19594.9 + 16442.1i −1.84024 + 1.54415i
\(23\) 4137.25 11367.0i 0.340039 0.934249i −0.645344 0.763892i \(-0.723286\pi\)
0.985382 0.170357i \(-0.0544920\pi\)
\(24\) 0 0
\(25\) 1149.51 6519.18i 0.0735685 0.417227i
\(26\) 7374.90i 0.419601i
\(27\) 0 0
\(28\) −5482.03 −0.249728
\(29\) −22191.9 3913.03i −0.909915 0.160443i −0.300950 0.953640i \(-0.597304\pi\)
−0.608965 + 0.793197i \(0.708415\pi\)
\(30\) 0 0
\(31\) 14120.1 + 5139.28i 0.473971 + 0.172511i 0.567950 0.823063i \(-0.307737\pi\)
−0.0939796 + 0.995574i \(0.529959\pi\)
\(32\) −22425.5 26725.7i −0.684373 0.815604i
\(33\) 0 0
\(34\) −46252.6 + 16834.6i −1.17679 + 0.428317i
\(35\) 11700.9 + 6755.53i 0.272908 + 0.157563i
\(36\) 0 0
\(37\) 17270.1 + 29912.7i 0.340950 + 0.590542i 0.984609 0.174770i \(-0.0559180\pi\)
−0.643660 + 0.765312i \(0.722585\pi\)
\(38\) 807.155 961.930i 0.0147098 0.0175304i
\(39\) 0 0
\(40\) 4253.72 + 24124.0i 0.0664643 + 0.376938i
\(41\) 87091.6 15356.6i 1.26364 0.222815i 0.498623 0.866819i \(-0.333839\pi\)
0.765022 + 0.644004i \(0.222728\pi\)
\(42\) 0 0
\(43\) −4953.54 4156.52i −0.0623032 0.0522786i 0.611104 0.791550i \(-0.290726\pi\)
−0.673408 + 0.739271i \(0.735170\pi\)
\(44\) −84246.1 + 48639.5i −0.988990 + 0.570994i
\(45\) 0 0
\(46\) 61235.0 106062.i 0.629109 1.08965i
\(47\) −59675.6 163957.i −0.574782 1.57920i −0.796855 0.604171i \(-0.793504\pi\)
0.222072 0.975030i \(-0.428718\pi\)
\(48\) 0 0
\(49\) −74595.6 + 62593.1i −0.634052 + 0.532033i
\(50\) 22922.5 62979.1i 0.183380 0.503833i
\(51\) 0 0
\(52\) 4870.32 27620.9i 0.0346375 0.196439i
\(53\) 277335.i 1.86285i 0.363938 + 0.931423i \(0.381432\pi\)
−0.363938 + 0.931423i \(0.618568\pi\)
\(54\) 0 0
\(55\) 239755. 1.44105
\(56\) 36194.6 + 6382.08i 0.206101 + 0.0363411i
\(57\) 0 0
\(58\) −214387. 78030.5i −1.09879 0.399927i
\(59\) −66748.6 79547.9i −0.325002 0.387323i 0.578660 0.815569i \(-0.303576\pi\)
−0.903662 + 0.428247i \(0.859131\pi\)
\(60\) 0 0
\(61\) −284660. + 103608.i −1.25411 + 0.456459i −0.881789 0.471644i \(-0.843661\pi\)
−0.372323 + 0.928103i \(0.621439\pi\)
\(62\) 131750. + 76065.9i 0.552809 + 0.319165i
\(63\) 0 0
\(64\) −14123.1 24462.0i −0.0538755 0.0933151i
\(65\) −44432.7 + 52952.8i −0.161794 + 0.192819i
\(66\) 0 0
\(67\) −7050.75 39986.8i −0.0234429 0.132951i 0.970840 0.239728i \(-0.0770582\pi\)
−0.994283 + 0.106777i \(0.965947\pi\)
\(68\) −184345. + 32505.1i −0.586280 + 0.103377i
\(69\) 0 0
\(70\) 104788. + 87927.9i 0.305505 + 0.256349i
\(71\) 8731.10 5040.90i 0.0243946 0.0140842i −0.487753 0.872982i \(-0.662183\pi\)
0.512148 + 0.858897i \(0.328850\pi\)
\(72\) 0 0
\(73\) 159295. 275906.i 0.409480 0.709239i −0.585352 0.810779i \(-0.699044\pi\)
0.994831 + 0.101540i \(0.0323770\pi\)
\(74\) 119604. + 328610.i 0.295156 + 0.810934i
\(75\) 0 0
\(76\) 3658.26 3069.64i 0.00833361 0.00699273i
\(77\) 123031. 338024.i 0.269489 0.740415i
\(78\) 0 0
\(79\) 11705.7 66386.4i 0.0237420 0.134647i −0.970633 0.240566i \(-0.922667\pi\)
0.994375 + 0.105918i \(0.0337782\pi\)
\(80\) 481854.i 0.941121i
\(81\) 0 0
\(82\) 895353. 1.62388
\(83\) 975779. + 172056.i 1.70654 + 0.300910i 0.939973 0.341250i \(-0.110850\pi\)
0.766571 + 0.642160i \(0.221961\pi\)
\(84\) 0 0
\(85\) 433526. + 157790.i 0.705924 + 0.256935i
\(86\) −42082.2 50151.7i −0.0661612 0.0788479i
\(87\) 0 0
\(88\) 612852. 223060.i 0.899307 0.327321i
\(89\) 169602. + 97919.9i 0.240581 + 0.138900i 0.615444 0.788181i \(-0.288977\pi\)
−0.374863 + 0.927080i \(0.622310\pi\)
\(90\) 0 0
\(91\) 51856.0 + 89817.2i 0.0688137 + 0.119189i
\(92\) 299383. 356791.i 0.384471 0.458195i
\(93\) 0 0
\(94\) −306750. 1.73967e6i −0.369319 2.09451i
\(95\) −11591.0 + 2043.80i −0.0135191 + 0.00238379i
\(96\) 0 0
\(97\) 981600. + 823660.i 1.07552 + 0.902470i 0.995541 0.0943259i \(-0.0300696\pi\)
0.0799810 + 0.996796i \(0.474514\pi\)
\(98\) −853806. + 492945.i −0.907153 + 0.523745i
\(99\) 0 0
\(100\) 127442. 220735.i 0.127442 0.220735i
\(101\) −144793. 397814.i −0.140534 0.386115i 0.849380 0.527781i \(-0.176976\pi\)
−0.989914 + 0.141667i \(0.954754\pi\)
\(102\) 0 0
\(103\) −1.47195e6 + 1.23511e6i −1.34704 + 1.13030i −0.367286 + 0.930108i \(0.619713\pi\)
−0.979756 + 0.200195i \(0.935842\pi\)
\(104\) −64311.6 + 176695.i −0.0571728 + 0.157081i
\(105\) 0 0
\(106\) −487578. + 2.76519e6i −0.409380 + 2.32171i
\(107\) 1.43594e6i 1.17215i −0.810257 0.586075i \(-0.800672\pi\)
0.810257 0.586075i \(-0.199328\pi\)
\(108\) 0 0
\(109\) −1.85981e6 −1.43611 −0.718057 0.695984i \(-0.754968\pi\)
−0.718057 + 0.695984i \(0.754968\pi\)
\(110\) 2.39050e6 + 421509.i 1.79602 + 0.316686i
\(111\) 0 0
\(112\) 679352. + 247264.i 0.483550 + 0.175998i
\(113\) −1.43022e6 1.70447e6i −0.991212 1.18128i −0.983426 0.181310i \(-0.941966\pi\)
−0.00778556 0.999970i \(-0.502478\pi\)
\(114\) 0 0
\(115\) −1.07868e6 + 392609.i −0.709252 + 0.258147i
\(116\) −751404. 433823.i −0.481393 0.277932i
\(117\) 0 0
\(118\) −525671. 910489.i −0.319940 0.554152i
\(119\) 444928. 530245.i 0.264028 0.314656i
\(120\) 0 0
\(121\) −800805. 4.54159e6i −0.452033 2.56361i
\(122\) −3.02037e6 + 532573.i −1.66334 + 0.293292i
\(123\) 0 0
\(124\) 443205. + 371893.i 0.232455 + 0.195053i
\(125\) −1.82813e6 + 1.05547e6i −0.936000 + 0.540400i
\(126\) 0 0
\(127\) −661639. + 1.14599e6i −0.323006 + 0.559462i −0.981107 0.193467i \(-0.938027\pi\)
0.658101 + 0.752930i \(0.271360\pi\)
\(128\) 665862. + 1.82944e6i 0.317508 + 0.872346i
\(129\) 0 0
\(130\) −536115. + 449854.i −0.244022 + 0.204758i
\(131\) −93255.3 + 256217.i −0.0414820 + 0.113971i −0.958704 0.284405i \(-0.908204\pi\)
0.917222 + 0.398376i \(0.130426\pi\)
\(132\) 0 0
\(133\) −3066.43 + 17390.6i −0.00130340 + 0.00739195i
\(134\) 411088.i 0.170852i
\(135\) 0 0
\(136\) 1.25496e6 0.498901
\(137\) −3.97328e6 700596.i −1.54521 0.272462i −0.664926 0.746910i \(-0.731537\pi\)
−0.880284 + 0.474447i \(0.842648\pi\)
\(138\) 0 0
\(139\) −2.76811e6 1.00751e6i −1.03071 0.375149i −0.229362 0.973341i \(-0.573664\pi\)
−0.801353 + 0.598192i \(0.795886\pi\)
\(140\) 334393. + 398514.i 0.121863 + 0.145231i
\(141\) 0 0
