Properties

Label 81.8.a.b.1.1
Level $81$
Weight $8$
Character 81.1
Self dual yes
Analytic conductor $25.303$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,8,Mod(1,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 81.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.3031870642\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 342x^{2} - 352x + 2512 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(19.3080\) of defining polynomial
Character \(\chi\) \(=\) 81.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-15.3080 q^{2} +106.336 q^{4} -53.3856 q^{5} +243.109 q^{7} +331.630 q^{8} +817.229 q^{10} -5815.00 q^{11} +12738.2 q^{13} -3721.52 q^{14} -18687.6 q^{16} -26051.9 q^{17} -5144.15 q^{19} -5676.82 q^{20} +89016.2 q^{22} -25734.4 q^{23} -75275.0 q^{25} -194997. q^{26} +25851.3 q^{28} -28600.4 q^{29} +125660. q^{31} +243623. q^{32} +398803. q^{34} -12978.5 q^{35} +413062. q^{37} +78746.9 q^{38} -17704.2 q^{40} +691526. q^{41} +596215. q^{43} -618345. q^{44} +393943. q^{46} +1.01509e6 q^{47} -764441. q^{49} +1.15231e6 q^{50} +1.35454e6 q^{52} -413919. q^{53} +310437. q^{55} +80622.0 q^{56} +437817. q^{58} -27439.1 q^{59} -2.09485e6 q^{61} -1.92361e6 q^{62} -1.33737e6 q^{64} -680037. q^{65} +3.88197e6 q^{67} -2.77026e6 q^{68} +198675. q^{70} +3.26085e6 q^{71} +3.25581e6 q^{73} -6.32317e6 q^{74} -547010. q^{76} -1.41368e6 q^{77} -7.88994e6 q^{79} +997650. q^{80} -1.05859e7 q^{82} +4.21391e6 q^{83} +1.39079e6 q^{85} -9.12688e6 q^{86} -1.92843e6 q^{88} +3.81191e6 q^{89} +3.09677e6 q^{91} -2.73650e6 q^{92} -1.55391e7 q^{94} +274624. q^{95} +4.75971e6 q^{97} +1.17021e7 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 15 q^{2} + 229 q^{4} + 192 q^{5} + 800 q^{7} + 2505 q^{8} + 5469 q^{10} - 5016 q^{11} - 2200 q^{13} + 19452 q^{14} + 40849 q^{16} - 19620 q^{17} + 11240 q^{19} + 96951 q^{20} - 41280 q^{22} + 154560 q^{23}+ \cdots + 15771015 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −15.3080 −1.35305 −0.676526 0.736418i \(-0.736516\pi\)
−0.676526 + 0.736418i \(0.736516\pi\)
\(3\) 0 0
\(4\) 106.336 0.830752
\(5\) −53.3856 −0.190998 −0.0954990 0.995430i \(-0.530445\pi\)
−0.0954990 + 0.995430i \(0.530445\pi\)
\(6\) 0 0
\(7\) 243.109 0.267890 0.133945 0.990989i \(-0.457235\pi\)
0.133945 + 0.990989i \(0.457235\pi\)
\(8\) 331.630 0.229002
\(9\) 0 0
\(10\) 817.229 0.258430
\(11\) −5815.00 −1.31727 −0.658636 0.752462i \(-0.728866\pi\)
−0.658636 + 0.752462i \(0.728866\pi\)
\(12\) 0 0
\(13\) 12738.2 1.60808 0.804039 0.594576i \(-0.202680\pi\)
0.804039 + 0.594576i \(0.202680\pi\)
\(14\) −3721.52 −0.362470
\(15\) 0 0
\(16\) −18687.6 −1.14060
\(17\) −26051.9 −1.28608 −0.643040 0.765833i \(-0.722327\pi\)
−0.643040 + 0.765833i \(0.722327\pi\)
\(18\) 0 0
\(19\) −5144.15 −0.172059 −0.0860293 0.996293i \(-0.527418\pi\)
−0.0860293 + 0.996293i \(0.527418\pi\)
\(20\) −5676.82 −0.158672
\(21\) 0 0
\(22\) 89016.2 1.78234
\(23\) −25734.4 −0.441028 −0.220514 0.975384i \(-0.570773\pi\)
−0.220514 + 0.975384i \(0.570773\pi\)
\(24\) 0 0
\(25\) −75275.0 −0.963520
\(26\) −194997. −2.17582
\(27\) 0 0
\(28\) 25851.3 0.222550
\(29\) −28600.4 −0.217761 −0.108880 0.994055i \(-0.534727\pi\)
−0.108880 + 0.994055i \(0.534727\pi\)
\(30\) 0 0
\(31\) 125660. 0.757586 0.378793 0.925481i \(-0.376339\pi\)
0.378793 + 0.925481i \(0.376339\pi\)
\(32\) 243623. 1.31429
\(33\) 0 0
\(34\) 398803. 1.74013
\(35\) −12978.5 −0.0511665
\(36\) 0 0
\(37\) 413062. 1.34063 0.670315 0.742076i \(-0.266159\pi\)
0.670315 + 0.742076i \(0.266159\pi\)
\(38\) 78746.9 0.232804
\(39\) 0 0
\(40\) −17704.2 −0.0437389
\(41\) 691526. 1.56698 0.783492 0.621401i \(-0.213436\pi\)
0.783492 + 0.621401i \(0.213436\pi\)
\(42\) 0 0
\(43\) 596215. 1.14357 0.571785 0.820403i \(-0.306251\pi\)
0.571785 + 0.820403i \(0.306251\pi\)
\(44\) −618345. −1.09433
\(45\) 0 0
\(46\) 393943. 0.596734
\(47\) 1.01509e6 1.42614 0.713072 0.701091i \(-0.247303\pi\)
0.713072 + 0.701091i \(0.247303\pi\)
\(48\) 0 0
\(49\) −764441. −0.928235
\(50\) 1.15231e6 1.30369
\(51\) 0 0
\(52\) 1.35454e6 1.33591
\(53\) −413919. −0.381900 −0.190950 0.981600i \(-0.561157\pi\)
−0.190950 + 0.981600i \(0.561157\pi\)
\(54\) 0 0
\(55\) 310437. 0.251596
\(56\) 80622.0 0.0613473
\(57\) 0 0
\(58\) 437817. 0.294642
\(59\) −27439.1 −0.0173936 −0.00869678 0.999962i \(-0.502768\pi\)
−0.00869678 + 0.999962i \(0.502768\pi\)
\(60\) 0 0
\(61\) −2.09485e6 −1.18167 −0.590837 0.806791i \(-0.701202\pi\)
−0.590837 + 0.806791i \(0.701202\pi\)
\(62\) −1.92361e6 −1.02505
\(63\) 0 0
\(64\) −1.33737e6 −0.637707
\(65\) −680037. −0.307140
\(66\) 0 0
\(67\) 3.88197e6 1.57685 0.788425 0.615131i \(-0.210897\pi\)
0.788425 + 0.615131i \(0.210897\pi\)
\(68\) −2.77026e6 −1.06841
