Properties

Label 810.2.a.j.1.1
Level $810$
Weight $2$
Character 810.1
Self dual yes
Analytic conductor $6.468$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [810,2,Mod(1,810)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(810, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("810.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 810.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.46788256372\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 810.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} -1.00000 q^{5} +0.267949 q^{7} -1.00000 q^{8} +1.00000 q^{10} -3.46410 q^{11} +0.267949 q^{13} -0.267949 q^{14} +1.00000 q^{16} +3.46410 q^{17} +5.92820 q^{19} -1.00000 q^{20} +3.46410 q^{22} +6.46410 q^{23} +1.00000 q^{25} -0.267949 q^{26} +0.267949 q^{28} -6.92820 q^{29} -1.46410 q^{31} -1.00000 q^{32} -3.46410 q^{34} -0.267949 q^{35} +8.00000 q^{37} -5.92820 q^{38} +1.00000 q^{40} +5.19615 q^{41} +5.46410 q^{43} -3.46410 q^{44} -6.46410 q^{46} -0.464102 q^{47} -6.92820 q^{49} -1.00000 q^{50} +0.267949 q^{52} +5.53590 q^{53} +3.46410 q^{55} -0.267949 q^{56} +6.92820 q^{58} +8.66025 q^{59} +12.3923 q^{61} +1.46410 q^{62} +1.00000 q^{64} -0.267949 q^{65} +8.00000 q^{67} +3.46410 q^{68} +0.267949 q^{70} +6.00000 q^{71} -14.3923 q^{73} -8.00000 q^{74} +5.92820 q^{76} -0.928203 q^{77} -14.3923 q^{79} -1.00000 q^{80} -5.19615 q^{82} +15.4641 q^{83} -3.46410 q^{85} -5.46410 q^{86} +3.46410 q^{88} -12.0000 q^{89} +0.0717968 q^{91} +6.46410 q^{92} +0.464102 q^{94} -5.92820 q^{95} +14.9282 q^{97} +6.92820 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} - 2 q^{5} + 4 q^{7} - 2 q^{8} + 2 q^{10} + 4 q^{13} - 4 q^{14} + 2 q^{16} - 2 q^{19} - 2 q^{20} + 6 q^{23} + 2 q^{25} - 4 q^{26} + 4 q^{28} + 4 q^{31} - 2 q^{32} - 4 q^{35} + 16 q^{37}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 0.267949 0.101275 0.0506376 0.998717i \(-0.483875\pi\)
0.0506376 + 0.998717i \(0.483875\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 1.00000 0.316228
\(11\) −3.46410 −1.04447 −0.522233 0.852803i \(-0.674901\pi\)
−0.522233 + 0.852803i \(0.674901\pi\)
\(12\) 0 0
\(13\) 0.267949 0.0743157 0.0371579 0.999309i \(-0.488170\pi\)
0.0371579 + 0.999309i \(0.488170\pi\)
\(14\) −0.267949 −0.0716124
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 3.46410 0.840168 0.420084 0.907485i \(-0.362001\pi\)
0.420084 + 0.907485i \(0.362001\pi\)
\(18\) 0 0
\(19\) 5.92820 1.36002 0.680012 0.733201i \(-0.261975\pi\)
0.680012 + 0.733201i \(0.261975\pi\)
\(20\) −1.00000 −0.223607
\(21\) 0 0
\(22\) 3.46410 0.738549
\(23\) 6.46410 1.34786 0.673929 0.738796i \(-0.264605\pi\)
0.673929 + 0.738796i \(0.264605\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) −0.267949 −0.0525492
\(27\) 0 0
\(28\) 0.267949 0.0506376
\(29\) −6.92820 −1.28654 −0.643268 0.765641i \(-0.722422\pi\)
−0.643268 + 0.765641i \(0.722422\pi\)
\(30\) 0 0
\(31\) −1.46410 −0.262960 −0.131480 0.991319i \(-0.541973\pi\)
−0.131480 + 0.991319i \(0.541973\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −3.46410 −0.594089
\(35\) −0.267949 −0.0452917
\(36\) 0 0
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) −5.92820 −0.961682
\(39\) 0 0
\(40\) 1.00000 0.158114
\(41\) 5.19615 0.811503 0.405751 0.913984i \(-0.367010\pi\)
0.405751 + 0.913984i \(0.367010\pi\)
\(42\) 0 0
\(43\) 5.46410 0.833268 0.416634 0.909074i \(-0.363210\pi\)
0.416634 + 0.909074i \(0.363210\pi\)
\(44\) −3.46410 −0.522233
\(45\) 0 0
\(46\) −6.46410 −0.953080
\(47\) −0.464102 −0.0676962 −0.0338481 0.999427i \(-0.510776\pi\)
−0.0338481 + 0.999427i \(0.510776\pi\)
\(48\) 0 0
\(49\) −6.92820 −0.989743
\(50\) −1.00000 −0.141421
\(51\) 0 0
\(52\) 0.267949 0.0371579
\(53\) 5.53590 0.760414 0.380207 0.924901i \(-0.375853\pi\)
0.380207 + 0.924901i \(0.375853\pi\)
\(54\) 0 0
\(55\) 3.46410 0.467099
\(56\) −0.267949 −0.0358062
\(57\) 0 0
\(58\) 6.92820 0.909718
\(59\) 8.66025 1.12747 0.563735 0.825956i \(-0.309364\pi\)
0.563735 + 0.825956i \(0.309364\pi\)
\(60\) 0 0
\(61\) 12.3923 1.58667 0.793336 0.608784i \(-0.208342\pi\)
0.793336 + 0.608784i \(0.208342\pi\)
\(62\) 1.46410 0.185941