\(142\) 95916.5 34910.7i 0.0334987 0.0121925i
\(143\) 1.59381e6 + 920188.i 0.545041 + 0.314680i
\(144\) 0 0
\(145\) 1.06921e6 + 1.85192e6i 0.350717 + 0.607460i
\(146\) 2.07333e6 2.47089e6i 0.666207 0.793954i
\(147\) 0 0
\(148\) 230938. + 1.30972e6i 0.0712378 + 0.404010i
\(149\) −938820. + 165539.i −0.283807 + 0.0500429i −0.313740 0.949509i \(-0.601582\pi\)
0.0299325 + 0.999552i \(0.490471\pi\)
\(150\) 0 0
\(151\) −3.13417e6 2.62988e6i −0.910316 0.763846i 0.0618631 0.998085i \(-0.480296\pi\)
−0.972179 + 0.234239i \(0.924740\pi\)
\(152\) −27726.9 + 16008.1i −0.00789534 + 0.00455838i
\(153\) 0 0
\(154\) 1.82096e6 3.15400e6i 0.498584 0.863573i
\(155\) −487697. 1.33994e6i −0.130965 0.359823i
\(156\) 0 0
\(157\) −2.55010e6 + 2.13979e6i −0.658960 + 0.552933i −0.909775 0.415102i \(-0.863746\pi\)
0.250815 + 0.968035i \(0.419301\pi\)
\(158\) 233426. 641332.i 0.0591803 0.162597i
\(159\) 0 0
\(160\) −574901. + 3.26043e6i −0.140357 + 0.796003i
\(161\) 1.72227e6i 0.412691i
\(162\) 0 0
\(163\) 2.30993e6 0.533380 0.266690 0.963782i \(-0.414070\pi\)
0.266690 + 0.963782i \(0.414070\pi\)
\(164\) 3.35333e6 + 591282.i 0.760229 + 0.134049i
\(165\) 0 0
\(166\) 9.42660e6 + 3.43100e6i 2.06078 + 0.750061i
\(167\) −1.52636e6 1.81904e6i −0.327723 0.390565i 0.576874 0.816833i \(-0.304273\pi\)
−0.904597 + 0.426268i \(0.859828\pi\)
\(168\) 0 0
\(169\) 4.03711e6 1.46939e6i 0.836393 0.304422i
\(170\) 4.04510e6 + 2.33544e6i 0.823345 + 0.475359i
\(171\) 0 0
\(172\) −124489. 215622.i −0.0244651 0.0423747i
\(173\) −3.26555e6 + 3.89174e6i −0.630694 + 0.751632i −0.982870 0.184302i \(-0.940997\pi\)
0.352176 + 0.935934i \(0.385442\pi\)
\(174\) 0 0
\(175\) 163664. + 928185.i 0.0305379 + 0.173189i
\(176\) 1.26339e7 2.22770e6i 2.31740 0.408620i
\(177\) 0 0
\(178\) 1.51888e6 + 1.27449e6i 0.269317 + 0.225984i
\(179\) 2.84156e6 1.64058e6i 0.495447 0.286047i −0.231384 0.972862i \(-0.574325\pi\)
0.726832 + 0.686816i \(0.240992\pi\)
\(180\) 0 0
\(181\) 324598. 562220.i 0.0547407 0.0948137i −0.837357 0.546657i \(-0.815900\pi\)
0.892097 + 0.451843i \(0.149233\pi\)
\(182\) 359129. + 986698.i 0.0595711 + 0.163670i
\(183\) 0 0
\(184\) −2.39202e6 + 2.00714e6i −0.383982 + 0.322199i
\(185\) 1.12105e6 3.08006e6i 0.177056 0.486457i
\(186\) 0 0
\(187\) 2.13290e6 1.20963e7i 0.326171 1.84981i
\(188\) 6.71808e6i 1.01105i
\(189\) 0 0
\(190\) −119162. −0.0173731
\(191\) −8.13036e6 1.43360e6i −1.16684 0.205745i −0.443522 0.896264i \(-0.646271\pi\)
−0.723314 + 0.690519i \(0.757382\pi\)
\(192\) 0 0
\(193\) 8.86230e6 + 3.22561e6i 1.23275 + 0.448684i 0.874538 0.484957i \(-0.161165\pi\)
0.358211 + 0.933641i \(0.383387\pi\)
\(194\) 8.33907e6 + 9.93811e6i 1.14212 + 1.36113i
\(195\) 0 0
\(196\) −3.52326e6 + 1.28236e6i −0.467925 + 0.170311i
\(197\) 4.99084e6 + 2.88146e6i 0.652792 + 0.376889i 0.789525 0.613718i \(-0.210327\pi\)
−0.136733 + 0.990608i \(0.543660\pi\)
\(198\) 0 0
\(199\) 1.79973e6 + 3.11723e6i 0.228375 + 0.395557i 0.957327 0.289008i \(-0.0933254\pi\)
−0.728952 + 0.684565i \(0.759992\pi\)
\(200\) −1.09840e6 + 1.30902e6i −0.137300 + 0.163627i
\(201\) 0 0
\(202\) −744276. 4.22100e6i −0.0902984 0.512107i
\(203\) 3.15963e6 557128.i 0.377701 0.0665989i
\(204\) 0 0
\(205\) −6.42876e6 5.39437e6i −0.746217 0.626151i
\(206\) −1.68476e7 + 9.72698e6i −1.92725 + 1.11270i
\(207\) 0 0
\(208\) −1.84937e6 + 3.20321e6i −0.205511 + 0.355955i
\(209\) 107175. + 294460.i 0.0117396 + 0.0322542i
\(210\) 0 0
\(211\) −8.40990e6 + 7.05675e6i −0.895249 + 0.751203i −0.969256 0.246055i \(-0.920866\pi\)
0.0740074 + 0.997258i \(0.476421\pi\)
\(212\) −3.65221e6 + 1.00344e7i −0.383309 + 1.05313i
\(213\) 0 0
\(214\) 2.52449e6 1.43171e7i 0.257592 1.46088i
\(215\) 613635.i 0.0617440i
\(216\) 0 0
\(217\) −2.13940e6 −0.209369
\(218\) −1.85434e7 3.26970e6i −1.78986 0.315601i
\(219\) 0 0
\(220\) 8.67467e6 + 3.15732e6i 0.814676 + 0.296518i
\(221\) 2.27633e6 + 2.71283e6i 0.210891 + 0.251331i
\(222\) 0 0
\(223\) 1.99653e6 726678.i 0.180037 0.0655280i −0.250429 0.968135i \(-0.580572\pi\)
0.430466 + 0.902607i \(0.358349\pi\)
\(224\) 4.30178e6 + 2.48363e6i 0.382740 + 0.220975i
\(225\) 0 0
\(226\) −1.12635e7 1.95090e7i −0.975771 1.69009i
\(227\) −121910. + 145286.i −0.0104222 + 0.0124207i −0.771230 0.636556i \(-0.780358\pi\)
0.760808 + 0.648977i \(0.224803\pi\)
\(228\) 0 0
\(229\) −156615. 888210.i −0.0130415 0.0739621i 0.977592 0.210507i \(-0.0675114\pi\)
−0.990634 + 0.136545i \(0.956400\pi\)
\(230\) −1.14453e7 + 2.01812e6i −0.940688 + 0.165869i
\(231\) 0 0
\(232\) 4.45603e6 + 3.73905e6i 0.356848 + 0.299431i
\(233\) 6.44223e6 3.71942e6i 0.509294 0.294041i −0.223249 0.974761i \(-0.571666\pi\)
0.732543 + 0.680720i \(0.238333\pi\)
\(234\) 0 0
\(235\) −8.27872e6 + 1.43392e7i −0.637910 + 1.10489i
\(236\) −1.36750e6 3.75717e6i −0.104038 0.285841i
\(237\) 0 0
\(238\) 5.36841e6 4.50463e6i 0.398213 0.334140i
\(239\) 2.60021e6 7.14402e6i 0.190465 0.523298i −0.807298 0.590143i \(-0.799071\pi\)
0.997763 + 0.0668453i \(0.0212934\pi\)
\(240\) 0 0
\(241\) −1.52112e6 + 8.62668e6i −0.108670 + 0.616301i 0.881020 + 0.473079i \(0.156857\pi\)
−0.989691 + 0.143222i \(0.954254\pi\)
\(242\) 4.66902e7i 3.29442i
\(243\) 0 0
\(244\) −1.16638e7 −0.802916
\(245\) 9.10036e6 + 1.60464e6i 0.618814 + 0.109114i
\(246\) 0 0
\(247\) −84897.2 30900.1i −0.00563381 0.00205054i
\(248\) −2.49327e6 2.97136e6i −0.163461 0.194805i
\(249\) 0 0
\(250\) −2.00831e7 + 7.30965e6i −1.28532 + 0.467817i
\(251\) 2.29316e7 + 1.32396e7i 1.45015 + 0.837245i 0.998489 0.0549446i \(-0.0174982\pi\)
0.451661 + 0.892189i \(0.350832\pi\)
\(252\) 0 0
\(253\) 1.52809e7 + 2.64674e7i 0.943601 + 1.63436i
\(254\) −8.61169e6 + 1.02630e7i −0.525517 + 0.626287i
\(255\) 0 0
\(256\) 3.73664e6 + 2.11915e7i 0.222721 + 1.26311i
\(257\) −6.58651e6 + 1.16138e6i −0.388022 + 0.0684187i −0.364256 0.931299i \(-0.618677\pi\)
−0.0237657 + 0.999718i \(0.507566\pi\)
\(258\) 0 0
\(259\) −3.76722e6 3.16108e6i −0.216831 0.181943i
\(260\) −2.30497e6 + 1.33078e6i −0.131143 + 0.0757155i
\(261\) 0 0
\(262\) −1.38026e6 + 2.39068e6i −0.0767463 + 0.132928i