\(69\) 0 0
\(70\) 198675. 0.0692310
\(71\) 3.26085e6 1.08125 0.540625 0.841264i \(-0.318188\pi\)
0.540625 + 0.841264i \(0.318188\pi\)
\(72\) 0 0
\(73\) 3.25581e6 0.979556 0.489778 0.871847i \(-0.337078\pi\)
0.489778 + 0.871847i \(0.337078\pi\)
\(74\) −6.32317e6 −1.81394
\(75\) 0 0
\(76\) −547010. −0.142938
\(77\) −1.41368e6 −0.352884
\(78\) 0 0
\(79\) −7.88994e6 −1.80044 −0.900220 0.435435i \(-0.856595\pi\)
−0.900220 + 0.435435i \(0.856595\pi\)
\(80\) 997650. 0.217853
\(81\) 0 0
\(82\) −1.05859e7 −2.12021
\(83\) 4.21391e6 0.808931 0.404466 0.914553i \(-0.367458\pi\)
0.404466 + 0.914553i \(0.367458\pi\)
\(84\) 0 0
\(85\) 1.39079e6 0.245639
\(86\) −9.12688e6 −1.54731
\(87\) 0 0
\(88\) −1.92843e6 −0.301657
\(89\) 3.81191e6 0.573162 0.286581 0.958056i \(-0.407481\pi\)
0.286581 + 0.958056i \(0.407481\pi\)
\(90\) 0 0
\(91\) 3.09677e6 0.430789
\(92\) −2.73650e6 −0.366385
\(93\) 0 0
\(94\) −1.55391e7 −1.92965
\(95\) 274624. 0.0328628
\(96\) 0 0
\(97\) 4.75971e6 0.529517 0.264758 0.964315i \(-0.414708\pi\)
0.264758 + 0.964315i \(0.414708\pi\)
\(98\) 1.17021e7 1.25595
\(99\) 0 0
\(100\) −8.00446e6 −0.800446
\(101\) 1.33780e7 1.29201 0.646006 0.763332i \(-0.276438\pi\)
0.646006 + 0.763332i \(0.276438\pi\)
\(102\) 0 0
\(103\) −1.28643e7 −1.15999 −0.579995 0.814620i \(-0.696946\pi\)
−0.579995 + 0.814620i \(0.696946\pi\)
\(104\) 4.22438e6 0.368253
\(105\) 0 0
\(106\) 6.33629e6 0.516731
\(107\) 1.25617e7 0.991303 0.495652 0.868521i \(-0.334929\pi\)
0.495652 + 0.868521i \(0.334929\pi\)
\(108\) 0 0
\(109\) 8.06992e6 0.596866 0.298433 0.954431i \(-0.403536\pi\)
0.298433 + 0.954431i \(0.403536\pi\)
\(110\) −4.75218e6 −0.340423
\(111\) 0 0
\(112\) −4.54313e6 −0.305557
\(113\) −7.03422e6 −0.458608 −0.229304 0.973355i \(-0.573645\pi\)
−0.229304 + 0.973355i \(0.573645\pi\)
\(114\) 0 0
\(115\) 1.37384e6 0.0842354
\(116\) −3.04126e6 −0.180905
\(117\) 0 0
\(118\) 420039. 0.0235344
\(119\) −6.33343e6 −0.344528
\(120\) 0 0
\(121\) 1.43270e7 0.735203
\(122\) 3.20680e7 1.59887
\(123\) 0 0
\(124\) 1.33622e7 0.629366
\(125\) 8.18934e6 0.375028
\(126\) 0 0
\(127\) 1.58283e7 0.685680 0.342840 0.939394i \(-0.388611\pi\)
0.342840 + 0.939394i \(0.388611\pi\)
\(128\) −1.07112e7 −0.451444
\(129\) 0 0
\(130\) 1.04100e7 0.415576
\(131\) −1.44103e7 −0.560047 −0.280024 0.959993i \(-0.590342\pi\)
−0.280024 + 0.959993i \(0.590342\pi\)
\(132\) 0 0
\(133\) −1.25059e6 −0.0460928
\(134\) −5.94254e7 −2.13356
\(135\) 0 0
\(136\) −8.63958e6 −0.294514
\(137\) 4.15192e7 1.37952 0.689759 0.724039i \(-0.257716\pi\)
0.689759 + 0.724039i \(0.257716\pi\)
\(138\) 0 0
\(139\) 3.92075e7 1.23828 0.619138 0.785282i \(-0.287482\pi\)
0.619138 + 0.785282i \(0.287482\pi\)
\(140\) −1.38008e6 −0.0425067
\(141\) 0 0
\(142\) −4.99172e7 −1.46299
\(143\) −7.40728e7 −2.11828
\(144\) 0 0
\(145\) 1.52685e6 0.0415919
\(146\) −4.98401e7 −1.32539
\(147\) 0 0
\(148\) 4.39235e7 1.11373
\(149\) −1.17542e7 −0.291099 −0.145549 0.989351i \(-0.546495\pi\)
−0.145549 + 0.989351i \(0.546495\pi\)
\(150\) 0 0
\(151\) 2.98077e7 0.704546 0.352273 0.935897i \(-0.385409\pi\)
0.352273 + 0.935897i \(0.385409\pi\)
\(152\) −1.70595e6 −0.0394017
\(153\) 0 0
\(154\) 2.16406e7 0.477471
\(155\) −6.70844e6 −0.144697
\(156\) 0 0
\(157\) 4.19779e7 0.865709 0.432854 0.901464i \(-0.357506\pi\)
0.432854 + 0.901464i \(0.357506\pi\)
\(158\) 1.20780e8 2.43609
\(159\) 0 0
\(160\) −1.30059e7 −0.251028
\(161\) −6.25624e6 −0.118147
\(162\) 0 0
\(163\) 4.55192e6 0.0823261 0.0411631 0.999152i \(-0.486894\pi\)
0.0411631 + 0.999152i \(0.486894\pi\)
\(164\) 7.35342e7 1.30178
\(165\) 0 0
\(166\) −6.45067e7 −1.09453
\(167\) −1.06013e8 −1.76138 −0.880688 0.473697i \(-0.842919\pi\)
−0.880688 + 0.473697i \(0.842919\pi\)
\(168\) 0 0
\(169\) 9.95140e7 1.58592
\(170\) −2.12903e7 −0.332362
\(171\) 0 0
\(172\) 6.33992e7 0.950024
\(173\) −5.95255e7 −0.874061 −0.437030 0.899447i \(-0.643970\pi\)
−0.437030 + 0.899447i \(0.643970\pi\)
\(174\) 0 0
\(175\) −1.83000e7 −0.258118
\(176\) 1.08669e8 1.50248
\(177\) 0 0
\(178\) −5.83529e7 −0.775519
\(179\) 1.24002e8 1.61600 0.808002 0.589180i \(-0.200549\pi\)
0.808002 + 0.589180i \(0.200549\pi\)
\(180\) 0 0
\(181\) −5.13583e7 −0.643778 −0.321889 0.946777i \(-0.604318\pi\)
−0.321889 + 0.946777i \(0.604318\pi\)
\(182\) −4.74055e7 −0.582880
\(183\) 0 0
\(184\) −8.53428e6 −0.100996
\(185\) −2.20515e7 −0.256058
\(186\) 0 0
\(187\) 1.51492e8 1.69411
\(188\) 1.07941e8 1.18477
\(189\) 0 0
\(190\) −4.20395e6 −0.0444652
\(191\) 1.80930e8 1.87886 0.939430 0.342740i \(-0.111355\pi\)
0.939430 + 0.342740i \(0.111355\pi\)
\(192\) 0 0
\(193\) −1.76110e8 −1.76333 −0.881665 0.471876i \(-0.843577\pi\)
−0.881665 + 0.471876i \(0.843577\pi\)
\(194\) −7.28619e7 −0.716464
\(195\) 0 0