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −0.267949 −0.0332350
\(66\) 0 0
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) 3.46410 0.420084
\(69\) 0 0
\(70\) 0.267949 0.0320261
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) −14.3923 −1.68449 −0.842246 0.539093i \(-0.818767\pi\)
−0.842246 + 0.539093i \(0.818767\pi\)
\(74\) −8.00000 −0.929981
\(75\) 0 0
\(76\) 5.92820 0.680012
\(77\) −0.928203 −0.105779
\(78\) 0 0
\(79\) −14.3923 −1.61926 −0.809630 0.586940i \(-0.800332\pi\)
−0.809630 + 0.586940i \(0.800332\pi\)
\(80\) −1.00000 −0.111803
\(81\) 0 0
\(82\) −5.19615 −0.573819
\(83\) 15.4641 1.69741 0.848703 0.528870i \(-0.177384\pi\)
0.848703 + 0.528870i \(0.177384\pi\)
\(84\) 0 0
\(85\) −3.46410 −0.375735
\(86\) −5.46410 −0.589209
\(87\) 0 0
\(88\) 3.46410 0.369274
\(89\) −12.0000 −1.27200 −0.635999 0.771690i \(-0.719412\pi\)
−0.635999 + 0.771690i \(0.719412\pi\)
\(90\) 0 0
\(91\) 0.0717968 0.00752635
\(92\) 6.46410 0.673929
\(93\) 0 0
\(94\) 0.464102 0.0478684
\(95\) −5.92820 −0.608221
\(96\) 0 0
\(97\) 14.9282 1.51573 0.757865 0.652412i \(-0.226243\pi\)
0.757865 + 0.652412i \(0.226243\pi\)
\(98\) 6.92820 0.699854
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) 2.53590 0.252331 0.126166 0.992009i \(-0.459733\pi\)
0.126166 + 0.992009i \(0.459733\pi\)
\(102\) 0 0
\(103\) −4.80385 −0.473337 −0.236669 0.971590i \(-0.576056\pi\)
−0.236669 + 0.971590i \(0.576056\pi\)
\(104\) −0.267949 −0.0262746
\(105\) 0 0
\(106\) −5.53590 −0.537694
\(107\) 15.4641 1.49497 0.747486 0.664278i \(-0.231261\pi\)
0.747486 + 0.664278i \(0.231261\pi\)
\(108\) 0 0
\(109\) 9.85641 0.944073 0.472036 0.881579i \(-0.343519\pi\)
0.472036 + 0.881579i \(0.343519\pi\)
\(110\) −3.46410 −0.330289
\(111\) 0 0
\(112\) 0.267949 0.0253188
\(113\) −0.928203 −0.0873180 −0.0436590 0.999046i \(-0.513902\pi\)
−0.0436590 + 0.999046i \(0.513902\pi\)
\(114\) 0 0
\(115\) −6.46410 −0.602781
\(116\) −6.92820 −0.643268
\(117\) 0 0
\(118\) −8.66025 −0.797241
\(119\) 0.928203 0.0850883
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −12.3923 −1.12195
\(123\) 0 0
\(124\) −1.46410 −0.131480
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −4.80385 −0.426273 −0.213136 0.977022i \(-0.568368\pi\)
−0.213136 + 0.977022i \(0.568368\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 0.267949 0.0235007
\(131\) 10.2679 0.897115 0.448557 0.893754i \(-0.351938\pi\)
0.448557 + 0.893754i \(0.351938\pi\)
\(132\) 0 0
\(133\) 1.58846 0.137737
\(134\) −8.00000 −0.691095
\(135\) 0 0
\(136\) −3.46410 −0.297044
\(137\) 10.3923 0.887875 0.443937 0.896058i \(-0.353581\pi\)
0.443937 + 0.896058i \(0.353581\pi\)
\(138\) 0 0
\(139\) −13.0000 −1.10265 −0.551323 0.834292i \(-0.685877\pi\)
−0.551323 + 0.834292i \(0.685877\pi\)
\(140\) −0.267949 −0.0226458
\(141\) 0 0
\(142\) −6.00000 −0.503509
\(143\) −0.928203 −0.0776203
\(144\) 0 0
\(145\) 6.92820 0.575356
\(146\) 14.3923 1.19112
\(147\) 0 0
\(148\) 8.00000 0.657596
\(149\) −18.0000 −1.47462 −0.737309 0.675556i \(-0.763904\pi\)
−0.737309 + 0.675556i \(0.763904\pi\)
\(150\) 0 0
\(151\) −2.39230 −0.194683 −0.0973415 0.995251i \(-0.531034\pi\)
−0.0973415 + 0.995251i \(0.531034\pi\)
\(152\) −5.92820 −0.480841
\(153\) 0 0
\(154\) 0.928203 0.0747967
\(155\) 1.46410 0.117599
\(156\) 0 0
\(157\) −10.1244 −0.808012 −0.404006 0.914756i \(-0.632382\pi\)
−0.404006 + 0.914756i \(0.632382\pi\)
\(158\) 14.3923 1.14499
\(159\) 0 0
\(160\) 1.00000 0.0790569
\(161\) 1.73205 0.136505
\(162\) 0 0
\(163\) −17.8564 −1.39862 −0.699311 0.714818i \(-0.746510\pi\)
−0.699311 + 0.714818i \(0.746510\pi\)
\(164\) 5.19615 0.405751
\(165\) 0 0
\(166\) −15.4641 −1.20025
\(167\) −6.92820 −0.536120 −0.268060 0.963402i \(-0.586383\pi\)
−0.268060 + 0.963402i \(0.586383\pi\)
\(168\) 0 0
\(169\) −12.9282 −0.994477
\(170\) 3.46410 0.265684
\(171\) 0 0
\(172\) 5.46410 0.416634
\(173\) 14.3205 1.08877 0.544384 0.838836i \(-0.316763\pi\)
0.544384 + 0.838836i \(0.316763\pi\)
\(174\) 0 0
\(175\) 0.267949 0.0202551
\(176\) −3.46410 −0.261116
\(177\) 0 0
\(178\) 12.0000 0.899438
\(179\) −12.1244 −0.906217 −0.453108 0.891455i \(-0.649685\pi\)
−0.453108 + 0.891455i \(0.649685\pi\)