\(263\) −6.79907e6 1.86803e7i −0.373751 1.02687i −0.973899 0.226983i \(-0.927114\pi\)
0.600148 0.799889i \(-0.295108\pi\)
\(264\) 0 0
\(265\) 2.01607e7 1.69169e7i 1.08335 0.909039i
\(266\) −61148.1 + 168003.i −0.00324891 + 0.00892632i
\(267\) 0 0
\(268\) 271478. 1.53963e6i 0.0141036 0.0799857i
\(269\) 1.98444e7i 1.01949i −0.860327 0.509743i \(-0.829740\pi\)
0.860327 0.509743i \(-0.170260\pi\)
\(270\) 0 0
\(271\) −1.77711e7 −0.892907 −0.446454 0.894807i \(-0.647313\pi\)
−0.446454 + 0.894807i \(0.647313\pi\)
\(272\) 2.43108e7 + 4.28666e6i 1.20807 + 0.213016i
\(273\) 0 0
\(274\) −3.83842e7 1.39707e7i −1.86595 0.679152i
\(275\) 1.07505e7 + 1.28119e7i 0.516929 + 0.616051i
\(276\) 0 0
\(277\) 3.51398e7 1.27899e7i 1.65333 0.601764i 0.664040 0.747697i \(-0.268841\pi\)
0.989294 + 0.145933i \(0.0466184\pi\)
\(278\) −2.58284e7 1.49120e7i −1.20216 0.694068i
\(279\) 0 0
\(280\) −1.74385e6 3.02044e6i −0.0794394 0.137593i
\(281\) −2.08127e6 + 2.48036e6i −0.0938014 + 0.111788i −0.810903 0.585180i \(-0.801024\pi\)
0.717102 + 0.696968i \(0.245468\pi\)
\(282\) 0 0
\(283\) 1.44560e6 + 8.19842e6i 0.0637807 + 0.361718i 0.999948 + 0.0101645i \(0.00323551\pi\)
−0.936168 + 0.351554i \(0.885653\pi\)
\(284\) 382287. 67407.5i 0.0166892 0.00294275i
\(285\) 0 0
\(286\) 1.42735e7 + 1.19769e7i 0.610143 + 0.511971i
\(287\) −1.09043e7 + 6.29560e6i −0.461266 + 0.266312i
\(288\) 0 0
\(289\) −251115. + 434944.i −0.0104035 + 0.0180194i
\(290\) 7.40478e6 + 2.03445e7i 0.303611 + 0.834166i
\(291\) 0 0
\(292\) 9.39690e6 7.88493e6i 0.377430 0.316701i
\(293\) −1.20558e7 + 3.31231e7i −0.479285 + 1.31683i 0.430816 + 0.902440i \(0.358226\pi\)
−0.910101 + 0.414386i \(0.863996\pi\)
\(294\) 0 0
\(295\) −1.71117e6 + 9.70452e6i −0.0666541 + 0.378014i
\(296\) 8.91613e6i 0.343796i
\(297\) 0 0
\(298\) −9.65161e6 −0.364713
\(299\) −8.67759e6 1.53009e6i −0.324628 0.0572406i
\(300\) 0 0
\(301\) 865147. + 314888.i 0.0317242 + 0.0115467i
\(302\) −2.66260e7 3.17316e7i −0.966685 1.15205i
\(303\) 0 0
\(304\) −591798. + 215397.i −0.0210646 + 0.00766688i
\(305\) 2.48954e7 + 1.43733e7i 0.877443 + 0.506592i
\(306\) 0 0
\(307\) −9.02470e6 1.56312e7i −0.311902 0.540230i 0.666872 0.745172i \(-0.267633\pi\)
−0.978774 + 0.204942i \(0.934299\pi\)
\(308\) 8.90284e6 1.06100e7i 0.304703 0.363131i
\(309\) 0 0
\(310\) −2.50691e6 1.42174e7i −0.0841498 0.477237i
\(311\) −9.81559e6 + 1.73075e6i −0.326314 + 0.0575379i −0.334405 0.942429i \(-0.608535\pi\)
0.00809160 + 0.999967i \(0.497424\pi\)
\(312\) 0 0
\(313\) −4.19324e6 3.51855e6i −0.136747 0.114744i 0.571849 0.820359i \(-0.306226\pi\)
−0.708595 + 0.705615i \(0.750671\pi\)
\(314\) −2.91880e7 + 1.68517e7i −0.942790 + 0.544320i
\(315\) 0 0
\(316\) 1.29777e6 2.24780e6i 0.0411279 0.0712355i
\(317\) 4.37930e6 + 1.20320e7i 0.137476 + 0.377712i 0.989257 0.146185i \(-0.0466996\pi\)
−0.851781 + 0.523898i \(0.824477\pi\)
\(318\) 0 0
\(319\) 4.36131e7 3.65957e7i 1.34352 1.12735i
\(320\) −916771. + 2.51881e6i −0.0279776 + 0.0768679i
\(321\) 0 0
\(322\) −3.02790e6 + 1.71721e7i −0.0906930 + 0.514346i
\(323\) 602978.i 0.0178934i
\(324\) 0 0
\(325\) −4.82202e6 −0.140468
\(326\) 2.30314e7 + 4.06106e6i 0.664764 + 0.117216i
\(327\) 0 0
\(328\) −2.14517e7 7.80777e6i −0.607911 0.221261i
\(329\) 1.59681e7 + 1.90301e7i 0.448401 + 0.534384i
\(330\) 0 0
\(331\) −1.02584e7 + 3.73374e6i −0.282874 + 0.102958i −0.479561 0.877509i \(-0.659204\pi\)
0.196687 + 0.980466i \(0.436982\pi\)
\(332\) 3.30393e7 + 1.90752e7i 0.902851 + 0.521262i
\(333\) 0 0
\(334\) −1.20207e7 2.08204e7i −0.322618 0.558791i
\(335\) −2.47674e6 + 2.95167e6i −0.0658789 + 0.0785114i
\(336\) 0 0
\(337\) 4.54260e6 + 2.57624e7i 0.118690 + 0.673125i 0.984857 + 0.173370i \(0.0554656\pi\)
−0.866167 + 0.499755i \(0.833423\pi\)
\(338\) 4.28356e7 7.55308e6i 1.10932 0.195602i
\(339\) 0 0
\(340\) 1.36076e7 + 1.14182e7i 0.346215 + 0.290509i
\(341\) −3.28777e7 + 1.89819e7i −0.829159 + 0.478715i
\(342\) 0 0
\(343\) 1.53075e7 2.65134e7i 0.379334 0.657026i
\(344\) 570906. + 1.56855e6i 0.0140246 + 0.0385321i
\(345\) 0 0
\(346\) −3.94015e7 + 3.30618e7i −0.951227 + 0.798175i
\(347\) 9.54635e6 2.62284e7i 0.228480 0.627745i −0.771483 0.636250i \(-0.780485\pi\)
0.999964 + 0.00850455i \(0.00270711\pi\)
\(348\) 0 0
\(349\) 9933.24 56334.2i 0.000233676 0.00132524i −0.984691 0.174311i \(-0.944230\pi\)
0.984924 + 0.172986i \(0.0553414\pi\)
\(350\) 9.54229e6i 0.222561i
\(351\) 0 0
\(352\) 8.81444e7 2.02100
\(353\) 2.73231e7 + 4.81780e6i 0.621164 + 0.109528i 0.475368 0.879787i \(-0.342315\pi\)
0.145795 + 0.989315i \(0.453426\pi\)
\(354\) 0 0
\(355\) −899025. 327218.i −0.0200949 0.00731396i
\(356\) 4.84694e6 + 5.77636e6i 0.107428 + 0.128028i
\(357\) 0 0
\(358\) 3.12163e7 1.13618e7i 0.680350 0.247627i
\(359\) 3.18617e7 + 1.83954e7i 0.688630 + 0.397581i 0.803099 0.595846i \(-0.203183\pi\)
−0.114469 + 0.993427i \(0.536517\pi\)
\(360\) 0 0
\(361\) 2.35152e7 + 4.07296e7i 0.499837 + 0.865742i
\(362\) 4.22486e6 5.03500e6i 0.0890609 0.106139i
\(363\) 0 0
\(364\) 693424. + 3.93260e6i 0.0143779 + 0.0815410i
\(365\) −2.97735e7 + 5.24987e6i −0.612282 + 0.107962i
\(366\) 0 0
\(367\) −5.33099e7 4.47324e7i −1.07847 0.904948i −0.0826816 0.996576i \(-0.526348\pi\)
−0.995793 + 0.0916281i \(0.970793\pi\)
\(368\) −5.31935e7 + 3.07113e7i −1.06737 + 0.616246i
\(369\) 0 0
\(370\) 1.65925e7 2.87391e7i 0.327573 0.567373i
\(371\) −1.35051e7 3.71050e7i −0.264470 0.726625i
\(372\) 0 0
\(373\) 1.18708e7 9.96079e6i 0.228746 0.191941i −0.521210 0.853429i \(-0.674519\pi\)
0.749956 + 0.661488i \(0.230075\pi\)
\(374\) 4.25326e7 1.16857e8i 0.813030 2.23378i
\(375\) 0 0
\(376\) −7.82107e6 + 4.43555e7i −0.147130 + 0.834418i
\(377\) 1.64146e7i 0.306342i
\(378\) 0 0
\(379\) 8.36659e7 1.53685 0.768424 0.639941i \(-0.221041\pi\)
0.768424 + 0.639941i \(0.221041\pi\)
\(380\) −446292. 78693.4i −0.00813334 0.00143413i
\(381\) 0 0
\(382\) −7.85441e7 2.85877e7i −1.40904 0.512849i
\(383\) −3.74148e7 4.45892e7i −0.665958 0.793658i 0.322269 0.946648i \(-0.395554\pi\)