\(196\) −8.12878e7 −0.771133
\(197\) −8.41058e7 −0.783780 −0.391890 0.920012i \(-0.628179\pi\)
−0.391890 + 0.920012i \(0.628179\pi\)
\(198\) 0 0
\(199\) −4.10771e6 −0.0369500 −0.0184750 0.999829i \(-0.505881\pi\)
−0.0184750 + 0.999829i \(0.505881\pi\)
\(200\) −2.49634e7 −0.220648
\(201\) 0 0
\(202\) −2.04791e8 −1.74816
\(203\) −6.95301e6 −0.0583360
\(204\) 0 0
\(205\) −3.69175e7 −0.299291
\(206\) 1.96927e8 1.56953
\(207\) 0 0
\(208\) −2.38047e8 −1.83418
\(209\) 2.99132e7 0.226648
\(210\) 0 0
\(211\) 1.82652e8 1.33856 0.669278 0.743012i \(-0.266604\pi\)
0.669278 + 0.743012i \(0.266604\pi\)
\(212\) −4.40146e7 −0.317264
\(213\) 0 0
\(214\) −1.92296e8 −1.34129
\(215\) −3.18293e7 −0.218420
\(216\) 0 0
\(217\) 3.05491e7 0.202950
\(218\) −1.23535e8 −0.807591
\(219\) 0 0
\(220\) 3.30107e7 0.209014
\(221\) −3.31855e8 −2.06812
\(222\) 0 0
\(223\) −1.48526e8 −0.896882 −0.448441 0.893812i \(-0.648021\pi\)
−0.448441 + 0.893812i \(0.648021\pi\)
\(224\) 5.92268e7 0.352087
\(225\) 0 0
\(226\) 1.07680e8 0.620520
\(227\) −2.13713e8 −1.21267 −0.606333 0.795211i \(-0.707360\pi\)
−0.606333 + 0.795211i \(0.707360\pi\)
\(228\) 0 0
\(229\) 1.57057e8 0.864235 0.432118 0.901817i \(-0.357766\pi\)
0.432118 + 0.901817i \(0.357766\pi\)
\(230\) −2.10309e7 −0.113975
\(231\) 0 0
\(232\) −9.48476e6 −0.0498676
\(233\) 1.33939e8 0.693686 0.346843 0.937923i \(-0.387254\pi\)
0.346843 + 0.937923i \(0.387254\pi\)
\(234\) 0 0
\(235\) −5.41913e7 −0.272391
\(236\) −2.91777e6 −0.0144497
\(237\) 0 0
\(238\) 9.69525e7 0.466165
\(239\) 2.41326e6 0.0114344 0.00571718 0.999984i \(-0.498180\pi\)
0.00571718 + 0.999984i \(0.498180\pi\)
\(240\) 0 0
\(241\) 7.41613e6 0.0341285 0.0170643 0.999854i \(-0.494568\pi\)
0.0170643 + 0.999854i \(0.494568\pi\)
\(242\) −2.19319e8 −0.994769
\(243\) 0 0
\(244\) −2.22758e8 −0.981678
\(245\) 4.08101e7 0.177291
\(246\) 0 0
\(247\) −6.55274e7 −0.276684
\(248\) 4.16727e7 0.173489
\(249\) 0 0
\(250\) −1.25363e8 −0.507433
\(251\) −2.17451e7 −0.0867966 −0.0433983 0.999058i \(-0.513818\pi\)
−0.0433983 + 0.999058i \(0.513818\pi\)
\(252\) 0 0
\(253\) 1.49645e8 0.580953
\(254\) −2.42300e8 −0.927761
\(255\) 0 0
\(256\) 3.35151e8 1.24853
\(257\) 8.85681e7 0.325470 0.162735 0.986670i \(-0.447968\pi\)
0.162735 + 0.986670i \(0.447968\pi\)
\(258\) 0 0
\(259\) 1.00419e8 0.359142
\(260\) −7.23126e7 −0.255157
\(261\) 0 0
\(262\) 2.20594e8 0.757774
\(263\) 5.15791e7 0.174835 0.0874175 0.996172i \(-0.472139\pi\)
0.0874175 + 0.996172i \(0.472139\pi\)
\(264\) 0 0
\(265\) 2.20973e7 0.0729422
\(266\) 1.91441e7 0.0623661
\(267\) 0 0
\(268\) 4.12794e8 1.30997
\(269\) −1.09104e8 −0.341749 −0.170875 0.985293i \(-0.554659\pi\)
−0.170875 + 0.985293i \(0.554659\pi\)
\(270\) 0 0
\(271\) 2.22968e7 0.0680534 0.0340267 0.999421i \(-0.489167\pi\)
0.0340267 + 0.999421i \(0.489167\pi\)
\(272\) 4.86848e8 1.46691
\(273\) 0 0
\(274\) −6.35579e8 −1.86656
\(275\) 4.37724e8 1.26922
\(276\) 0 0
\(277\) −3.30652e8 −0.934743 −0.467371 0.884061i \(-0.654799\pi\)
−0.467371 + 0.884061i \(0.654799\pi\)
\(278\) −6.00190e8 −1.67545
\(279\) 0 0
\(280\) −4.30405e6 −0.0117172
\(281\) 6.38855e8 1.71763 0.858816 0.512285i \(-0.171201\pi\)
0.858816 + 0.512285i \(0.171201\pi\)
\(282\) 0 0
\(283\) −3.02101e8 −0.792319 −0.396159 0.918182i \(-0.629657\pi\)
−0.396159 + 0.918182i \(0.629657\pi\)
\(284\) 3.46746e8 0.898251
\(285\) 0 0
\(286\) 1.13391e9 2.86614
\(287\) 1.68116e8 0.419780
\(288\) 0 0
\(289\) 2.68361e8 0.654000
\(290\) −2.33731e7 −0.0562760
\(291\) 0 0
\(292\) 3.46211e8 0.813768
\(293\) 7.25966e8 1.68609 0.843043 0.537846i \(-0.180762\pi\)
0.843043 + 0.537846i \(0.180762\pi\)
\(294\) 0 0
\(295\) 1.46485e6 0.00332213
\(296\) 1.36984e8 0.307007
\(297\) 0 0
\(298\) 1.79933e8 0.393872
\(299\) −3.27810e8 −0.709208
\(300\) 0 0
\(301\) 1.44945e8 0.306352
\(302\) −4.56298e8 −0.953288
\(303\) 0 0
\(304\) 9.61321e7 0.196251
\(305\) 1.11835e8 0.225697
\(306\) 0 0
\(307\) 8.47111e8 1.67092 0.835461 0.549550i \(-0.185201\pi\)
0.835461 + 0.549550i \(0.185201\pi\)
\(308\) −1.50325e8 −0.293159
\(309\) 0 0
\(310\) 1.02693e8 0.195783
\(311\) 2.16037e8 0.407256 0.203628 0.979048i \(-0.434727\pi\)
0.203628 + 0.979048i \(0.434727\pi\)
\(312\) 0 0
\(313\) −1.07774e7 −0.0198659 −0.00993295 0.999951i \(-0.503162\pi\)
−0.00993295 + 0.999951i \(0.503162\pi\)
\(314\) −6.42599e8 −1.17135
\(315\) 0 0
\(316\) −8.38986e8 −1.49572
\(317\) −1.88986e8 −0.333214 −0.166607 0.986023i \(-0.553281\pi\)
−0.166607 + 0.986023i \(0.553281\pi\)
\(318\) 0 0
\(319\) 1.66311e8 0.286850
\(320\) 7.13962e7 0.121801
\(321\) 0 0
\(322\) 9.57709e7 0.159859
\(323\) 1.34015e8 0.221281
\(324\) 0 0
\(325\) −9.58870e8 −1.54942
\(326\) −6.96809e7 −0.111392
\(327\) 0 0
\(328\) 2.29331e8 0.358842