\(180\) 0 0
\(181\) −19.4641 −1.44676 −0.723378 0.690453i \(-0.757411\pi\)
−0.723378 + 0.690453i \(0.757411\pi\)
\(182\) −0.0717968 −0.00532193
\(183\) 0 0
\(184\) −6.46410 −0.476540
\(185\) −8.00000 −0.588172
\(186\) 0 0
\(187\) −12.0000 −0.877527
\(188\) −0.464102 −0.0338481
\(189\) 0 0
\(190\) 5.92820 0.430077
\(191\) 9.46410 0.684798 0.342399 0.939555i \(-0.388760\pi\)
0.342399 + 0.939555i \(0.388760\pi\)
\(192\) 0 0
\(193\) −16.0000 −1.15171 −0.575853 0.817554i \(-0.695330\pi\)
−0.575853 + 0.817554i \(0.695330\pi\)
\(194\) −14.9282 −1.07178
\(195\) 0 0
\(196\) −6.92820 −0.494872
\(197\) −18.4641 −1.31551 −0.657756 0.753231i \(-0.728494\pi\)
−0.657756 + 0.753231i \(0.728494\pi\)
\(198\) 0 0
\(199\) 26.2487 1.86072 0.930361 0.366645i \(-0.119494\pi\)
0.930361 + 0.366645i \(0.119494\pi\)
\(200\) −1.00000 −0.0707107
\(201\) 0 0
\(202\) −2.53590 −0.178425
\(203\) −1.85641 −0.130294
\(204\) 0 0
\(205\) −5.19615 −0.362915
\(206\) 4.80385 0.334700
\(207\) 0 0
\(208\) 0.267949 0.0185789
\(209\) −20.5359 −1.42050
\(210\) 0 0
\(211\) 18.8564 1.29813 0.649064 0.760734i \(-0.275161\pi\)
0.649064 + 0.760734i \(0.275161\pi\)
\(212\) 5.53590 0.380207
\(213\) 0 0
\(214\) −15.4641 −1.05710
\(215\) −5.46410 −0.372649
\(216\) 0 0
\(217\) −0.392305 −0.0266314
\(218\) −9.85641 −0.667560
\(219\) 0 0
\(220\) 3.46410 0.233550
\(221\) 0.928203 0.0624377
\(222\) 0 0
\(223\) −19.4641 −1.30341 −0.651706 0.758471i \(-0.725947\pi\)
−0.651706 + 0.758471i \(0.725947\pi\)
\(224\) −0.267949 −0.0179031
\(225\) 0 0
\(226\) 0.928203 0.0617432
\(227\) −4.39230 −0.291528 −0.145764 0.989319i \(-0.546564\pi\)
−0.145764 + 0.989319i \(0.546564\pi\)
\(228\) 0 0
\(229\) −5.85641 −0.387002 −0.193501 0.981100i \(-0.561984\pi\)
−0.193501 + 0.981100i \(0.561984\pi\)
\(230\) 6.46410 0.426230
\(231\) 0 0
\(232\) 6.92820 0.454859
\(233\) −12.0000 −0.786146 −0.393073 0.919507i \(-0.628588\pi\)
−0.393073 + 0.919507i \(0.628588\pi\)
\(234\) 0 0
\(235\) 0.464102 0.0302747
\(236\) 8.66025 0.563735
\(237\) 0 0
\(238\) −0.928203 −0.0601665
\(239\) −15.4641 −1.00029 −0.500145 0.865942i \(-0.666720\pi\)
−0.500145 + 0.865942i \(0.666720\pi\)
\(240\) 0 0
\(241\) −3.07180 −0.197872 −0.0989359 0.995094i \(-0.531544\pi\)
−0.0989359 + 0.995094i \(0.531544\pi\)
\(242\) −1.00000 −0.0642824
\(243\) 0 0
\(244\) 12.3923 0.793336
\(245\) 6.92820 0.442627
\(246\) 0 0
\(247\) 1.58846 0.101071
\(248\) 1.46410 0.0929705
\(249\) 0 0
\(250\) 1.00000 0.0632456
\(251\) 12.1244 0.765283 0.382641 0.923897i \(-0.375015\pi\)
0.382641 + 0.923897i \(0.375015\pi\)
\(252\) 0 0
\(253\) −22.3923 −1.40779
\(254\) 4.80385 0.301420
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −4.14359 −0.258470 −0.129235 0.991614i \(-0.541252\pi\)
−0.129235 + 0.991614i \(0.541252\pi\)
\(258\) 0 0
\(259\) 2.14359 0.133196
\(260\) −0.267949 −0.0166175
\(261\) 0 0
\(262\) −10.2679 −0.634356
\(263\) 26.3205 1.62299 0.811496 0.584358i \(-0.198654\pi\)
0.811496 + 0.584358i \(0.198654\pi\)
\(264\) 0 0
\(265\) −5.53590 −0.340068
\(266\) −1.58846 −0.0973946
\(267\) 0 0
\(268\) 8.00000 0.488678
\(269\) 0.928203 0.0565935 0.0282968 0.999600i \(-0.490992\pi\)
0.0282968 + 0.999600i \(0.490992\pi\)
\(270\) 0 0
\(271\) 14.0000 0.850439 0.425220 0.905090i \(-0.360197\pi\)
0.425220 + 0.905090i \(0.360197\pi\)
\(272\) 3.46410 0.210042
\(273\) 0 0
\(274\) −10.3923 −0.627822
\(275\) −3.46410 −0.208893
\(276\) 0 0
\(277\) 15.7321 0.945247 0.472624 0.881264i \(-0.343307\pi\)
0.472624 + 0.881264i \(0.343307\pi\)
\(278\) 13.0000 0.779688
\(279\) 0 0
\(280\) 0.267949 0.0160130
\(281\) −31.0526 −1.85244 −0.926220 0.376983i \(-0.876962\pi\)
−0.926220 + 0.376983i \(0.876962\pi\)
\(282\) 0 0
\(283\) 31.3205 1.86181 0.930905 0.365260i \(-0.119020\pi\)
0.930905 + 0.365260i \(0.119020\pi\)
\(284\) 6.00000 0.356034
\(285\) 0 0
\(286\) 0.928203 0.0548858
\(287\) 1.39230 0.0821852
\(288\) 0 0
\(289\) −5.00000 −0.294118
\(290\) −6.92820 −0.406838
\(291\) 0 0
\(292\) −14.3923 −0.842246
\(293\) −13.3923 −0.782387 −0.391193 0.920308i \(-0.627938\pi\)
−0.391193 + 0.920308i \(0.627938\pi\)
\(294\) 0 0
\(295\) −8.66025 −0.504219
\(296\) −8.00000 −0.464991