−0.988228 + 0.152990i \(0.951110\pi\)
\(384\) 0 0
\(385\) −3.20771e7 + 1.16751e7i −0.562099 + 0.204587i
\(386\) 8.26915e7 + 4.77419e7i 1.43780 + 0.830115i
\(387\) 0 0
\(388\) 2.46689e7 + 4.27279e7i 0.422333 + 0.731503i
\(389\) 4.28033e7 5.10110e7i 0.727158 0.866593i −0.268148 0.963378i \(-0.586412\pi\)
0.995305 + 0.0967851i \(0.0308559\pi\)
\(390\) 0 0
\(391\) 1.02120e7 + 5.79152e7i 0.170837 + 0.968863i
\(392\) 2.47549e7 4.36496e6i 0.410963 0.0724639i
\(393\) 0 0
\(394\) 4.46957e7 + 3.75042e7i 0.730764 + 0.613184i
\(395\) −5.53995e6 + 3.19849e6i −0.0898907 + 0.0518984i
\(396\) 0 0
\(397\) 1.99741e7 3.45961e7i 0.319224 0.552911i −0.661103 0.750295i \(-0.729911\pi\)
0.980326 + 0.197384i \(0.0632446\pi\)
\(398\) 1.24640e7 + 3.42447e7i 0.197701 + 0.543180i
\(399\) 0 0
\(400\) −2.57492e7 + 2.16061e7i −0.402330 + 0.337595i
\(401\) −3.17423e7 + 8.72114e7i −0.492273 + 1.35251i 0.406322 + 0.913730i \(0.366811\pi\)
−0.898595 + 0.438779i \(0.855411\pi\)
\(402\) 0 0
\(403\) 1.90068e6 1.07793e7i 0.0290397 0.164693i
\(404\) 1.63002e7i 0.247201i
\(405\) 0 0
\(406\) 3.24829e7 0.485374
\(407\) −8.59403e7 1.51536e7i −1.27472 0.224767i
\(408\) 0 0
\(409\) −4.46234e7 1.62416e7i −0.652218 0.237388i −0.00534478 0.999986i \(-0.501701\pi\)
−0.646873 + 0.762598i \(0.723924\pi\)
\(410\) −5.46147e7 6.50873e7i −0.792425 0.944375i
\(411\) 0 0
\(412\) −6.95224e7 + 2.53041e7i −0.994106 + 0.361825i
\(413\) 1.28040e7 + 7.39242e6i 0.181760 + 0.104939i
\(414\) 0 0
\(415\) −4.70130e7 8.14289e7i −0.657770 1.13929i
\(416\) −1.63354e7 + 1.94678e7i −0.226908 + 0.270419i
\(417\) 0 0
\(418\) 550909. + 3.12436e6i 0.00754311 + 0.0427791i
\(419\) −6.76442e7 + 1.19275e7i −0.919578 + 0.162146i −0.613349 0.789812i \(-0.710178\pi\)
−0.306228 + 0.951958i \(0.599067\pi\)
\(420\) 0 0
\(421\) −1.86100e7 1.56156e7i −0.249402 0.209273i 0.509513 0.860463i \(-0.329826\pi\)
−0.758915 + 0.651190i \(0.774270\pi\)
\(422\) −9.62580e7 + 5.55746e7i −1.28085 + 0.739501i
\(423\) 0 0
\(424\) 3.57952e7 6.19991e7i 0.469599 0.813370i
\(425\) 1.10071e7 + 3.02418e7i 0.143386 + 0.393950i
\(426\) 0 0
\(427\) 3.30397e7 2.77236e7i 0.424377 0.356095i
\(428\) 1.89098e7 5.19542e7i 0.241188 0.662657i
\(429\) 0 0
\(430\) −1.07882e6 + 6.11830e6i −0.0135689 + 0.0769530i
\(431\) 2.49856e7i 0.312074i 0.987751 + 0.156037i \(0.0498720\pi\)
−0.987751 + 0.156037i \(0.950128\pi\)
\(432\) 0 0
\(433\) −1.32089e8 −1.62705 −0.813526 0.581529i \(-0.802455\pi\)
−0.813526 + 0.581529i \(0.802455\pi\)
\(434\) −2.13311e7 3.76125e6i −0.260942 0.0460111i
\(435\) 0 0
\(436\) −6.72905e7 2.44918e7i −0.811885 0.295502i
\(437\) −964380. 1.14930e6i −0.0115559 0.0137718i
\(438\) 0 0
\(439\) −8.38973e7 + 3.05361e7i −0.991641 + 0.360928i −0.786356 0.617774i \(-0.788035\pi\)
−0.205286 + 0.978702i \(0.565812\pi\)
\(440\) −5.35980e7 3.09448e7i −0.629203 0.363270i
\(441\) 0 0
\(442\) 1.79270e7 + 3.10505e7i 0.207606 + 0.359585i
\(443\) 8.53181e7 1.01678e8i 0.981364 1.16954i −0.00415751 0.999991i \(-0.501323\pi\)
0.985521 0.169552i \(-0.0542322\pi\)
\(444\) 0 0
\(445\) −3.22715e6 1.83021e7i −0.0366217 0.207692i
\(446\) 2.11841e7 3.73534e6i 0.238785 0.0421042i
\(447\) 0 0
\(448\) 3.08075e6 + 2.58506e6i 0.0342628 + 0.0287499i
\(449\) 3.23233e7 1.86619e7i 0.357089 0.206166i −0.310714 0.950504i \(-0.600568\pi\)
0.667803 + 0.744338i \(0.267235\pi\)
\(450\) 0 0
\(451\) −1.11716e8 + 1.93497e8i −1.21783 + 2.10934i
\(452\) −2.93012e7 8.05044e7i −0.317300 0.871775i
\(453\) 0 0
\(454\) −1.47094e6 + 1.23426e6i −0.0157191 + 0.0131899i
\(455\) 3.36611e6 9.24832e6i 0.0357350 0.0981812i
\(456\) 0 0
\(457\) −1.03006e7 + 5.84174e7i −0.107923 + 0.612059i 0.882090 + 0.471081i \(0.156136\pi\)
−0.990013 + 0.140979i \(0.954975\pi\)
\(458\) 9.13132e6i 0.0950467i
\(459\) 0 0
\(460\) −4.41985e7 −0.454082
\(461\) 2.12064e7 + 3.73926e6i 0.216453 + 0.0381666i 0.280823 0.959760i \(-0.409393\pi\)
−0.0643697 + 0.997926i \(0.520504\pi\)
\(462\) 0 0
\(463\) 2.25228e7 + 8.19764e6i 0.226924 + 0.0825935i 0.452980 0.891521i \(-0.350361\pi\)
−0.226056 + 0.974114i \(0.572583\pi\)
\(464\) 7.35492e7 + 8.76526e7i 0.736248 + 0.877427i
\(465\) 0 0
\(466\) 7.07719e7 2.57589e7i 0.699363 0.254547i
\(467\) −1.47125e8 8.49425e7i −1.44456 0.834016i −0.446408 0.894829i \(-0.647297\pi\)
−0.998149 + 0.0608139i \(0.980630\pi\)
\(468\) 0 0
\(469\) 2.89053e6 + 5.00654e6i 0.0280194 + 0.0485310i
\(470\) −1.07753e8 + 1.28415e8i −1.03785 + 1.23687i
\(471\) 0 0
\(472\) 4.65474e6 + 2.63984e7i 0.0442659 + 0.251045i
\(473\) 1.60892e7 2.83695e6i 0.152037 0.0268083i
\(474\) 0 0
\(475\) −628950. 527751.i −0.00586861 0.00492435i
\(476\) 2.30809e7 1.33258e7i 0.214009 0.123558i
\(477\) 0 0
\(478\) 3.84854e7 6.66587e7i 0.352381 0.610342i
\(479\) −1.09566e7 3.01031e7i −0.0996944 0.273908i 0.879812 0.475322i \(-0.157669\pi\)
−0.979506 + 0.201414i \(0.935446\pi\)
\(480\) 0 0
\(481\) 1.92738e7 1.61726e7i 0.173193 0.145327i
\(482\) −3.03329e7 + 8.33388e7i −0.270877 + 0.744229i
\(483\) 0 0
\(484\) 3.08337e7 1.74867e8i 0.271951 1.54231i
\(485\) 1.21599e8i 1.06587i
\(486\) 0 0
\(487\) −2.29636e7 −0.198817 −0.0994085 0.995047i \(-0.531695\pi\)
−0.0994085 + 0.995047i \(0.531695\pi\)
\(488\) 7.70091e7 + 1.35788e7i 0.662647 + 0.116843i
\(489\) 0 0
\(490\) 8.79148e7 + 3.19984e7i 0.747264 + 0.271982i
\(491\) 3.71786e7 + 4.43077e7i 0.314086 + 0.374313i 0.899873 0.436152i \(-0.143659\pi\)
−0.585787 + 0.810465i \(0.699214\pi\)
\(492\) 0 0
\(493\) 1.02946e8 3.74693e7i 0.859150 0.312705i
\(494\) −792150. 457348.i −0.00657093 0.00379373i
\(495\) 0 0
\(496\) −3.81494e7 6.60768e7i −0.312639 0.541506i
\(497\) −922672. + 1.09960e6i −0.00751585 + 0.00895704i
\(498\) 0 0
\(499\) −3.38252e7 1.91832e8i −0.272232 1.54390i −0.747620 0.664127i \(-0.768803\pi\)
0.475388 0.879776i \(-0.342308\pi\)
\(500\) −8.00436e7 + 1.41138e7i −0.640349 + 0.112911i
\(501\) 0 0
\(502\) 2.05365e8 + 1.72322e8i 1.62336 + 1.36216i
\(503\) 1.32381e8 7.64301e7i 1.04021 0.600566i 0.120318 0.992735i \(-0.461609\pi\)
0.919893 + 0.392170i \(0.128275\pi\)
\(504\) 0 0