\(329\) 2.46778e8 0.382050
\(330\) 0 0
\(331\) −8.64349e8 −1.31006 −0.655030 0.755603i \(-0.727344\pi\)
−0.655030 + 0.755603i \(0.727344\pi\)
\(332\) 4.48091e8 0.672021
\(333\) 0 0
\(334\) 1.62285e9 2.38323
\(335\) −2.07241e8 −0.301175
\(336\) 0 0
\(337\) −1.03292e8 −0.147015 −0.0735075 0.997295i \(-0.523419\pi\)
−0.0735075 + 0.997295i \(0.523419\pi\)
\(338\) −1.52336e9 −2.14583
\(339\) 0 0
\(340\) 1.47892e8 0.204065
\(341\) −7.30714e8 −0.997947
\(342\) 0 0
\(343\) −3.86053e8 −0.516556
\(344\) 1.97723e8 0.261880
\(345\) 0 0
\(346\) 9.11219e8 1.18265
\(347\) −9.26206e8 −1.19002 −0.595010 0.803718i \(-0.702852\pi\)
−0.595010 + 0.803718i \(0.702852\pi\)
\(348\) 0 0
\(349\) −1.00869e9 −1.27019 −0.635097 0.772432i \(-0.719040\pi\)
−0.635097 + 0.772432i \(0.719040\pi\)
\(350\) 2.80137e8 0.349247
\(351\) 0 0
\(352\) −1.41667e9 −1.73128
\(353\) −1.00115e9 −1.21140 −0.605700 0.795693i \(-0.707107\pi\)
−0.605700 + 0.795693i \(0.707107\pi\)
\(354\) 0 0
\(355\) −1.74082e8 −0.206517
\(356\) 4.05344e8 0.476156
\(357\) 0 0
\(358\) −1.89822e9 −2.18654
\(359\) 4.86556e8 0.555011 0.277506 0.960724i \(-0.410492\pi\)
0.277506 + 0.960724i \(0.410492\pi\)
\(360\) 0 0
\(361\) −8.67409e8 −0.970396
\(362\) 7.86196e8 0.871065
\(363\) 0 0
\(364\) 3.29299e8 0.357879
\(365\) −1.73813e8 −0.187093
\(366\) 0 0
\(367\) 3.88196e8 0.409939 0.204970 0.978768i \(-0.434290\pi\)
0.204970 + 0.978768i \(0.434290\pi\)
\(368\) 4.80915e8 0.503038
\(369\) 0 0
\(370\) 3.37566e8 0.346460
\(371\) −1.00627e8 −0.102307
\(372\) 0 0
\(373\) −9.50838e8 −0.948693 −0.474346 0.880338i \(-0.657316\pi\)
−0.474346 + 0.880338i \(0.657316\pi\)
\(374\) −2.31904e9 −2.29223
\(375\) 0 0
\(376\) 3.36635e8 0.326589
\(377\) −3.64319e8 −0.350177
\(378\) 0 0
\(379\) −1.95384e8 −0.184354 −0.0921769 0.995743i \(-0.529383\pi\)
−0.0921769 + 0.995743i \(0.529383\pi\)
\(380\) 2.92024e7 0.0273009
\(381\) 0 0
\(382\) −2.76969e9 −2.54220
\(383\) 1.84603e9 1.67897 0.839484 0.543384i \(-0.182857\pi\)
0.839484 + 0.543384i \(0.182857\pi\)
\(384\) 0 0
\(385\) 7.54699e7 0.0674002
\(386\) 2.69590e9 2.38588
\(387\) 0 0
\(388\) 5.06130e8 0.439897
\(389\) −8.00684e7 −0.0689664 −0.0344832 0.999405i \(-0.510979\pi\)
−0.0344832 + 0.999405i \(0.510979\pi\)
\(390\) 0 0
\(391\) 6.70428e8 0.567197
\(392\) −2.53511e8 −0.212567
\(393\) 0 0
\(394\) 1.28750e9 1.06050
\(395\) 4.21209e8 0.343880
\(396\) 0 0
\(397\) 1.75856e8 0.141055 0.0705277 0.997510i \(-0.477532\pi\)
0.0705277 + 0.997510i \(0.477532\pi\)
\(398\) 6.28811e7 0.0499953
\(399\) 0 0
\(400\) 1.40671e9 1.09899
\(401\) 2.00769e8 0.155486 0.0777431 0.996973i \(-0.475229\pi\)
0.0777431 + 0.996973i \(0.475229\pi\)
\(402\) 0 0
\(403\) 1.60069e9 1.21826
\(404\) 1.42257e9 1.07334
\(405\) 0 0
\(406\) 1.06437e8 0.0789317
\(407\) −2.40195e9 −1.76597
\(408\) 0 0
\(409\) −2.46797e9 −1.78364 −0.891821 0.452389i \(-0.850572\pi\)
−0.891821 + 0.452389i \(0.850572\pi\)
\(410\) 5.65135e8 0.404956
\(411\) 0 0
\(412\) −1.36794e9 −0.963664
\(413\) −6.67069e6 −0.00465956
\(414\) 0 0
\(415\) −2.24962e8 −0.154504
\(416\) 3.10332e9 2.11349
\(417\) 0 0
\(418\) −4.57913e8 −0.306666
\(419\) −5.30383e8 −0.352242 −0.176121 0.984369i \(-0.556355\pi\)
−0.176121 + 0.984369i \(0.556355\pi\)
\(420\) 0 0
\(421\) 9.52227e8 0.621946 0.310973 0.950419i \(-0.399345\pi\)
0.310973 + 0.950419i \(0.399345\pi\)
\(422\) −2.79605e9 −1.81114
\(423\) 0 0
\(424\) −1.37268e8 −0.0874558
\(425\) 1.96105e9 1.23916
\(426\) 0 0
\(427\) −5.09275e8 −0.316559
\(428\) 1.33577e9 0.823527
\(429\) 0 0
\(430\) 4.87244e8 0.295533
\(431\) 1.32253e9 0.795673 0.397836 0.917456i \(-0.369761\pi\)
0.397836 + 0.917456i \(0.369761\pi\)
\(432\) 0 0
\(433\) −6.31440e8 −0.373787 −0.186893 0.982380i \(-0.559842\pi\)
−0.186893 + 0.982380i \(0.559842\pi\)
\(434\) −4.67647e8 −0.274602
\(435\) 0 0
\(436\) 8.58125e8 0.495847
\(437\) 1.32382e8 0.0758826
\(438\) 0 0
\(439\) 7.08702e8 0.399795 0.199898 0.979817i \(-0.435939\pi\)
0.199898 + 0.979817i \(0.435939\pi\)
\(440\) 1.02950e8 0.0576159
\(441\) 0 0
\(442\) 5.08005e9 2.79827
\(443\) −7.35403e8 −0.401895 −0.200947 0.979602i \(-0.564402\pi\)
−0.200947 + 0.979602i \(0.564402\pi\)
\(444\) 0 0
\(445\) −2.03501e8 −0.109473
\(446\) 2.27364e9 1.21353
\(447\) 0 0
\(448\) −3.25126e8 −0.170836
\(449\) −3.34839e9 −1.74571 −0.872857 0.487975i \(-0.837736\pi\)
−0.872857 + 0.487975i \(0.837736\pi\)
\(450\) 0 0
\(451\) −4.02122e9 −2.06414
\(452\) −7.47992e8 −0.380989
\(453\) 0 0
\(454\) 3.27153e9 1.64080
\(455\) −1.65323e8 −0.0822798
\(456\) 0 0
\(457\) −1.20876e9 −0.592424 −0.296212 0.955122i \(-0.595723\pi\)
−0.296212 + 0.955122i \(0.595723\pi\)
\(458\) −2.40423e9 −1.16936
\(459\) 0 0
\(460\) 1.46089e8 0.0699787