\(297\) 0 0
\(298\) 18.0000 1.04271
\(299\) 1.73205 0.100167
\(300\) 0 0
\(301\) 1.46410 0.0843894
\(302\) 2.39230 0.137662
\(303\) 0 0
\(304\) 5.92820 0.340006
\(305\) −12.3923 −0.709581
\(306\) 0 0
\(307\) −8.39230 −0.478974 −0.239487 0.970900i \(-0.576979\pi\)
−0.239487 + 0.970900i \(0.576979\pi\)
\(308\) −0.928203 −0.0528893
\(309\) 0 0
\(310\) −1.46410 −0.0831554
\(311\) 15.4641 0.876889 0.438444 0.898758i \(-0.355530\pi\)
0.438444 + 0.898758i \(0.355530\pi\)
\(312\) 0 0
\(313\) 31.3205 1.77034 0.885170 0.465268i \(-0.154042\pi\)
0.885170 + 0.465268i \(0.154042\pi\)
\(314\) 10.1244 0.571350
\(315\) 0 0
\(316\) −14.3923 −0.809630
\(317\) −24.4641 −1.37404 −0.687020 0.726638i \(-0.741082\pi\)
−0.687020 + 0.726638i \(0.741082\pi\)
\(318\) 0 0
\(319\) 24.0000 1.34374
\(320\) −1.00000 −0.0559017
\(321\) 0 0
\(322\) −1.73205 −0.0965234
\(323\) 20.5359 1.14265
\(324\) 0 0
\(325\) 0.267949 0.0148631
\(326\) 17.8564 0.988975
\(327\) 0 0
\(328\) −5.19615 −0.286910
\(329\) −0.124356 −0.00685595
\(330\) 0 0
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) 15.4641 0.848703
\(333\) 0 0
\(334\) 6.92820 0.379094
\(335\) −8.00000 −0.437087
\(336\) 0 0
\(337\) 20.9282 1.14003 0.570016 0.821634i \(-0.306937\pi\)
0.570016 + 0.821634i \(0.306937\pi\)
\(338\) 12.9282 0.703202
\(339\) 0 0
\(340\) −3.46410 −0.187867
\(341\) 5.07180 0.274653
\(342\) 0 0
\(343\) −3.73205 −0.201512
\(344\) −5.46410 −0.294605
\(345\) 0 0
\(346\) −14.3205 −0.769875
\(347\) 26.7846 1.43787 0.718937 0.695076i \(-0.244629\pi\)
0.718937 + 0.695076i \(0.244629\pi\)
\(348\) 0 0
\(349\) 2.00000 0.107058 0.0535288 0.998566i \(-0.482953\pi\)
0.0535288 + 0.998566i \(0.482953\pi\)
\(350\) −0.267949 −0.0143225
\(351\) 0 0
\(352\) 3.46410 0.184637
\(353\) 1.60770 0.0855690 0.0427845 0.999084i \(-0.486377\pi\)
0.0427845 + 0.999084i \(0.486377\pi\)
\(354\) 0 0
\(355\) −6.00000 −0.318447
\(356\) −12.0000 −0.635999
\(357\) 0 0
\(358\) 12.1244 0.640792
\(359\) −15.4641 −0.816164 −0.408082 0.912945i \(-0.633802\pi\)
−0.408082 + 0.912945i \(0.633802\pi\)
\(360\) 0 0
\(361\) 16.1436 0.849663
\(362\) 19.4641 1.02301
\(363\) 0 0
\(364\) 0.0717968 0.00376317
\(365\) 14.3923 0.753328
\(366\) 0 0
\(367\) −14.3923 −0.751272 −0.375636 0.926767i \(-0.622576\pi\)
−0.375636 + 0.926767i \(0.622576\pi\)
\(368\) 6.46410 0.336965
\(369\) 0 0
\(370\) 8.00000 0.415900
\(371\) 1.48334 0.0770111
\(372\) 0 0
\(373\) 2.92820 0.151617 0.0758083 0.997122i \(-0.475846\pi\)
0.0758083 + 0.997122i \(0.475846\pi\)
\(374\) 12.0000 0.620505
\(375\) 0 0
\(376\) 0.464102 0.0239342
\(377\) −1.85641 −0.0956098
\(378\) 0 0
\(379\) 9.14359 0.469675 0.234837 0.972035i \(-0.424544\pi\)
0.234837 + 0.972035i \(0.424544\pi\)
\(380\) −5.92820 −0.304110
\(381\) 0 0
\(382\) −9.46410 −0.484226
\(383\) 0.464102 0.0237145 0.0118572 0.999930i \(-0.496226\pi\)
0.0118572 + 0.999930i \(0.496226\pi\)
\(384\) 0 0
\(385\) 0.928203 0.0473056
\(386\) 16.0000 0.814379
\(387\) 0 0
\(388\) 14.9282 0.757865
\(389\) −11.3205 −0.573973 −0.286986 0.957935i \(-0.592653\pi\)
−0.286986 + 0.957935i \(0.592653\pi\)
\(390\) 0 0
\(391\) 22.3923 1.13243
\(392\) 6.92820 0.349927
\(393\) 0 0
\(394\) 18.4641 0.930208
\(395\) 14.3923 0.724155
\(396\) 0 0
\(397\) −17.8564 −0.896187 −0.448094 0.893987i \(-0.647897\pi\)
−0.448094 + 0.893987i \(0.647897\pi\)
\(398\) −26.2487 −1.31573
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) −8.41154 −0.420052 −0.210026 0.977696i \(-0.567355\pi\)
−0.210026 + 0.977696i \(0.567355\pi\)
\(402\) 0 0
\(403\) −0.392305 −0.0195421
\(404\) 2.53590 0.126166
\(405\) 0 0
\(406\) 1.85641 0.0921319
\(407\) −27.7128 −1.37367
\(408\) 0 0
\(409\) −0.0717968 −0.00355012 −0.00177506 0.999998i \(-0.500565\pi\)
−0.00177506 + 0.999998i \(0.500565\pi\)
\(410\) 5.19615 0.256620
\(411\) 0 0
\(412\) −4.80385 −0.236669
\(413\) 2.32051 0.114185
\(414\) 0 0
\(415\) −15.4641 −0.759103
\(416\) −0.267949 −0.0131373
\(417\) 0 0
\(418\) 20.5359 1.00444
\(419\) 3.46410 0.169232 0.0846162 0.996414i \(-0.473034\pi\)
0.0846162 + 0.996414i \(0.473034\pi\)
\(420\) 0 0
\(421\) 30.3923 1.48123 0.740615 0.671929i \(-0.234534\pi\)
0.740615 + 0.671929i \(0.234534\pi\)