\(505\) −2.00869e7 + 3.47915e7i −0.155969 + 0.270146i
\(506\) 1.05828e8 + 2.90760e8i 0.816863 + 2.24431i
\(507\) 0 0
\(508\) −3.90306e7 + 3.27506e7i −0.297724 + 0.249820i
\(509\) −1.62115e7 + 4.45409e7i −0.122934 + 0.337758i −0.985860 0.167573i \(-0.946407\pi\)
0.862926 + 0.505330i \(0.168629\pi\)
\(510\) 0 0
\(511\) −7.87667e6 + 4.46708e7i −0.0590310 + 0.334781i
\(512\) 9.32630e7i 0.694864i
\(513\) 0 0
\(514\) −6.77132e7 −0.498636
\(515\) 1.79572e8 + 3.16634e7i 1.31467 + 0.231812i
\(516\) 0 0
\(517\) 4.14239e8 + 1.50771e8i 2.99764 + 1.09105i
\(518\) −3.20040e7 3.81409e7i −0.230258 0.274411i
\(519\) 0 0
\(520\) 1.67676e7 6.10291e6i 0.119251 0.0434037i
\(521\) 1.50479e8 + 8.68789e7i 1.06405 + 0.614330i 0.926550 0.376172i \(-0.122760\pi\)
0.137500 + 0.990502i \(0.456093\pi\)
\(522\) 0 0
\(523\) 1.79872e7 + 3.11547e7i 0.125736 + 0.217781i 0.922020 0.387142i \(-0.126538\pi\)
−0.796285 + 0.604922i \(0.793204\pi\)
\(524\) −6.74822e6 + 8.04222e6i −0.0469024 + 0.0558961i
\(525\) 0 0
\(526\) −3.49492e7 1.98207e8i −0.240148 1.36195i
\(527\) −7.19421e7 + 1.26853e7i −0.491531 + 0.0866702i
\(528\) 0 0
\(529\) 1.31007e6 + 1.09928e6i 0.00884971 + 0.00742579i
\(530\) 2.30756e8 1.33227e8i 1.54998 0.894879i
\(531\) 0 0
\(532\) −339963. + 588834.i −0.00225786 + 0.00391073i
\(533\) −2.20325e7 6.05338e7i −0.145506 0.399776i
\(534\) 0 0
\(535\) −1.04385e8 + 8.75891e7i −0.681672 + 0.571991i
\(536\) −3.58482e6 + 9.84921e6i −0.0232795 + 0.0639598i
\(537\) 0 0
\(538\) 3.48881e7 1.97860e8i 0.224043 1.27061i
\(539\) 2.46025e8i 1.57113i
\(540\) 0 0
\(541\) −1.02622e7 −0.0648111 −0.0324056 0.999475i \(-0.510317\pi\)
−0.0324056 + 0.999475i \(0.510317\pi\)
\(542\) −1.77188e8 3.12431e7i −1.11285 0.196226i
\(543\) 0 0
\(544\) 1.59383e8 + 5.80107e7i 0.990023 + 0.360339i
\(545\) 1.13445e8 + 1.35198e8i 0.700800 + 0.835181i
\(546\) 0 0
\(547\) 1.37063e8 4.98867e7i 0.837447 0.304806i 0.112535 0.993648i \(-0.464103\pi\)
0.724911 + 0.688842i \(0.241881\pi\)
\(548\) −1.34533e8 7.76725e7i −0.817497 0.471982i
\(549\) 0 0
\(550\) 8.46643e7 + 1.46643e8i 0.508876 + 0.881400i
\(551\) −1.79652e6 + 2.14100e6i −0.0107393 + 0.0127986i
\(552\) 0 0
\(553\) 1.66663e6 + 9.45194e6i 0.00985517 + 0.0558915i
\(554\) 3.72851e8 6.57436e7i 2.19283 0.386656i
\(555\) 0 0
\(556\) −8.68862e7 7.29062e7i −0.505506 0.424170i
\(557\) 4.76277e7 2.74979e7i 0.275609 0.159123i −0.355825 0.934553i \(-0.615800\pi\)
0.631434 + 0.775430i \(0.282467\pi\)
\(558\) 0 0
\(559\) −2.35515e6 + 4.07925e6i −0.0134829 + 0.0233531i
\(560\) −2.34644e7 6.44678e7i −0.133612 0.367095i
\(561\) 0 0
\(562\) −2.51122e7 + 2.10716e7i −0.141473 + 0.118710i
\(563\) −7.37539e7 + 2.02637e8i −0.413295 + 1.13552i 0.542133 + 0.840293i \(0.317617\pi\)
−0.955428 + 0.295225i \(0.904605\pi\)
\(564\) 0 0
\(565\) −3.66651e7 + 2.07938e8i −0.203286 + 1.15289i
\(566\) 8.42845e7i 0.464835i
\(567\) 0 0
\(568\) −2.60249e6 −0.0142018
\(569\) −1.56179e8 2.75386e7i −0.847785 0.149487i −0.267153 0.963654i \(-0.586083\pi\)
−0.580631 + 0.814167i \(0.697194\pi\)
\(570\) 0 0
\(571\) −3.79068e7 1.37969e7i −0.203615 0.0741096i 0.238200 0.971216i \(-0.423443\pi\)
−0.441814 + 0.897107i \(0.645665\pi\)
\(572\) 4.55485e7 + 5.42826e7i 0.243381 + 0.290050i
\(573\) 0 0
\(574\) −1.19790e8 + 4.36001e7i −0.633412 + 0.230543i
\(575\) −6.93478e7 4.00379e7i −0.364778 0.210605i
\(576\) 0 0
\(577\) −3.44340e7 5.96414e7i −0.179250 0.310470i 0.762374 0.647137i \(-0.224034\pi\)
−0.941624 + 0.336667i \(0.890700\pi\)
\(578\) −3.26843e6 + 3.89517e6i −0.0169261 + 0.0201717i
\(579\) 0 0
\(580\) 1.42975e7 + 8.10854e7i 0.0732786 + 0.415584i
\(581\) −1.38929e8 + 2.44970e7i −0.708378 + 0.124906i
\(582\) 0 0
\(583\) −5.36758e8 4.50393e8i −2.70877 2.27293i
\(584\) −7.12216e7 + 4.11198e7i −0.357580 + 0.206449i
\(585\) 0 0
\(586\) −1.78437e8 + 3.09062e8i −0.886731 + 1.53586i
\(587\) −9.28254e7 2.55036e8i −0.458937 1.26092i −0.926278 0.376841i \(-0.877010\pi\)
0.467341 0.884077i \(-0.345212\pi\)
\(588\) 0 0
\(589\) 1.42766e6 1.19795e6i 0.00698681 0.00586263i
\(590\) −3.41227e7 + 9.37514e7i −0.166145 + 0.456480i
\(591\) 0 0
\(592\) 3.04553e7 1.72721e8i 0.146791 0.832491i
\(593\) 3.09822e8i 1.48576i 0.669426 + 0.742879i \(0.266540\pi\)
−0.669426 + 0.742879i \(0.733460\pi\)
\(594\) 0 0
\(595\) −6.56857e7 −0.311831
\(596\) −3.61478e7 6.37383e6i −0.170743 0.0301066i
\(597\) 0 0
\(598\) −8.38306e7 3.05118e7i −0.392012 0.142681i
\(599\) −9.08134e7 1.08227e8i −0.422542 0.503566i 0.512213 0.858858i \(-0.328826\pi\)
−0.934755 + 0.355293i \(0.884381\pi\)
\(600\) 0 0
\(601\) 1.37922e8 5.01997e7i 0.635348 0.231248i −0.00420951 0.999991i \(-0.501340\pi\)
0.639557 + 0.768743i \(0.279118\pi\)
\(602\) 8.07242e6 + 4.66061e6i 0.0370011 + 0.0213626i
\(603\) 0 0
\(604\) −7.87660e7 1.36427e8i −0.357460 0.619140i
\(605\) −2.81301e8 + 3.35242e8i −1.27030 + 1.51388i
\(606\) 0 0
\(607\) 1.72497e6 + 9.78277e6i 0.00771284 + 0.0437417i 0.988421 0.151735i \(-0.0484859\pi\)
−0.980708 + 0.195476i \(0.937375\pi\)
\(608\) −4.26135e6 + 751391.i −0.0189599 + 0.00334314i
\(609\) 0 0
\(610\) 2.22952e8 + 1.87079e8i 0.982249 + 0.824205i
\(611\) −1.10069e8 + 6.35481e7i −0.482547 + 0.278599i
\(612\) 0 0
\(613\) 8.53880e7 1.47896e8i 0.370694 0.642060i −0.618979 0.785408i \(-0.712453\pi\)
0.989672 + 0.143347i \(0.0457866\pi\)
\(614\) −6.25005e7 1.71719e8i −0.270009 0.741844i
\(615\) 0 0
\(616\) −7.11321e7 + 5.96869e7i −0.304315 + 0.255351i
\(617\) 9.12853e7 2.50804e8i 0.388638 1.06777i −0.578977 0.815344i \(-0.696548\pi\)
0.967615 0.252430i \(-0.0812299\pi\)
\(618\) 0 0
\(619\) −2.27041e7 + 1.28761e8i −0.0957263 + 0.542891i 0.898796 + 0.438367i \(0.144443\pi\)
−0.994522 + 0.104524i \(0.966668\pi\)
\(620\) 5.49033e7i 0.230369i
\(621\) 0 0
\(622\) −1.00910e8 −0.419337
\(623\) −2.74596e7 4.84187e6i −0.113561 0.0200239i
\(624\) 0 0
\(625\) 9.10430e7 + 3.31370e7i 0.372912 + 0.135729i
\(626\) −3.56232e7 4.24541e7i −0.145214 0.173060i
\(627\) 0 0
\(628\) −1.20445e8 + 4.38385e7i −0.486307 + 0.177001i
\(629\) −1.45424e8 8.39608e7i −0.584366 0.337384i
\(630\) 0 0