\(461\) 5.70954e8 0.271424 0.135712 0.990748i \(-0.456668\pi\)
0.135712 + 0.990748i \(0.456668\pi\)
\(462\) 0 0
\(463\) 2.09945e9 0.983044 0.491522 0.870865i \(-0.336441\pi\)
0.491522 + 0.870865i \(0.336441\pi\)
\(464\) 5.34475e8 0.248379
\(465\) 0 0
\(466\) −2.05035e9 −0.938593
\(467\) −3.74055e9 −1.69952 −0.849760 0.527170i \(-0.823253\pi\)
−0.849760 + 0.527170i \(0.823253\pi\)
\(468\) 0 0
\(469\) 9.43740e8 0.422423
\(470\) 8.29563e8 0.368559
\(471\) 0 0
\(472\) −9.09963e6 −0.00398315
\(473\) −3.46699e9 −1.50639
\(474\) 0 0
\(475\) 3.87226e8 0.165782
\(476\) −6.73473e8 −0.286217
\(477\) 0 0
\(478\) −3.69423e7 −0.0154713
\(479\) −3.08337e9 −1.28189 −0.640946 0.767586i \(-0.721458\pi\)
−0.640946 + 0.767586i \(0.721458\pi\)
\(480\) 0 0
\(481\) 5.26168e9 2.15584
\(482\) −1.13526e8 −0.0461777
\(483\) 0 0
\(484\) 1.52348e9 0.610771
\(485\) −2.54100e8 −0.101137
\(486\) 0 0
\(487\) 4.31352e9 1.69231 0.846156 0.532935i \(-0.178911\pi\)
0.846156 + 0.532935i \(0.178911\pi\)
\(488\) −6.94714e8 −0.270605
\(489\) 0 0
\(490\) −6.24723e8 −0.239884
\(491\) 4.00872e9 1.52834 0.764170 0.645015i \(-0.223149\pi\)
0.764170 + 0.645015i \(0.223149\pi\)
\(492\) 0 0
\(493\) 7.45095e8 0.280058
\(494\) 1.00310e9 0.374368
\(495\) 0 0
\(496\) −2.34829e9 −0.864105
\(497\) 7.92740e8 0.289657
\(498\) 0 0
\(499\) 1.02319e9 0.368640 0.184320 0.982866i \(-0.440992\pi\)
0.184320 + 0.982866i \(0.440992\pi\)
\(500\) 8.70824e8 0.311555
\(501\) 0 0
\(502\) 3.32875e8 0.117440
\(503\) 3.51279e9 1.23074 0.615368 0.788240i \(-0.289007\pi\)
0.615368 + 0.788240i \(0.289007\pi\)
\(504\) 0 0
\(505\) −7.14193e8 −0.246772
\(506\) −2.29078e9 −0.786060
\(507\) 0 0
\(508\) 1.68312e9 0.569630
\(509\) 9.85971e8 0.331400 0.165700 0.986176i \(-0.447012\pi\)
0.165700 + 0.986176i \(0.447012\pi\)
\(510\) 0 0
\(511\) 7.91516e8 0.262414
\(512\) −3.75947e9 −1.23789
\(513\) 0 0
\(514\) −1.35581e9 −0.440379
\(515\) 6.86765e8 0.221556
\(516\) 0 0
\(517\) −5.90276e9 −1.87862
\(518\) −1.53722e9 −0.485938
\(519\) 0 0
\(520\) −2.25521e8 −0.0703355
\(521\) 7.11203e8 0.220324 0.110162 0.993914i \(-0.464863\pi\)
0.110162 + 0.993914i \(0.464863\pi\)
\(522\) 0 0
\(523\) 5.39505e9 1.64907 0.824535 0.565810i \(-0.191437\pi\)
0.824535 + 0.565810i \(0.191437\pi\)
\(524\) −1.53234e9 −0.465260
\(525\) 0 0
\(526\) −7.89575e8 −0.236561
\(527\) −3.27369e9 −0.974316
\(528\) 0 0
\(529\) −2.74257e9 −0.805494
\(530\) −3.38267e8 −0.0986947
\(531\) 0 0
\(532\) −1.32983e8 −0.0382917
\(533\) 8.80881e9 2.51984
\(534\) 0 0
\(535\) −6.70615e8 −0.189337
\(536\) 1.28738e9 0.361101
\(537\) 0 0
\(538\) 1.67017e9 0.462405
\(539\) 4.44522e9 1.22274
\(540\) 0 0
\(541\) −6.33559e9 −1.72027 −0.860134 0.510068i \(-0.829620\pi\)
−0.860134 + 0.510068i \(0.829620\pi\)
\(542\) −3.41320e8 −0.0920798
\(543\) 0 0
\(544\) −6.34683e9 −1.69029
\(545\) −4.30817e8 −0.114000
\(546\) 0 0
\(547\) −4.89390e8 −0.127850 −0.0639248 0.997955i \(-0.520362\pi\)
−0.0639248 + 0.997955i \(0.520362\pi\)
\(548\) 4.41500e9 1.14604
\(549\) 0 0
\(550\) −6.70070e9 −1.71732
\(551\) 1.47125e8 0.0374676
\(552\) 0 0
\(553\) −1.91811e9 −0.482321
\(554\) 5.06164e9 1.26476
\(555\) 0 0
\(556\) 4.16918e9 1.02870
\(557\) 2.06892e9 0.507283 0.253642 0.967298i \(-0.418372\pi\)
0.253642 + 0.967298i \(0.418372\pi\)
\(558\) 0 0
\(559\) 7.59472e9 1.83895
\(560\) 2.42537e8 0.0583607
\(561\) 0 0
\(562\) −9.77962e9 −2.32405
\(563\) −3.90559e9 −0.922375 −0.461188 0.887303i \(-0.652577\pi\)
−0.461188 + 0.887303i \(0.652577\pi\)
\(564\) 0 0
\(565\) 3.75526e8 0.0875931
\(566\) 4.62458e9 1.07205
\(567\) 0 0
\(568\) 1.08139e9 0.247608
\(569\) 1.76153e9 0.400864 0.200432 0.979708i \(-0.435765\pi\)
0.200432 + 0.979708i \(0.435765\pi\)
\(570\) 0 0
\(571\) 4.96964e9 1.11712 0.558558 0.829465i \(-0.311355\pi\)
0.558558 + 0.829465i \(0.311355\pi\)
\(572\) −7.87662e9 −1.75976
\(573\) 0 0
\(574\) −2.57352e9 −0.567985
\(575\) 1.93715e9 0.424939
\(576\) 0 0
\(577\) 2.19022e8 0.0474649 0.0237324 0.999718i \(-0.492445\pi\)
0.0237324 + 0.999718i \(0.492445\pi\)
\(578\) −4.10809e9 −0.884896
\(579\) 0 0
\(580\) 1.62360e8 0.0345525
\(581\) 1.02444e9 0.216705
\(582\) 0 0
\(583\) 2.40694e9 0.503066
\(584\) 1.07972e9 0.224320
\(585\) 0 0
\(586\) −1.11131e10 −2.28136
\(587\) −6.34220e8 −0.129422 −0.0647108 0.997904i \(-0.520612\pi\)
−0.0647108 + 0.997904i \(0.520612\pi\)
\(588\) 0 0
\(589\) −6.46416e8 −0.130349
\(590\) −2.24240e7 −0.00449502
\(591\) 0 0
\(592\) −7.71916e9 −1.52913
\(593\) −3.47748e9 −0.684815 −0.342408 0.939552i \(-0.611242\pi\)
−0.342408 + 0.939552i \(0.611242\pi\)
\(594\) 0 0
\(595\) 3.38114e8 0.0658042
\(596\) −1.24990e9 −0.241831
\(597\) 0 0
\(598\) 5.01813e9 0.959595
\(599\) −3.85315e9 −0.732525 −0.366263 0.930512i \(-0.619363\pi\)