\(422\) −18.8564 −0.917916
\(423\) 0 0
\(424\) −5.53590 −0.268847
\(425\) 3.46410 0.168034
\(426\) 0 0
\(427\) 3.32051 0.160691
\(428\) 15.4641 0.747486
\(429\) 0 0
\(430\) 5.46410 0.263502
\(431\) −7.60770 −0.366450 −0.183225 0.983071i \(-0.558654\pi\)
−0.183225 + 0.983071i \(0.558654\pi\)
\(432\) 0 0
\(433\) −10.9282 −0.525176 −0.262588 0.964908i \(-0.584576\pi\)
−0.262588 + 0.964908i \(0.584576\pi\)
\(434\) 0.392305 0.0188312
\(435\) 0 0
\(436\) 9.85641 0.472036
\(437\) 38.3205 1.83312
\(438\) 0 0
\(439\) −2.39230 −0.114178 −0.0570892 0.998369i \(-0.518182\pi\)
−0.0570892 + 0.998369i \(0.518182\pi\)
\(440\) −3.46410 −0.165145
\(441\) 0 0
\(442\) −0.928203 −0.0441501
\(443\) −4.14359 −0.196868 −0.0984340 0.995144i \(-0.531383\pi\)
−0.0984340 + 0.995144i \(0.531383\pi\)
\(444\) 0 0
\(445\) 12.0000 0.568855
\(446\) 19.4641 0.921652
\(447\) 0 0
\(448\) 0.267949 0.0126594
\(449\) 32.9090 1.55307 0.776535 0.630074i \(-0.216975\pi\)
0.776535 + 0.630074i \(0.216975\pi\)
\(450\) 0 0
\(451\) −18.0000 −0.847587
\(452\) −0.928203 −0.0436590
\(453\) 0 0
\(454\) 4.39230 0.206141
\(455\) −0.0717968 −0.00336588
\(456\) 0 0
\(457\) 0.392305 0.0183512 0.00917562 0.999958i \(-0.497079\pi\)
0.00917562 + 0.999958i \(0.497079\pi\)
\(458\) 5.85641 0.273652
\(459\) 0 0
\(460\) −6.46410 −0.301390
\(461\) −32.7846 −1.52693 −0.763466 0.645848i \(-0.776504\pi\)
−0.763466 + 0.645848i \(0.776504\pi\)
\(462\) 0 0
\(463\) −15.1962 −0.706225 −0.353113 0.935581i \(-0.614877\pi\)
−0.353113 + 0.935581i \(0.614877\pi\)
\(464\) −6.92820 −0.321634
\(465\) 0 0
\(466\) 12.0000 0.555889
\(467\) 6.00000 0.277647 0.138823 0.990317i \(-0.455668\pi\)
0.138823 + 0.990317i \(0.455668\pi\)
\(468\) 0 0
\(469\) 2.14359 0.0989820
\(470\) −0.464102 −0.0214074
\(471\) 0 0
\(472\) −8.66025 −0.398621
\(473\) −18.9282 −0.870320
\(474\) 0 0
\(475\) 5.92820 0.272005
\(476\) 0.928203 0.0425441
\(477\) 0 0
\(478\) 15.4641 0.707312
\(479\) −0.928203 −0.0424107 −0.0212053 0.999775i \(-0.506750\pi\)
−0.0212053 + 0.999775i \(0.506750\pi\)
\(480\) 0 0
\(481\) 2.14359 0.0977395
\(482\) 3.07180 0.139917
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) −14.9282 −0.677855
\(486\) 0 0
\(487\) 31.4449 1.42490 0.712451 0.701721i \(-0.247585\pi\)
0.712451 + 0.701721i \(0.247585\pi\)
\(488\) −12.3923 −0.560973
\(489\) 0 0
\(490\) −6.92820 −0.312984
\(491\) 12.1244 0.547165 0.273582 0.961849i \(-0.411791\pi\)
0.273582 + 0.961849i \(0.411791\pi\)
\(492\) 0 0
\(493\) −24.0000 −1.08091
\(494\) −1.58846 −0.0714681
\(495\) 0 0
\(496\) −1.46410 −0.0657401
\(497\) 1.60770 0.0721150
\(498\) 0 0
\(499\) 37.7846 1.69147 0.845736 0.533602i \(-0.179162\pi\)
0.845736 + 0.533602i \(0.179162\pi\)
\(500\) −1.00000 −0.0447214
\(501\) 0 0
\(502\) −12.1244 −0.541136
\(503\) −18.9282 −0.843967 −0.421983 0.906604i \(-0.638666\pi\)
−0.421983 + 0.906604i \(0.638666\pi\)
\(504\) 0 0
\(505\) −2.53590 −0.112846
\(506\) 22.3923 0.995459
\(507\) 0 0
\(508\) −4.80385 −0.213136
\(509\) −18.0000 −0.797836 −0.398918 0.916987i \(-0.630614\pi\)
−0.398918 + 0.916987i \(0.630614\pi\)
\(510\) 0 0
\(511\) −3.85641 −0.170597
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 4.14359 0.182766
\(515\) 4.80385 0.211683
\(516\) 0 0
\(517\) 1.60770 0.0707064
\(518\) −2.14359 −0.0941841
\(519\) 0 0
\(520\) 0.267949 0.0117503
\(521\) −6.80385 −0.298082 −0.149041 0.988831i \(-0.547619\pi\)
−0.149041 + 0.988831i \(0.547619\pi\)
\(522\) 0 0
\(523\) 2.00000 0.0874539 0.0437269 0.999044i \(-0.486077\pi\)
0.0437269 + 0.999044i \(0.486077\pi\)
\(524\) 10.2679 0.448557
\(525\) 0 0
\(526\) −26.3205 −1.14763
\(527\) −5.07180 −0.220931
\(528\) 0 0
\(529\) 18.7846 0.816722
\(530\) 5.53590 0.240464
\(531\) 0 0
\(532\) 1.58846 0.0688684
\(533\) 1.39230 0.0603074
\(534\) 0 0
\(535\) −15.4641 −0.668571
\(536\) −8.00000 −0.345547
\(537\) 0 0
\(538\) −0.928203 −0.0400177
\(539\) 24.0000 1.03375
\(540\) 0 0
\(541\) 13.0718 0.562000 0.281000 0.959708i \(-0.409334\pi\)
0.281000 + 0.959708i \(0.409334\pi\)
\(542\) −14.0000 −0.601351
\(543\) 0 0
\(544\) −3.46410 −0.148522
\(545\) −9.85641 −0.422202
\(546\) 0 0