\(631\) −1.33783e8 2.31719e8i −0.532492 0.922302i −0.999280 0.0379335i \(-0.987922\pi\)
0.466789 0.884369i \(-0.345411\pi\)
\(632\) −1.11852e7 + 1.33301e7i −0.0443092 + 0.0528057i
\(633\) 0 0
\(634\) 2.25109e7 + 1.27666e8i 0.0883334 + 0.500963i
\(635\) 1.23666e8 2.18057e7i 0.482981 0.0851625i
\(636\) 0 0
\(637\) 5.43376e7 + 4.55946e7i 0.210224 + 0.176399i
\(638\) 4.99186e8 2.88205e8i 1.92221 1.10979i
\(639\) 0 0
\(640\) 9.23742e7 1.59997e8i 0.352380 0.610339i
\(641\) −7.67803e6 2.10952e7i −0.0291525 0.0800958i 0.924263 0.381757i \(-0.124681\pi\)
−0.953415 + 0.301661i \(0.902459\pi\)
\(642\) 0 0
\(643\) −1.35708e8 + 1.13873e8i −0.510473 + 0.428337i −0.861295 0.508104i \(-0.830346\pi\)
0.350823 + 0.936442i \(0.385902\pi\)
\(644\) −2.26805e7 + 6.23143e7i −0.0849173 + 0.233308i
\(645\) 0 0
\(646\) −1.06009e6 + 6.01204e6i −0.00393227 + 0.0223010i
\(647\) 2.72620e8i 1.00657i 0.864120 + 0.503285i \(0.167876\pi\)
−0.864120 + 0.503285i \(0.832124\pi\)
\(648\) 0 0
\(649\) 2.62358e8 0.959755
\(650\) −4.80783e7 8.47751e6i −0.175069 0.0308694i
\(651\) 0 0
\(652\) 8.35767e7 + 3.04194e7i 0.301538 + 0.109751i
\(653\) 1.80200e8 + 2.14754e8i 0.647165 + 0.771261i 0.985484 0.169771i \(-0.0543027\pi\)
−0.338319 + 0.941031i \(0.609858\pi\)
\(654\) 0 0
\(655\) 2.43140e7 8.84956e6i 0.0865231 0.0314918i
\(656\) −3.88887e8 2.24524e8i −1.37756 0.795337i
\(657\) 0 0
\(658\) 1.25755e8 + 2.17815e8i 0.441417 + 0.764556i
\(659\) 8.48943e7 1.01173e8i 0.296635 0.353516i −0.597055 0.802200i \(-0.703663\pi\)
0.893690 + 0.448684i \(0.148107\pi\)
\(660\) 0 0
\(661\) 2.92045e7 + 1.65627e8i 0.101122 + 0.573492i 0.992699 + 0.120622i \(0.0384888\pi\)
−0.891576 + 0.452870i \(0.850400\pi\)
\(662\) −1.08846e8 + 1.91925e7i −0.375179 + 0.0661542i
\(663\) 0 0
\(664\) −1.95932e8 1.64406e8i −0.669269 0.561583i
\(665\) 1.45125e6 837877.i 0.00493487 0.00284915i
\(666\) 0 0
\(667\) −1.36293e8 + 2.36066e8i −0.459300 + 0.795530i
\(668\) −3.12709e7 8.59162e7i −0.104909 0.288234i
\(669\) 0 0
\(670\) −2.98838e7 + 2.50755e7i −0.0993601 + 0.0833730i
\(671\) 2.61765e8 7.19193e8i 0.866450 2.38055i
\(672\) 0 0
\(673\) 4.99732e7 2.83412e8i 0.163943 0.929765i −0.786205 0.617966i \(-0.787957\pi\)
0.950148 0.311800i \(-0.100932\pi\)
\(674\) 2.64852e8i 0.865015i
\(675\) 0 0
\(676\) 1.65419e8 0.535481
\(677\) −2.13604e8 3.76642e7i −0.688405 0.121384i −0.181506 0.983390i \(-0.558097\pi\)
−0.506899 + 0.862005i \(0.669208\pi\)
\(678\) 0 0
\(679\) −1.71438e8 6.23985e7i −0.547645 0.199326i
\(680\) −7.65503e7 9.12291e7i −0.243456 0.290139i
\(681\) 0 0
\(682\) −3.61181e8 + 1.31459e8i −1.13860 + 0.414417i
\(683\) −9.37113e7 5.41042e7i −0.294124 0.169812i 0.345676 0.938354i \(-0.387649\pi\)
−0.639800 + 0.768541i \(0.720983\pi\)
\(684\) 0 0
\(685\) 1.91432e8 + 3.31571e8i 0.595585 + 1.03158i
\(686\) 1.99237e8 2.37442e8i 0.617161 0.735504i
\(687\) 0 0
\(688\) 5.70164e6 + 3.23356e7i 0.0175079 + 0.0992923i
\(689\) 1.98950e8 3.50802e7i 0.608255 0.107252i
\(690\) 0 0
\(691\) −6.99958e6 5.87335e6i −0.0212148 0.0178013i 0.632119 0.774872i \(-0.282186\pi\)
−0.653333 + 0.757070i \(0.726630\pi\)
\(692\) −1.69403e8 + 9.78046e7i −0.511213 + 0.295149i
\(693\) 0 0
\(694\) 1.41294e8 2.44729e8i 0.422714 0.732162i
\(695\) 9.56085e7 + 2.62682e8i 0.284801 + 0.782485i
\(696\) 0 0
\(697\) −3.29352e8 + 2.76359e8i −0.972661 + 0.816160i
\(698\) 198081. 544222.i 0.000582473 0.00160033i
\(699\) 0 0
\(700\) −6.30164e6 + 3.57384e7i −0.0183721 + 0.104193i
\(701\) 4.78882e8i 1.39019i 0.718918 + 0.695095i \(0.244638\pi\)
−0.718918 + 0.695095i \(0.755362\pi\)
\(702\) 0 0
\(703\) 4.28397e6 0.0123305
\(704\) 7.02801e7 + 1.23923e7i 0.201425 + 0.0355167i
\(705\) 0 0
\(706\) 2.63957e8 + 9.60726e7i 0.750101 + 0.273014i
\(707\) 3.87439e7 + 4.61732e7i 0.109634 + 0.130657i
\(708\) 0 0
\(709\) 4.01983e8 1.46310e8i 1.12790 0.410520i 0.290368 0.956915i \(-0.406222\pi\)
0.837528 + 0.546395i \(0.184000\pi\)
\(710\) −8.38853e6 4.84312e6i −0.0234375 0.0135316i
\(711\) 0 0
\(712\) −2.52768e7 4.37806e7i −0.0700296 0.121295i
\(713\) 1.16836e8 1.39240e8i 0.322337 0.384146i
\(714\) 0 0
\(715\) −3.03267e7 1.71991e8i −0.0829673 0.470531i
\(716\) 1.24416e8 2.19380e7i 0.338952 0.0597664i
\(717\) 0 0
\(718\) 2.85339e8 + 2.39428e8i 0.770883 + 0.646848i
\(719\) 5.10332e8 2.94640e8i 1.37299 0.792694i 0.381683 0.924293i \(-0.375345\pi\)
0.991303 + 0.131599i \(0.0420112\pi\)
\(720\) 0 0
\(721\) 1.36789e8 2.36925e8i 0.364960 0.632129i
\(722\) 1.62855e8 + 4.47440e8i 0.432702 + 1.18884i
\(723\) 0 0
\(724\) 1.91483e7 1.60673e7i 0.0504561 0.0423377i
\(725\) −5.10195e7 + 1.40175e8i −0.133882 + 0.367838i
\(726\) 0 0
\(727\) −7.30630e7 + 4.14361e8i −0.190149 + 1.07839i 0.729010 + 0.684503i \(0.239981\pi\)
−0.919159 + 0.393886i \(0.871130\pi\)
\(728\) 2.67719e7i 0.0693882i
\(729\) 0 0
\(730\) −3.06089e8 −0.786827
\(731\) 3.09595e7 + 5.45900e6i 0.0792579 + 0.0139753i
\(732\) 0 0
\(733\) −4.50292e8 1.63893e8i −1.14336 0.416148i −0.300233 0.953866i \(-0.597064\pi\)
−0.843125 + 0.537718i \(0.819287\pi\)
\(734\) −4.52888e8 5.39731e8i −1.14526 1.36486i
\(735\) 0 0
\(736\) −3.96571e8 + 1.44340e8i −0.994690 + 0.362038i
\(737\) 8.88414e7 + 5.12926e7i 0.221928 + 0.128130i
\(738\) 0 0
\(739\) 5.55849e7 + 9.62759e7i 0.137728 + 0.238553i 0.926636 0.375959i \(-0.122687\pi\)
−0.788908 + 0.614511i \(0.789353\pi\)
\(740\) 8.11224e7 9.66779e7i 0.200192 0.238579i
\(741\) 0 0
\(742\) −6.94202e7 3.93702e8i −0.169932 0.963730i
\(743\) −6.73484e8 + 1.18753e8i −1.64195 + 0.289521i −0.916884 0.399154i \(-0.869304\pi\)
−0.725070 + 0.688675i \(0.758193\pi\)
\(744\) 0 0
\(745\) 6.92999e7 + 5.81495e7i 0.167596 + 0.140630i
\(746\) 1.35871e8 7.84451e7i 0.327273 0.188951i
\(747\) 0 0
\(748\) 2.36467e8 4.09573e8i 0.565022 0.978647i
\(749\) 6.99243e7 + 1.92116e8i 0.166411 + 0.457211i
\(750\) 0 0
\(751\) 5.90120e8 4.95170e8i 1.39322 1.16905i 0.429208 0.903206i \(-0.358793\pi\)
0.964015 0.265847i \(-0.0856517\pi\)
\(752\) −3.03015e8 + 8.32527e8i −0.712543 + 1.95770i
\(753\) 0 0
\(754\) −2.88582e7 + 1.63663e8i −0.0673218 + 0.381801i