−0.366263 + 0.930512i \(0.619363\pi\)
\(600\) 0 0
\(601\) −4.68707e9 −0.880725 −0.440363 0.897820i \(-0.645150\pi\)
−0.440363 + 0.897820i \(0.645150\pi\)
\(602\) −2.21882e9 −0.414510
\(603\) 0 0
\(604\) 3.16964e9 0.585303
\(605\) −7.64856e8 −0.140422
\(606\) 0 0
\(607\) 2.91530e9 0.529082 0.264541 0.964374i \(-0.414780\pi\)
0.264541 + 0.964374i \(0.414780\pi\)
\(608\) −1.25323e9 −0.226136
\(609\) 0 0
\(610\) −1.71197e9 −0.305381
\(611\) 1.29305e10 2.29335
\(612\) 0 0
\(613\) 5.94387e9 1.04222 0.521108 0.853491i \(-0.325519\pi\)
0.521108 + 0.853491i \(0.325519\pi\)
\(614\) −1.29676e10 −2.26084
\(615\) 0 0
\(616\) −4.68817e8 −0.0808111
\(617\) −3.68882e7 −0.00632251 −0.00316126 0.999995i \(-0.501006\pi\)
−0.00316126 + 0.999995i \(0.501006\pi\)
\(618\) 0 0
\(619\) 1.92584e9 0.326365 0.163183 0.986596i \(-0.447824\pi\)
0.163183 + 0.986596i \(0.447824\pi\)
\(620\) −7.13351e8 −0.120208
\(621\) 0 0
\(622\) −3.30711e9 −0.551039
\(623\) 9.26708e8 0.153545
\(624\) 0 0
\(625\) 5.44367e9 0.891890
\(626\) 1.64981e8 0.0268796
\(627\) 0 0
\(628\) 4.46377e9 0.719189
\(629\) −1.07610e10 −1.72416
\(630\) 0 0
\(631\) −1.97642e9 −0.313168 −0.156584 0.987665i \(-0.550048\pi\)
−0.156584 + 0.987665i \(0.550048\pi\)
\(632\) −2.61654e9 −0.412304
\(633\) 0 0
\(634\) 2.89301e9 0.450856
\(635\) −8.45003e8 −0.130963
\(636\) 0 0
\(637\) −9.73763e9 −1.49267
\(638\) −2.54590e9 −0.388123
\(639\) 0 0
\(640\) 5.71824e8 0.0862248
\(641\) 1.15898e10 1.73810 0.869049 0.494726i \(-0.164731\pi\)
0.869049 + 0.494726i \(0.164731\pi\)
\(642\) 0 0
\(643\) 3.80920e9 0.565061 0.282530 0.959258i \(-0.408826\pi\)
0.282530 + 0.959258i \(0.408826\pi\)
\(644\) −6.65266e8 −0.0981509
\(645\) 0 0
\(646\) −2.05151e9 −0.299405
\(647\) −6.74654e9 −0.979300 −0.489650 0.871919i \(-0.662876\pi\)
−0.489650 + 0.871919i \(0.662876\pi\)
\(648\) 0 0
\(649\) 1.59558e8 0.0229120
\(650\) 1.46784e10 2.09644
\(651\) 0 0
\(652\) 4.84034e8 0.0683926
\(653\) −8.55274e9 −1.20201 −0.601007 0.799244i \(-0.705234\pi\)
−0.601007 + 0.799244i \(0.705234\pi\)
\(654\) 0 0
\(655\) 7.69304e8 0.106968
\(656\) −1.29230e10 −1.78731
\(657\) 0 0
\(658\) −3.77769e9 −0.516934
\(659\) −1.15327e10 −1.56976 −0.784881 0.619646i \(-0.787276\pi\)
−0.784881 + 0.619646i \(0.787276\pi\)
\(660\) 0 0
\(661\) 1.36320e9 0.183592 0.0917959 0.995778i \(-0.470739\pi\)
0.0917959 + 0.995778i \(0.470739\pi\)
\(662\) 1.32315e10 1.77258
\(663\) 0 0
\(664\) 1.39746e9 0.185247
\(665\) 6.67633e7 0.00880364
\(666\) 0 0
\(667\) 7.36014e8 0.0960386
\(668\) −1.12730e10 −1.46327
\(669\) 0 0
\(670\) 3.17246e9 0.407506
\(671\) 1.21815e10 1.55659
\(672\) 0 0
\(673\) 6.31920e8 0.0799115 0.0399557 0.999201i \(-0.487278\pi\)
0.0399557 + 0.999201i \(0.487278\pi\)
\(674\) 1.58120e9 0.198919
\(675\) 0 0
\(676\) 1.05819e10 1.31750
\(677\) 1.04239e10 1.29113 0.645566 0.763705i \(-0.276622\pi\)
0.645566 + 0.763705i \(0.276622\pi\)
\(678\) 0 0
\(679\) 1.15713e9 0.141852
\(680\) 4.61229e8 0.0562516
\(681\) 0 0
\(682\) 1.11858e10 1.35027
\(683\) 2.80991e9 0.337458 0.168729 0.985662i \(-0.446034\pi\)
0.168729 + 0.985662i \(0.446034\pi\)
\(684\) 0 0
\(685\) −2.21653e9 −0.263485
\(686\) 5.90971e9 0.698927
\(687\) 0 0
\(688\) −1.11418e10 −1.30436
\(689\) −5.27260e9 −0.614126
\(690\) 0 0
\(691\) 1.65847e10 1.91220 0.956102 0.293033i \(-0.0946646\pi\)
0.956102 + 0.293033i \(0.0946646\pi\)
\(692\) −6.32972e9 −0.726127
\(693\) 0 0
\(694\) 1.41784e10 1.61016
\(695\) −2.09311e9 −0.236508
\(696\) 0 0
\(697\) −1.80155e10 −2.01527
\(698\) 1.54411e10 1.71864
\(699\) 0 0
\(700\) −1.94595e9 −0.214432
\(701\) −1.16139e9 −0.127340 −0.0636701 0.997971i \(-0.520281\pi\)
−0.0636701 + 0.997971i \(0.520281\pi\)
\(702\) 0 0
\(703\) −2.12485e9 −0.230667
\(704\) 7.77679e9 0.840033
\(705\) 0 0
\(706\) 1.53256e10 1.63909
\(707\) 3.25231e9 0.346118
\(708\) 0 0
\(709\) 1.66683e10 1.75642 0.878211 0.478274i \(-0.158737\pi\)
0.878211 + 0.478274i \(0.158737\pi\)
\(710\) 2.66486e9 0.279428
\(711\) 0 0
\(712\) 1.26414e9 0.131255
\(713\) −3.23379e9 −0.334117
\(714\) 0 0
\(715\) 3.95442e9 0.404586
\(716\) 1.31859e10 1.34250
\(717\) 0 0
\(718\) −7.44822e9 −0.750960
\(719\) 1.21223e10 1.21628 0.608141 0.793829i \(-0.291915\pi\)
0.608141 + 0.793829i \(0.291915\pi\)
\(720\) 0 0
\(721\) −3.12741e9 −0.310750
\(722\) 1.32783e10 1.31300
\(723\) 0 0
\(724\) −5.46125e9 −0.534819
\(725\) 2.15290e9 0.209817
\(726\) 0 0
\(727\) 5.08203e9 0.490531 0.245266 0.969456i \(-0.421125\pi\)
0.245266 + 0.969456i \(0.421125\pi\)
\(728\) 1.02698e9 0.0986514
\(729\) 0 0
\(730\) 2.66074e9 0.253147
\(731\) −1.55325e10 −1.47072
\(732\) 0 0
\(733\) −2.43056e8 −0.0227951 −0.0113976 0.999935i \(-0.503628\pi\)
−0.0113976 + 0.999935i \(0.503628\pi\)