\(547\) −8.39230 −0.358829 −0.179415 0.983774i \(-0.557420\pi\)
−0.179415 + 0.983774i \(0.557420\pi\)
\(548\) 10.3923 0.443937
\(549\) 0 0
\(550\) 3.46410 0.147710
\(551\) −41.0718 −1.74972
\(552\) 0 0
\(553\) −3.85641 −0.163991
\(554\) −15.7321 −0.668391
\(555\) 0 0
\(556\) −13.0000 −0.551323
\(557\) −40.1769 −1.70235 −0.851175 0.524882i \(-0.824110\pi\)
−0.851175 + 0.524882i \(0.824110\pi\)
\(558\) 0 0
\(559\) 1.46410 0.0619249
\(560\) −0.267949 −0.0113229
\(561\) 0 0
\(562\) 31.0526 1.30987
\(563\) −13.8564 −0.583978 −0.291989 0.956422i \(-0.594317\pi\)
−0.291989 + 0.956422i \(0.594317\pi\)
\(564\) 0 0
\(565\) 0.928203 0.0390498
\(566\) −31.3205 −1.31650
\(567\) 0 0
\(568\) −6.00000 −0.251754
\(569\) 12.1244 0.508279 0.254140 0.967168i \(-0.418208\pi\)
0.254140 + 0.967168i \(0.418208\pi\)
\(570\) 0 0
\(571\) 1.07180 0.0448533 0.0224266 0.999748i \(-0.492861\pi\)
0.0224266 + 0.999748i \(0.492861\pi\)
\(572\) −0.928203 −0.0388101
\(573\) 0 0
\(574\) −1.39230 −0.0581137
\(575\) 6.46410 0.269572
\(576\) 0 0
\(577\) 16.7846 0.698752 0.349376 0.936983i \(-0.386394\pi\)
0.349376 + 0.936983i \(0.386394\pi\)
\(578\) 5.00000 0.207973
\(579\) 0 0
\(580\) 6.92820 0.287678
\(581\) 4.14359 0.171905
\(582\) 0 0
\(583\) −19.1769 −0.794227
\(584\) 14.3923 0.595558
\(585\) 0 0
\(586\) 13.3923 0.553231
\(587\) 1.60770 0.0663567 0.0331783 0.999449i \(-0.489437\pi\)
0.0331783 + 0.999449i \(0.489437\pi\)
\(588\) 0 0
\(589\) −8.67949 −0.357632
\(590\) 8.66025 0.356537
\(591\) 0 0
\(592\) 8.00000 0.328798
\(593\) −3.46410 −0.142254 −0.0711268 0.997467i \(-0.522659\pi\)
−0.0711268 + 0.997467i \(0.522659\pi\)
\(594\) 0 0
\(595\) −0.928203 −0.0380526
\(596\) −18.0000 −0.737309
\(597\) 0 0
\(598\) −1.73205 −0.0708288
\(599\) 18.0000 0.735460 0.367730 0.929933i \(-0.380135\pi\)
0.367730 + 0.929933i \(0.380135\pi\)
\(600\) 0 0
\(601\) −7.92820 −0.323398 −0.161699 0.986840i \(-0.551697\pi\)
−0.161699 + 0.986840i \(0.551697\pi\)
\(602\) −1.46410 −0.0596723
\(603\) 0 0
\(604\) −2.39230 −0.0973415
\(605\) −1.00000 −0.0406558
\(606\) 0 0
\(607\) −35.1769 −1.42779 −0.713893 0.700254i \(-0.753070\pi\)
−0.713893 + 0.700254i \(0.753070\pi\)
\(608\) −5.92820 −0.240420
\(609\) 0 0
\(610\) 12.3923 0.501750
\(611\) −0.124356 −0.00503089
\(612\) 0 0
\(613\) 39.9808 1.61481 0.807404 0.589999i \(-0.200872\pi\)
0.807404 + 0.589999i \(0.200872\pi\)
\(614\) 8.39230 0.338686
\(615\) 0 0
\(616\) 0.928203 0.0373984
\(617\) −1.60770 −0.0647234 −0.0323617 0.999476i \(-0.510303\pi\)
−0.0323617 + 0.999476i \(0.510303\pi\)
\(618\) 0 0
\(619\) 25.7846 1.03637 0.518185 0.855268i \(-0.326608\pi\)
0.518185 + 0.855268i \(0.326608\pi\)
\(620\) 1.46410 0.0587997
\(621\) 0 0
\(622\) −15.4641 −0.620054
\(623\) −3.21539 −0.128822
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −31.3205 −1.25182
\(627\) 0 0
\(628\) −10.1244 −0.404006
\(629\) 27.7128 1.10498
\(630\) 0 0
\(631\) 35.7128 1.42170 0.710852 0.703341i \(-0.248309\pi\)
0.710852 + 0.703341i \(0.248309\pi\)
\(632\) 14.3923 0.572495
\(633\) 0 0
\(634\) 24.4641 0.971594
\(635\) 4.80385 0.190635
\(636\) 0 0
\(637\) −1.85641 −0.0735535
\(638\) −24.0000 −0.950169
\(639\) 0 0
\(640\) 1.00000 0.0395285
\(641\) 44.7846 1.76889 0.884443 0.466648i \(-0.154539\pi\)
0.884443 + 0.466648i \(0.154539\pi\)
\(642\) 0 0
\(643\) −20.3923 −0.804194 −0.402097 0.915597i \(-0.631719\pi\)
−0.402097 + 0.915597i \(0.631719\pi\)
\(644\) 1.73205 0.0682524
\(645\) 0 0
\(646\) −20.5359 −0.807974
\(647\) 46.6410 1.83365 0.916824 0.399292i \(-0.130744\pi\)
0.916824 + 0.399292i \(0.130744\pi\)
\(648\) 0 0
\(649\) −30.0000 −1.17760
\(650\) −0.267949 −0.0105098
\(651\) 0 0
\(652\) −17.8564 −0.699311
\(653\) −0.928203 −0.0363234 −0.0181617 0.999835i \(-0.505781\pi\)
−0.0181617 + 0.999835i \(0.505781\pi\)
\(654\) 0 0
\(655\) −10.2679 −0.401202
\(656\) 5.19615 0.202876
\(657\) 0 0
\(658\) 0.124356 0.00484789
\(659\) 43.0526 1.67709 0.838545 0.544833i \(-0.183407\pi\)
0.838545 + 0.544833i \(0.183407\pi\)
\(660\) 0 0
\(661\) −32.3923 −1.25991 −0.629957 0.776630i \(-0.716928\pi\)
−0.629957 + 0.776630i \(0.716928\pi\)
\(662\) −8.00000 −0.310929
\(663\) 0 0
\(664\) −15.4641 −0.600124