\(755\) 3.88255e8i 0.902145i
\(756\) 0 0
\(757\) 2.98071e8 0.687119 0.343559 0.939131i \(-0.388367\pi\)
0.343559 + 0.939131i \(0.388367\pi\)
\(758\) 8.34198e8 + 1.47092e8i 1.91541 + 0.337738i
\(759\) 0 0
\(760\) 2.85499e6 + 1.03913e6i 0.00650375 + 0.00236717i
\(761\) 5.59083e6 + 6.66289e6i 0.0126859 + 0.0151185i 0.772350 0.635197i \(-0.219081\pi\)
−0.759664 + 0.650316i \(0.774637\pi\)
\(762\) 0 0
\(763\) 2.48826e8 9.05653e7i 0.560173 0.203886i
\(764\) −2.75289e8 1.58938e8i −0.617318 0.356409i
\(765\) 0 0
\(766\) −2.94656e8 5.10359e8i −0.655585 1.13551i
\(767\) −4.86216e7 + 5.79450e7i −0.107756 + 0.128419i
\(768\) 0 0
\(769\) −1.01404e8 5.75090e8i −0.222985 1.26461i −0.866500 0.499177i \(-0.833636\pi\)
0.643515 0.765434i \(-0.277476\pi\)
\(770\) −3.40353e8 + 6.00135e7i −0.745517 + 0.131455i
\(771\) 0 0
\(772\) 2.78173e8 + 2.33415e8i 0.604592 + 0.507313i
\(773\) −3.58283e8 + 2.06855e8i −0.775688 + 0.447844i −0.834900 0.550402i \(-0.814475\pi\)
0.0592117 + 0.998245i \(0.481141\pi\)
\(774\) 0 0
\(775\) 4.97350e7 8.61435e7i 0.106846 0.185062i
\(776\) −1.13131e8 3.10826e8i −0.242102 0.665169i
\(777\) 0 0
\(778\) 5.16456e8 4.33358e8i 1.09672 0.920254i
\(779\) 3.75143e6 1.03070e7i 0.00793569 0.0218031i
\(780\) 0 0
\(781\) −4.42311e6 + 2.50847e7i −0.00928485 + 0.0526570i
\(782\) 5.95402e8i 1.24506i
\(783\) 0 0
\(784\) 4.94455e8 1.02607
\(785\) 3.11102e8 + 5.48557e7i 0.643124 + 0.113400i
\(786\) 0 0
\(787\) −7.63977e8 2.78065e8i −1.56731 0.570456i −0.594917 0.803787i \(-0.702815\pi\)
−0.972397 + 0.233331i \(0.925037\pi\)
\(788\) 1.42630e8 + 1.69979e8i 0.291495 + 0.347390i
\(789\) 0 0
\(790\) −6.08598e7 + 2.21512e7i −0.123438 + 0.0449278i
\(791\) 2.74351e8 + 1.58397e8i 0.554341 + 0.320049i
\(792\) 0 0
\(793\) 1.10331e8 + 1.91099e8i 0.221247 + 0.383211i
\(794\) 2.59976e8 3.09827e8i 0.519364 0.618954i
\(795\) 0 0
\(796\) 2.40662e7 + 1.36486e8i 0.0477165 + 0.270614i
\(797\) −8.80204e7 + 1.55204e7i −0.173864 + 0.0306568i −0.259902 0.965635i \(-0.583690\pi\)
0.0860385 + 0.996292i \(0.472579\pi\)
\(798\) 0 0
\(799\) 6.49801e8 + 5.45248e8i 1.27391 + 1.06894i
\(800\) −2.00008e8 + 1.15475e8i −0.390641 + 0.225536i
\(801\) 0 0
\(802\) −4.69815e8 + 8.13743e8i −0.910759 + 1.57748i
\(803\) 2.75297e8 + 7.56373e8i 0.531686 + 1.46080i
\(804\) 0 0
\(805\) 1.25200e8 1.05055e8i 0.240003 0.201386i
\(806\) 3.79017e7 1.04134e8i 0.0723858 0.198878i
\(807\) 0 0
\(808\) −1.89765e7 + 1.07621e8i −0.0359734 + 0.204015i
\(809\) 9.22101e8i 1.74154i −0.491692 0.870769i \(-0.663621\pi\)
0.491692 0.870769i \(-0.336379\pi\)
\(810\) 0 0
\(811\) −3.15048e7 −0.0590628 −0.0295314 0.999564i \(-0.509402\pi\)
−0.0295314 + 0.999564i \(0.509402\pi\)
\(812\) 1.21657e8 + 2.14514e7i 0.227231 + 0.0400670i
\(813\) 0 0
\(814\) −8.30234e8 3.02180e8i −1.53931 0.560264i
\(815\) −1.40901e8 1.67920e8i −0.260281 0.310191i
\(816\) 0 0
\(817\) −753648. + 274305.i −0.00138198 + 0.000503000i
\(818\) −4.16367e8 2.40390e8i −0.760706 0.439194i
\(819\) 0 0
\(820\) −1.61563e8 2.79836e8i −0.293023 0.507530i
\(821\) −2.11678e8 + 2.52269e8i −0.382514 + 0.455862i −0.922606 0.385744i \(-0.873945\pi\)
0.540092 + 0.841606i \(0.318389\pi\)
\(822\) 0 0
\(823\) 1.45343e8 + 8.24283e8i 0.260733 + 1.47869i 0.780917 + 0.624635i \(0.214752\pi\)
−0.520184 + 0.854054i \(0.674137\pi\)
\(824\) 4.88473e8 8.61310e7i 0.873091 0.153949i
\(825\) 0 0
\(826\) 1.14667e8 + 9.62174e7i 0.203470 + 0.170731i
\(827\) −1.26625e8 + 7.31069e7i −0.223873 + 0.129253i −0.607742 0.794134i \(-0.707925\pi\)
0.383869 + 0.923388i \(0.374591\pi\)
\(828\) 0 0
\(829\) 7.50532e7 1.29996e8i 0.131736 0.228174i −0.792610 0.609729i \(-0.791278\pi\)
0.924346 + 0.381555i \(0.124611\pi\)
\(830\) −3.25588e8 8.94547e8i −0.569423 1.56448i
\(831\) 0 0
\(832\) −1.57617e7 + 1.32256e7i −0.0273673 + 0.0229639i
\(833\) 1.61917e8 4.44863e8i 0.280128 0.769646i
\(834\) 0 0
\(835\) −3.91298e7 + 2.21916e8i −0.0672122 + 0.381179i
\(836\) 1.20653e7i 0.0206500i
\(837\) 0 0
\(838\) −6.95422e8 −1.18172
\(839\) 5.17802e8 + 9.13025e7i 0.876754 + 0.154595i 0.593872 0.804559i \(-0.297598\pi\)
0.282882 + 0.959155i \(0.408709\pi\)
\(840\) 0 0
\(841\) −8.17819e7 2.97662e7i −0.137489 0.0500421i
\(842\) −1.58099e8 1.88415e8i −0.264845 0.315630i
\(843\) 0 0
\(844\) −3.97212e8 + 1.44573e8i −0.660686 + 0.240470i
\(845\) −3.53072e8 2.03846e8i −0.585185 0.337857i
\(846\) 0 0
\(847\) 3.28298e8 + 5.68629e8i 0.540279 + 0.935790i
\(848\) 9.05190e8 1.07876e9i 1.48440 1.76904i
\(849\) 0 0
\(850\) 5.65799e7 + 3.20880e8i 0.0921309 + 0.522500i
\(851\) 4.11469e8 7.25531e7i 0.667650 0.117725i
\(852\) 0 0
\(853\) 2.09968e8 + 1.76184e8i 0.338304 + 0.283871i 0.796073 0.605200i \(-0.206907\pi\)
−0.457769 + 0.889071i \(0.651351\pi\)
\(854\) 3.78165e8 2.18334e8i 0.607167 0.350548i
\(855\) 0 0
\(856\) −1.85334e8 + 3.21008e8i −0.295484 + 0.511793i
\(857\) 2.98044e8 + 8.18871e8i 0.473520 + 1.30099i 0.914905 + 0.403669i \(0.132265\pi\)
−0.441385 + 0.897318i \(0.645513\pi\)
\(858\) 0 0
\(859\) 5.74912e8 4.82409e8i 0.907031 0.761089i −0.0645207 0.997916i \(-0.520552\pi\)
0.971552 + 0.236827i \(0.0761074\pi\)
\(860\) −8.08093e6 + 2.22022e7i −0.0127047 + 0.0349060i
\(861\) 0 0
\(862\) −4.39268e7 + 2.49121e8i −0.0685816 + 0.388946i
\(863\) 1.22706e8i 0.190912i 0.995434 + 0.0954560i \(0.0304309\pi\)
−0.995434 + 0.0954560i \(0.969569\pi\)
\(864\) 0 0
\(865\) 4.82100e8 0.744885
\(866\) −1.31700e9 2.32223e8i −2.02783 0.357562i
\(867\) 0 0
\(868\) −7.74066e7 2.81737e7i −0.118364 0.0430809i
\(869\) 1.09475e8 + 1.30467e8i 0.166823 + 0.198812i
\(870\) 0 0
\(871\) −2.77932e7 + 1.01159e7i −0.0420614 + 0.0153091i
\(872\) 4.15767e8 + 2.40043e8i 0.627047 + 0.362026i
\(873\) 0 0
\(874\) −7.59486e6 1.31547e7i −0.0113759 0.0197036i
\(875\) 1.93190e8 2.30235e8i 0.288377 0.343674i
\(876\) 0 0
\(877\) 1.58221e8 + 8.97313e8i 0.234565 + 1.33029i 0.843527 + 0.537087i \(0.180475\pi\)
−0.608962 + 0.793200i \(0.708414\pi\)
\(878\) −8.90191e8 + 1.56965e8i −1.31522 + 0.231909i
\(879\) 0 0
\(880\) −9.32586e8 7.82533e8i −1.36849 1.14830i