\(734\) −5.94252e9 −0.554669
\(735\) 0 0
\(736\) −6.26947e9 −0.579641
\(737\) −2.25736e10 −2.07714
\(738\) 0 0
\(739\) 3.54378e9 0.323007 0.161503 0.986872i \(-0.448366\pi\)
0.161503 + 0.986872i \(0.448366\pi\)
\(740\) −2.34488e9 −0.212720
\(741\) 0 0
\(742\) 1.54041e9 0.138427
\(743\) 3.06235e9 0.273901 0.136951 0.990578i \(-0.456270\pi\)
0.136951 + 0.990578i \(0.456270\pi\)
\(744\) 0 0
\(745\) 6.27503e8 0.0555993
\(746\) 1.45555e10 1.28363
\(747\) 0 0
\(748\) 1.61090e10 1.40739
\(749\) 3.05387e9 0.265561
\(750\) 0 0
\(751\) −1.84078e9 −0.158585 −0.0792925 0.996851i \(-0.525266\pi\)
−0.0792925 + 0.996851i \(0.525266\pi\)
\(752\) −1.89697e10 −1.62666
\(753\) 0 0
\(754\) 5.57701e9 0.473807
\(755\) −1.59130e9 −0.134567
\(756\) 0 0
\(757\) −5.79351e9 −0.485407 −0.242703 0.970101i \(-0.578034\pi\)
−0.242703 + 0.970101i \(0.578034\pi\)
\(758\) 2.99095e9 0.249440
\(759\) 0 0
\(760\) 9.10734e7 0.00752565
\(761\) 1.68000e9 0.138186 0.0690930 0.997610i \(-0.477989\pi\)
0.0690930 + 0.997610i \(0.477989\pi\)
\(762\) 0 0
\(763\) 1.96187e9 0.159895
\(764\) 1.92394e10 1.56087
\(765\) 0 0
\(766\) −2.82591e10 −2.27173
\(767\) −3.49526e8 −0.0279702
\(768\) 0 0
\(769\) −5.46808e8 −0.0433603 −0.0216802 0.999765i \(-0.506902\pi\)
−0.0216802 + 0.999765i \(0.506902\pi\)
\(770\) −1.15530e9 −0.0911960
\(771\) 0 0
\(772\) −1.87269e10 −1.46489
\(773\) −9.15860e9 −0.713183 −0.356592 0.934260i \(-0.616061\pi\)
−0.356592 + 0.934260i \(0.616061\pi\)
\(774\) 0 0
\(775\) −9.45908e9 −0.729949
\(776\) 1.57846e9 0.121260
\(777\) 0 0
\(778\) 1.22569e9 0.0933151
\(779\) −3.55731e9 −0.269613
\(780\) 0 0
\(781\) −1.89618e10 −1.42430
\(782\) −1.02629e10 −0.767447
\(783\) 0 0
\(784\) 1.42856e10 1.05875
\(785\) −2.24101e9 −0.165349
\(786\) 0 0
\(787\) −4.86176e9 −0.355535 −0.177767 0.984073i \(-0.556887\pi\)
−0.177767 + 0.984073i \(0.556887\pi\)
\(788\) −8.94349e9 −0.651127
\(789\) 0 0
\(790\) −6.44788e9 −0.465288
\(791\) −1.71008e9 −0.122857
\(792\) 0 0
\(793\) −2.66846e10 −1.90023
\(794\) −2.69201e9 −0.190855
\(795\) 0 0
\(796\) −4.36799e8 −0.0306963
\(797\) −1.82890e10 −1.27963 −0.639817 0.768527i \(-0.720990\pi\)
−0.639817 + 0.768527i \(0.720990\pi\)
\(798\) 0 0
\(799\) −2.64451e10 −1.83413
\(800\) −1.83387e10 −1.26635
\(801\) 0 0
\(802\) −3.07338e9 −0.210381
\(803\) −1.89325e10 −1.29034
\(804\) 0 0
\(805\) 3.33993e8 0.0225659
\(806\) −2.45034e10 −1.64837
\(807\) 0 0
\(808\) 4.43655e9 0.295873
\(809\) 1.42882e10 0.948764 0.474382 0.880319i \(-0.342672\pi\)
0.474382 + 0.880319i \(0.342672\pi\)
\(810\) 0 0
\(811\) 1.91584e10 1.26121 0.630604 0.776105i \(-0.282807\pi\)
0.630604 + 0.776105i \(0.282807\pi\)
\(812\) −7.39357e8 −0.0484628
\(813\) 0 0
\(814\) 3.67692e10 2.38946
\(815\) −2.43007e8 −0.0157241
\(816\) 0 0
\(817\) −3.06702e9 −0.196761
\(818\) 3.77797e10 2.41336
\(819\) 0 0
\(820\) −3.92567e9 −0.248637
\(821\) −6.44351e9 −0.406370 −0.203185 0.979140i \(-0.565129\pi\)
−0.203185 + 0.979140i \(0.565129\pi\)
\(822\) 0 0
\(823\) 1.09792e10 0.686547 0.343273 0.939236i \(-0.388464\pi\)
0.343273 + 0.939236i \(0.388464\pi\)
\(824\) −4.26617e9 −0.265640
\(825\) 0 0
\(826\) 1.02115e8 0.00630464
\(827\) 1.30644e10 0.803196 0.401598 0.915816i \(-0.368455\pi\)
0.401598 + 0.915816i \(0.368455\pi\)
\(828\) 0 0
\(829\) −2.18728e10 −1.33341 −0.666705 0.745322i \(-0.732296\pi\)
−0.666705 + 0.745322i \(0.732296\pi\)
\(830\) 3.44373e9 0.209052
\(831\) 0 0
\(832\) −1.70357e10 −1.02548
\(833\) 1.99151e10 1.19378
\(834\) 0 0
\(835\) 5.65957e9 0.336419
\(836\) 3.18086e9 0.188288
\(837\) 0 0
\(838\) 8.11913e9 0.476601
\(839\) −2.36638e10 −1.38330 −0.691652 0.722231i \(-0.743117\pi\)
−0.691652 + 0.722231i \(0.743117\pi\)
\(840\) 0 0
\(841\) −1.64319e10 −0.952580
\(842\) −1.45767e10 −0.841526
\(843\) 0 0
\(844\) 1.94226e10 1.11201
\(845\) −5.31261e9 −0.302907
\(846\) 0 0
\(847\) 3.48302e9 0.196954
\(848\) 7.73518e9 0.435597
\(849\) 0 0
\(850\) −3.00199e10 −1.67665
\(851\) −1.06299e10 −0.591256
\(852\) 0 0
\(853\) −2.11867e10 −1.16880 −0.584402 0.811465i \(-0.698671\pi\)
−0.584402 + 0.811465i \(0.698671\pi\)
\(854\) 7.79601e9 0.428321
\(855\) 0 0
\(856\) 4.16585e9 0.227010
\(857\) 2.61839e10 1.42103 0.710513 0.703684i \(-0.248463\pi\)
0.710513 + 0.703684i \(0.248463\pi\)
\(858\) 0 0
\(859\) −3.47241e9 −0.186920 −0.0934598 0.995623i \(-0.529793\pi\)
−0.0934598 + 0.995623i \(0.529793\pi\)
\(860\) −3.38460e9 −0.181453
\(861\) 0 0
\(862\) −2.02453e10 −1.07659
\(863\) 6.49335e9 0.343899 0.171950 0.985106i \(-0.444993\pi\)
0.171950 + 0.985106i \(0.444993\pi\)
\(864\) 0 0
\(865\) 3.17780e9 0.166944
\(866\) 9.66611e9 0.505754
\(867\) 0 0
\(868\) 3.24848e9 0.168601
\(869\) 4.58800e10 2.37167
\(870\) 0 0
\(871\) 4.94494e10 2.53570