\(665\) −1.58846 −0.0615977
\(666\) 0 0
\(667\) −44.7846 −1.73407
\(668\) −6.92820 −0.268060
\(669\) 0 0
\(670\) 8.00000 0.309067
\(671\) −42.9282 −1.65722
\(672\) 0 0
\(673\) −23.1769 −0.893404 −0.446702 0.894683i \(-0.647402\pi\)
−0.446702 + 0.894683i \(0.647402\pi\)
\(674\) −20.9282 −0.806124
\(675\) 0 0
\(676\) −12.9282 −0.497239
\(677\) 33.2487 1.27785 0.638926 0.769268i \(-0.279379\pi\)
0.638926 + 0.769268i \(0.279379\pi\)
\(678\) 0 0
\(679\) 4.00000 0.153506
\(680\) 3.46410 0.132842
\(681\) 0 0
\(682\) −5.07180 −0.194209
\(683\) −33.7128 −1.28998 −0.644992 0.764189i \(-0.723140\pi\)
−0.644992 + 0.764189i \(0.723140\pi\)
\(684\) 0 0
\(685\) −10.3923 −0.397070
\(686\) 3.73205 0.142490
\(687\) 0 0
\(688\) 5.46410 0.208317
\(689\) 1.48334 0.0565107
\(690\) 0 0
\(691\) 1.78461 0.0678898 0.0339449 0.999424i \(-0.489193\pi\)
0.0339449 + 0.999424i \(0.489193\pi\)
\(692\) 14.3205 0.544384
\(693\) 0 0
\(694\) −26.7846 −1.01673
\(695\) 13.0000 0.493118
\(696\) 0 0
\(697\) 18.0000 0.681799
\(698\) −2.00000 −0.0757011
\(699\) 0 0
\(700\) 0.267949 0.0101275
\(701\) −6.67949 −0.252281 −0.126140 0.992012i \(-0.540259\pi\)
−0.126140 + 0.992012i \(0.540259\pi\)
\(702\) 0 0
\(703\) 47.4256 1.78869
\(704\) −3.46410 −0.130558
\(705\) 0 0
\(706\) −1.60770 −0.0605064
\(707\) 0.679492 0.0255549
\(708\) 0 0
\(709\) 13.3205 0.500262 0.250131 0.968212i \(-0.419526\pi\)
0.250131 + 0.968212i \(0.419526\pi\)
\(710\) 6.00000 0.225176
\(711\) 0 0
\(712\) 12.0000 0.449719
\(713\) −9.46410 −0.354433
\(714\) 0 0
\(715\) 0.928203 0.0347128
\(716\) −12.1244 −0.453108
\(717\) 0 0
\(718\) 15.4641 0.577115
\(719\) −47.5692 −1.77403 −0.887016 0.461738i \(-0.847226\pi\)
−0.887016 + 0.461738i \(0.847226\pi\)
\(720\) 0 0
\(721\) −1.28719 −0.0479374
\(722\) −16.1436 −0.600802
\(723\) 0 0
\(724\) −19.4641 −0.723378
\(725\) −6.92820 −0.257307
\(726\) 0 0
\(727\) −39.1962 −1.45370 −0.726852 0.686794i \(-0.759018\pi\)
−0.726852 + 0.686794i \(0.759018\pi\)
\(728\) −0.0717968 −0.00266097
\(729\) 0 0
\(730\) −14.3923 −0.532683
\(731\) 18.9282 0.700085
\(732\) 0 0
\(733\) −16.0000 −0.590973 −0.295487 0.955347i \(-0.595482\pi\)
−0.295487 + 0.955347i \(0.595482\pi\)
\(734\) 14.3923 0.531230
\(735\) 0 0
\(736\) −6.46410 −0.238270
\(737\) −27.7128 −1.02081
\(738\) 0 0
\(739\) −45.5692 −1.67629 −0.838145 0.545447i \(-0.816360\pi\)
−0.838145 + 0.545447i \(0.816360\pi\)
\(740\) −8.00000 −0.294086
\(741\) 0 0
\(742\) −1.48334 −0.0544551
\(743\) −24.0000 −0.880475 −0.440237 0.897881i \(-0.645106\pi\)
−0.440237 + 0.897881i \(0.645106\pi\)
\(744\) 0 0
\(745\) 18.0000 0.659469
\(746\) −2.92820 −0.107209
\(747\) 0 0
\(748\) −12.0000 −0.438763
\(749\) 4.14359 0.151404
\(750\) 0 0
\(751\) −18.7846 −0.685460 −0.342730 0.939434i \(-0.611352\pi\)
−0.342730 + 0.939434i \(0.611352\pi\)
\(752\) −0.464102 −0.0169240
\(753\) 0 0
\(754\) 1.85641 0.0676063
\(755\) 2.39230 0.0870649
\(756\) 0 0
\(757\) 19.1962 0.697696 0.348848 0.937179i \(-0.386573\pi\)
0.348848 + 0.937179i \(0.386573\pi\)
\(758\) −9.14359 −0.332110
\(759\) 0 0
\(760\) 5.92820 0.215039
\(761\) 10.2679 0.372213 0.186106 0.982530i \(-0.440413\pi\)
0.186106 + 0.982530i \(0.440413\pi\)
\(762\) 0 0
\(763\) 2.64102 0.0956112
\(764\) 9.46410 0.342399
\(765\) 0 0
\(766\) −0.464102 −0.0167687
\(767\) 2.32051 0.0837887
\(768\) 0 0
\(769\) −40.9282 −1.47591 −0.737954 0.674851i \(-0.764208\pi\)
−0.737954 + 0.674851i \(0.764208\pi\)
\(770\) −0.928203 −0.0334501
\(771\) 0 0
\(772\) −16.0000 −0.575853
\(773\) 11.0718 0.398225 0.199112 0.979977i \(-0.436194\pi\)
0.199112 + 0.979977i \(0.436194\pi\)
\(774\) 0 0
\(775\) −1.46410 −0.0525921
\(776\) −14.9282 −0.535891
\(777\) 0 0
\(778\) 11.3205 0.405860
\(779\) 30.8038 1.10366
\(780\) 0 0
\(781\) −20.7846 −0.743732
\(782\) −22.3923 −0.800747
\(783\) 0 0
\(784\) −6.92820 −0.247436
\(785\) 10.1244 0.361354
\(786\) 0 0
\(787\) −34.0000 −1.21197 −0.605985 0.795476i \(-0.707221\pi\)
−0.605985 + 0.795476i \(0.707221\pi\)
\(788\) −18.4641 −0.657756
\(789\) 0 0
\(790\) −14.3923 −0.512055
\(791\) −0.248711 −0.00884316
\(792\) 0 0
\(793\) 3.32051 0.117915
\(794\) 17.8564 0.633700
\(795\) 0 0
\(796\) 26.2487 0.930361