\(881\) 3.81660e8 2.20352e8i 0.558148 0.322247i −0.194254 0.980951i \(-0.562229\pi\)
0.752402 + 0.658705i \(0.228895\pi\)
\(882\) 0 0
\(883\) 3.63100e8 6.28908e8i 0.527405 0.913492i −0.472085 0.881553i \(-0.656498\pi\)
0.999490 0.0319390i \(-0.0101682\pi\)
\(884\) 4.66358e7 + 1.28131e8i 0.0675092 + 0.185480i
\(885\) 0 0
\(886\) 1.02943e9 8.63794e8i 1.48012 1.24196i
\(887\) 1.48100e8 4.06901e8i 0.212219 0.583066i −0.787216 0.616677i \(-0.788479\pi\)
0.999435 + 0.0336112i \(0.0107008\pi\)
\(888\) 0 0
\(889\) 3.27162e7 1.85543e8i 0.0465648 0.264082i
\(890\) 1.88156e8i 0.266900i
\(891\) 0 0
\(892\) 8.18069e7 0.115264
\(893\) −2.13117e7 3.75782e6i −0.0299270 0.00527693i
\(894\) 0 0
\(895\) −2.92590e8 1.06494e8i −0.408123 0.148545i
\(896\) −1.78173e8 2.12338e8i −0.247695 0.295192i
\(897\) 0 0
\(898\) 3.55092e8 1.29243e8i 0.490356 0.178475i
\(899\) −2.93241e8 1.69303e8i −0.403595 0.233015i
\(900\) 0 0
\(901\) −6.74148e8 1.16766e9i −0.921682 1.59640i
\(902\) −1.45406e9 + 1.73288e9i −1.98135 + 2.36128i
\(903\) 0 0
\(904\) 9.97367e7 + 5.65635e8i 0.135005 + 0.765651i
\(905\) −6.06702e7 + 1.06978e7i −0.0818521 + 0.0144327i
\(906\) 0 0
\(907\) 3.98629e7 + 3.34489e7i 0.0534252 + 0.0448291i 0.669109 0.743164i \(-0.266676\pi\)
−0.615684 + 0.787993i \(0.711120\pi\)
\(908\) −6.32414e6 + 3.65124e6i −0.00844780 + 0.00487734i
\(909\) 0 0
\(910\) 4.98214e7 8.62932e7i 0.0661138 0.114512i
\(911\) −5.04068e8 1.38492e9i −0.666706 1.83176i −0.543559 0.839371i \(-0.682923\pi\)
−0.123147 0.992388i \(-0.539299\pi\)
\(912\) 0 0
\(913\) −1.91767e9 + 1.60912e9i −2.51977 + 2.11434i
\(914\) −2.05405e8 + 5.64346e8i −0.269013 + 0.739107i
\(915\) 0 0
\(916\) 6.03023e6 3.41992e7i 0.00784599 0.0444968i
\(917\) 3.88207e7i 0.0503449i
\(918\) 0 0
\(919\) −9.49416e8 −1.22323 −0.611617 0.791154i \(-0.709481\pi\)
−0.611617 + 0.791154i \(0.709481\pi\)
\(920\) 2.91817e8 + 5.14552e7i 0.374754 + 0.0660793i
\(921\) 0 0
\(922\) 2.04867e8 + 7.45653e7i 0.261384 + 0.0951358i
\(923\) −4.72055e6 5.62573e6i −0.00600327 0.00715442i
\(924\) 0 0
\(925\) 2.14859e8 7.82022e7i 0.271474 0.0988083i
\(926\) 2.10154e8 + 1.21332e8i 0.264670 + 0.152807i
\(927\) 0 0
\(928\) 3.93087e8 + 6.80846e8i 0.491864 + 0.851933i
\(929\) −6.96001e8 + 8.29462e8i −0.868086 + 1.03454i 0.130982 + 0.991385i \(0.458187\pi\)
−0.999068 + 0.0431598i \(0.986258\pi\)
\(930\) 0 0
\(931\) 2.09725e6 + 1.18941e7i 0.00259897 + 0.0147395i
\(932\) 2.82070e8 4.97365e7i 0.348425 0.0614367i
\(933\) 0 0
\(934\) −1.31758e9 1.10558e9i −1.61710 1.35691i
\(935\) −1.00944e9 + 5.82798e8i −1.23494 + 0.712990i
\(936\) 0 0
\(937\) −2.89510e8 + 5.01446e8i −0.351921 + 0.609545i −0.986586 0.163243i \(-0.947805\pi\)
0.634665 + 0.772787i \(0.281138\pi\)
\(938\) 2.00183e7 + 5.49999e7i 0.0242560 + 0.0666429i
\(939\) 0 0
\(940\) −4.88368e8 + 4.09789e8i −0.587981 + 0.493375i
\(941\) 3.61373e8 9.92864e8i 0.433697 1.19157i −0.509829 0.860276i \(-0.670291\pi\)
0.943526 0.331298i \(-0.107486\pi\)
\(942\) 0 0
\(943\) 1.85761e8 1.05351e9i 0.221524 1.25632i
\(944\) 5.27281e8i 0.626796i
\(945\) 0 0
\(946\) 1.65406e8 0.195379
\(947\) −1.04919e9 1.85001e8i −1.23540 0.217834i −0.482454 0.875921i \(-0.660255\pi\)
−0.752941 + 0.658087i \(0.771366\pi\)
\(948\) 0 0
\(949\) −2.18074e8 7.93724e7i −0.255156 0.0928690i
\(950\) −5.34317e6 6.36774e6i −0.00623201 0.00742702i
\(951\) 0 0
\(952\) −1.67903e8 + 6.11118e7i −0.194602 + 0.0708295i
\(953\) 7.83201e7 + 4.52181e7i 0.0904888 + 0.0522437i 0.544562 0.838721i \(-0.316696\pi\)
−0.454073 + 0.890965i \(0.650029\pi\)
\(954\) 0 0
\(955\) 3.91721e8 + 6.78480e8i 0.449745 + 0.778981i
\(956\) 1.88159e8 2.24239e8i 0.215353 0.256648i
\(957\) 0 0
\(958\) −5.63203e7 3.19408e8i −0.0640573 0.363287i
\(959\) 5.65706e8 9.97493e7i 0.641409 0.113098i
\(960\) 0 0
\(961\) −5.06903e8 4.25343e8i −0.571156 0.479257i
\(962\) 2.20604e8 1.27366e8i 0.247792 0.143063i
\(963\) 0 0
\(964\) −1.68641e8 + 2.92094e8i −0.188248 + 0.326056i
\(965\) −3.06098e8 8.40997e8i −0.340627 0.935864i
\(966\) 0 0
\(967\) 2.19306e8 1.84020e8i 0.242534 0.203510i −0.513416 0.858140i \(-0.671620\pi\)
0.755949 + 0.654630i \(0.227176\pi\)
\(968\) −4.07154e8 + 1.11865e9i −0.448882 + 1.23329i
\(969\) 0 0
\(970\) 2.13781e8 1.21241e9i 0.234236 1.32842i
\(971\) 3.39682e8i 0.371035i 0.982641 + 0.185518i \(0.0593962\pi\)
−0.982641 + 0.185518i \(0.940604\pi\)
\(972\) 0 0
\(973\) 4.19410e8 0.455303
\(974\) −2.28961e8 4.03719e7i −0.247790 0.0436921i
\(975\) 0 0
\(976\) 1.44542e9 + 5.26089e8i 1.55469 + 0.565861i
\(977\) 7.15712e8 + 8.52953e8i 0.767458 + 0.914621i 0.998295 0.0583715i \(-0.0185908\pi\)
−0.230837 + 0.972992i \(0.574146\pi\)
\(978\) 0 0
\(979\) −4.64950e8 + 1.69228e8i −0.495517 + 0.180353i
\(980\) 3.08132e8 + 1.77900e8i 0.327385 + 0.189016i
\(981\) 0 0
\(982\) 2.92796e8 + 5.07137e8i 0.309194 + 0.535539i
\(983\) −2.72631e7 + 3.24909e7i −0.0287022 + 0.0342060i −0.780205 0.625524i \(-0.784885\pi\)
0.751502 + 0.659730i \(0.229330\pi\)
\(984\) 0 0
\(985\) −9.49644e7 5.38570e8i −0.0993693 0.563551i
\(986\) 1.09231e9 1.92603e8i 1.13950 0.200925i
\(987\) 0 0
\(988\) −2.66478e6 2.23602e6i −0.00276306 0.00231848i
\(989\) −6.77412e7 + 3.91104e7i −0.0700268 + 0.0404300i
\(990\) 0 0
\(991\) 4.10358e8 7.10761e8i 0.421640 0.730302i −0.574460 0.818533i \(-0.694788\pi\)
0.996100 + 0.0882306i \(0.0281213\pi\)
\(992\) −1.79299e8 4.92620e8i −0.183672 0.504634i
\(993\) 0 0
\(994\) −1.11328e7 + 9.34150e6i −0.0113356 + 0.00951169i
\(995\) 1.16826e8 3.20975e8i 0.118596 0.325839i
\(996\) 0 0
\(997\) −3.23842e8 + 1.83660e9i −0.326775 + 1.85323i 0.170125 + 0.985423i \(0.445583\pi\)
−0.496899 + 0.867808i \(0.665528\pi\)
\(998\) 1.97215e9i 1.98403i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.7.f.a.8.14 102
3.2 odd 2 27.7.f.a.2.4 102
27.13 even 9 27.7.f.a.14.4 yes 102
27.14 odd 18 inner 81.7.f.a.71.14 102
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.7.f.a.2.4 102 3.2 odd 2
27.7.f.a.14.4 yes 102 27.13 even 9
81.7.f.a.8.14 102 1.1 even 1 trivial
81.7.f.a.71.14 102 27.14 odd 18 inner