\(872\) 2.67623e9 0.136683
\(873\) 0 0
\(874\) −2.02650e9 −0.102673
\(875\) 1.99090e9 0.100466
\(876\) 0 0
\(877\) −1.04649e10 −0.523887 −0.261943 0.965083i \(-0.584363\pi\)
−0.261943 + 0.965083i \(0.584363\pi\)
\(878\) −1.08488e10 −0.540944
\(879\) 0 0
\(880\) −5.80133e9 −0.286971
\(881\) −2.01241e9 −0.0991521 −0.0495760 0.998770i \(-0.515787\pi\)
−0.0495760 + 0.998770i \(0.515787\pi\)
\(882\) 0 0
\(883\) 1.46717e10 0.717165 0.358582 0.933498i \(-0.383260\pi\)
0.358582 + 0.933498i \(0.383260\pi\)
\(884\) −3.52882e10 −1.71809
\(885\) 0 0
\(886\) 1.12576e10 0.543785
\(887\) 8.20707e9 0.394871 0.197436 0.980316i \(-0.436739\pi\)
0.197436 + 0.980316i \(0.436739\pi\)
\(888\) 0 0
\(889\) 3.84799e9 0.183687
\(890\) 3.11520e9 0.148123
\(891\) 0 0
\(892\) −1.57937e10 −0.745086
\(893\) −5.22179e9 −0.245380
\(894\) 0 0
\(895\) −6.61990e9 −0.308653
\(896\) −2.60399e9 −0.120937
\(897\) 0 0
\(898\) 5.12572e10 2.36204
\(899\) −3.59394e9 −0.164973
\(900\) 0 0
\(901\) 1.07834e10 0.491154
\(902\) 6.15570e10 2.79290
\(903\) 0 0
\(904\) −2.33276e9 −0.105022
\(905\) 2.74179e9 0.122960
\(906\) 0 0
\(907\) −2.59506e10 −1.15484 −0.577419 0.816448i \(-0.695940\pi\)
−0.577419 + 0.816448i \(0.695940\pi\)
\(908\) −2.27255e10 −1.00742
\(909\) 0 0
\(910\) 2.53077e9 0.111329
\(911\) 2.04912e10 0.897951 0.448975 0.893544i \(-0.351789\pi\)
0.448975 + 0.893544i \(0.351789\pi\)
\(912\) 0 0
\(913\) −2.45039e10 −1.06558
\(914\) 1.85037e10 0.801581
\(915\) 0 0
\(916\) 1.67008e10 0.717965
\(917\) −3.50328e9 −0.150031
\(918\) 0 0
\(919\) −7.45645e9 −0.316904 −0.158452 0.987367i \(-0.550650\pi\)
−0.158452 + 0.987367i \(0.550650\pi\)
\(920\) 4.55607e8 0.0192901
\(921\) 0 0
\(922\) −8.74019e9 −0.367251
\(923\) 4.15374e10 1.73874
\(924\) 0 0
\(925\) −3.10932e10 −1.29172
\(926\) −3.21385e10 −1.33011
\(927\) 0 0
\(928\) −6.96771e9 −0.286202
\(929\) 8.01831e9 0.328116 0.164058 0.986451i \(-0.447542\pi\)
0.164058 + 0.986451i \(0.447542\pi\)
\(930\) 0 0
\(931\) 3.93240e9 0.159711
\(932\) 1.42426e10 0.576281
\(933\) 0 0
\(934\) 5.72605e10 2.29954
\(935\) −8.08746e9 −0.323573
\(936\) 0 0
\(937\) 1.49057e10 0.591920 0.295960 0.955200i \(-0.404360\pi\)
0.295960 + 0.955200i \(0.404360\pi\)
\(938\) −1.44468e10 −0.571560
\(939\) 0 0
\(940\) −5.76250e9 −0.226289
\(941\) −3.60500e10 −1.41040 −0.705199 0.709010i \(-0.749142\pi\)
−0.705199 + 0.709010i \(0.749142\pi\)
\(942\) 0 0
\(943\) −1.77960e10 −0.691084
\(944\) 5.12773e8 0.0198391
\(945\) 0 0
\(946\) 5.30728e10 2.03823
\(947\) −6.99407e9 −0.267612 −0.133806 0.991008i \(-0.542720\pi\)
−0.133806 + 0.991008i \(0.542720\pi\)
\(948\) 0 0
\(949\) 4.14733e10 1.57520
\(950\) −5.92767e9 −0.224312
\(951\) 0 0
\(952\) −2.10036e9 −0.0788975
\(953\) 1.91968e10 0.718464 0.359232 0.933248i \(-0.383039\pi\)
0.359232 + 0.933248i \(0.383039\pi\)
\(954\) 0 0
\(955\) −9.65907e9 −0.358859
\(956\) 2.56617e8 0.00949912
\(957\) 0 0
\(958\) 4.72004e10 1.73447
\(959\) 1.00937e10 0.369560
\(960\) 0 0
\(961\) −1.17221e10 −0.426063
\(962\) −8.05460e10 −2.91697
\(963\) 0 0
\(964\) 7.88603e8 0.0283523
\(965\) 9.40173e9 0.336792
\(966\) 0 0
\(967\) 3.12180e10 1.11023 0.555114 0.831774i \(-0.312675\pi\)
0.555114 + 0.831774i \(0.312675\pi\)
\(968\) 4.75127e9 0.168363
\(969\) 0 0
\(970\) 3.88977e9 0.136843
\(971\) 1.62444e10 0.569425 0.284713 0.958613i \(-0.408102\pi\)
0.284713 + 0.958613i \(0.408102\pi\)
\(972\) 0 0
\(973\) 9.53168e9 0.331722
\(974\) −6.60316e10 −2.28979
\(975\) 0 0
\(976\) 3.91478e10 1.34782
\(977\) 3.13872e10 1.07677 0.538383 0.842701i \(-0.319036\pi\)
0.538383 + 0.842701i \(0.319036\pi\)
\(978\) 0 0
\(979\) −2.21662e10 −0.755010
\(980\) 4.33960e9 0.147285
\(981\) 0 0
\(982\) −6.13656e10 −2.06793
\(983\) −4.16663e10 −1.39910 −0.699548 0.714586i \(-0.746615\pi\)
−0.699548 + 0.714586i \(0.746615\pi\)
\(984\) 0 0
\(985\) 4.49003e9 0.149700
\(986\) −1.14059e10 −0.378933
\(987\) 0 0
\(988\) −6.96794e9 −0.229856
\(989\) −1.53432e10 −0.504347
\(990\) 0 0
\(991\) 5.54465e10 1.80974 0.904870 0.425688i \(-0.139968\pi\)
0.904870 + 0.425688i \(0.139968\pi\)
\(992\) 3.06137e10 0.995692
\(993\) 0 0
\(994\) −1.21353e10 −0.391921
\(995\) 2.19293e8 0.00705738
\(996\) 0 0
\(997\) 3.10920e10 0.993608 0.496804 0.867863i \(-0.334507\pi\)
0.496804 + 0.867863i \(0.334507\pi\)
\(998\) −1.56630e10 −0.498789
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.8.a.b.1.1 yes 4
3.2 odd 2 81.8.a.a.1.4 4
9.2 odd 6 81.8.c.j.28.1 8
9.4 even 3 81.8.c.i.55.4 8
9.5 odd 6 81.8.c.j.55.1 8
9.7 even 3 81.8.c.i.28.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.8.a.a.1.4 4 3.2 odd 2
81.8.a.b.1.1 yes 4 1.1 even 1 trivial
81.8.c.i.28.4 8 9.7 even 3
81.8.c.i.55.4 8 9.4 even 3
81.8.c.j.28.1 8 9.2 odd 6
81.8.c.j.55.1 8 9.5 odd 6