\(797\) −43.8564 −1.55347 −0.776737 0.629825i \(-0.783126\pi\)
−0.776737 + 0.629825i \(0.783126\pi\)
\(798\) 0 0
\(799\) −1.60770 −0.0568762
\(800\) −1.00000 −0.0353553
\(801\) 0 0
\(802\) 8.41154 0.297022
\(803\) 49.8564 1.75939
\(804\) 0 0
\(805\) −1.73205 −0.0610468
\(806\) 0.392305 0.0138183
\(807\) 0 0
\(808\) −2.53590 −0.0892126
\(809\) 20.4115 0.717632 0.358816 0.933408i \(-0.383181\pi\)
0.358816 + 0.933408i \(0.383181\pi\)
\(810\) 0 0
\(811\) −29.8564 −1.04840 −0.524200 0.851595i \(-0.675636\pi\)
−0.524200 + 0.851595i \(0.675636\pi\)
\(812\) −1.85641 −0.0651471
\(813\) 0 0
\(814\) 27.7128 0.971334
\(815\) 17.8564 0.625483
\(816\) 0 0
\(817\) 32.3923 1.13326
\(818\) 0.0717968 0.00251032
\(819\) 0 0
\(820\) −5.19615 −0.181458
\(821\) −6.67949 −0.233116 −0.116558 0.993184i \(-0.537186\pi\)
−0.116558 + 0.993184i \(0.537186\pi\)
\(822\) 0 0
\(823\) −9.32051 −0.324892 −0.162446 0.986717i \(-0.551938\pi\)
−0.162446 + 0.986717i \(0.551938\pi\)
\(824\) 4.80385 0.167350
\(825\) 0 0
\(826\) −2.32051 −0.0807408
\(827\) 20.1051 0.699123 0.349562 0.936913i \(-0.386330\pi\)
0.349562 + 0.936913i \(0.386330\pi\)
\(828\) 0 0
\(829\) −45.5692 −1.58268 −0.791342 0.611373i \(-0.790617\pi\)
−0.791342 + 0.611373i \(0.790617\pi\)
\(830\) 15.4641 0.536767
\(831\) 0 0
\(832\) 0.267949 0.00928947
\(833\) −24.0000 −0.831551
\(834\) 0 0
\(835\) 6.92820 0.239760
\(836\) −20.5359 −0.710249
\(837\) 0 0
\(838\) −3.46410 −0.119665
\(839\) 12.0000 0.414286 0.207143 0.978311i \(-0.433583\pi\)
0.207143 + 0.978311i \(0.433583\pi\)
\(840\) 0 0
\(841\) 19.0000 0.655172
\(842\) −30.3923 −1.04739
\(843\) 0 0
\(844\) 18.8564 0.649064
\(845\) 12.9282 0.444744
\(846\) 0 0
\(847\) 0.267949 0.00920684
\(848\) 5.53590 0.190104
\(849\) 0 0
\(850\) −3.46410 −0.118818
\(851\) 51.7128 1.77269
\(852\) 0 0
\(853\) −48.7846 −1.67035 −0.835177 0.549982i \(-0.814635\pi\)
−0.835177 + 0.549982i \(0.814635\pi\)
\(854\) −3.32051 −0.113625
\(855\) 0 0
\(856\) −15.4641 −0.528552
\(857\) 9.71281 0.331783 0.165892 0.986144i \(-0.446950\pi\)
0.165892 + 0.986144i \(0.446950\pi\)
\(858\) 0 0
\(859\) 11.2154 0.382664 0.191332 0.981525i \(-0.438719\pi\)
0.191332 + 0.981525i \(0.438719\pi\)
\(860\) −5.46410 −0.186324
\(861\) 0 0
\(862\) 7.60770 0.259119
\(863\) −44.3205 −1.50869 −0.754344 0.656480i \(-0.772045\pi\)
−0.754344 + 0.656480i \(0.772045\pi\)
\(864\) 0 0
\(865\) −14.3205 −0.486912
\(866\) 10.9282 0.371355
\(867\) 0 0
\(868\) −0.392305 −0.0133157
\(869\) 49.8564 1.69126
\(870\) 0 0
\(871\) 2.14359 0.0726329
\(872\) −9.85641 −0.333780
\(873\) 0 0
\(874\) −38.3205 −1.29621
\(875\) −0.267949 −0.00905834
\(876\) 0 0
\(877\) 31.4449 1.06182 0.530909 0.847429i \(-0.321851\pi\)
0.530909 + 0.847429i \(0.321851\pi\)
\(878\) 2.39230 0.0807364
\(879\) 0 0
\(880\) 3.46410 0.116775
\(881\) 53.5692 1.80479 0.902396 0.430907i \(-0.141806\pi\)
0.902396 + 0.430907i \(0.141806\pi\)
\(882\) 0 0
\(883\) 16.5359 0.556477 0.278239 0.960512i \(-0.410249\pi\)
0.278239 + 0.960512i \(0.410249\pi\)
\(884\) 0.928203 0.0312189
\(885\) 0 0
\(886\) 4.14359 0.139207
\(887\) −23.1051 −0.775794 −0.387897 0.921703i \(-0.626798\pi\)
−0.387897 + 0.921703i \(0.626798\pi\)
\(888\) 0 0
\(889\) −1.28719 −0.0431709
\(890\) −12.0000 −0.402241
\(891\) 0 0
\(892\) −19.4641 −0.651706
\(893\) −2.75129 −0.0920684
\(894\) 0 0
\(895\) 12.1244 0.405273
\(896\) −0.267949 −0.00895155
\(897\) 0 0
\(898\) −32.9090 −1.09819
\(899\) 10.1436 0.338308
\(900\) 0 0
\(901\) 19.1769 0.638876
\(902\) 18.0000 0.599334
\(903\) 0 0
\(904\) 0.928203 0.0308716
\(905\) 19.4641 0.647009
\(906\) 0 0
\(907\) 55.5692 1.84515 0.922573 0.385823i \(-0.126082\pi\)
0.922573 + 0.385823i \(0.126082\pi\)
\(908\) −4.39230 −0.145764
\(909\) 0 0
\(910\) 0.0717968 0.00238004
\(911\) 25.6077 0.848421 0.424210 0.905564i \(-0.360552\pi\)
0.424210 + 0.905564i \(0.360552\pi\)
\(912\) 0 0
\(913\) −53.5692 −1.77288
\(914\) −0.392305 −0.0129763
\(915\) 0 0
\(916\) −5.85641 −0.193501
\(917\) 2.75129 0.0908556
\(918\) 0 0
\(919\) −24.7846 −0.817569 −0.408784 0.912631i \(-0.634047\pi\)
−0.408784 + 0.912631i \(0.634047\pi\)
\(920\) 6.46410 0.213115
\(921\) 0 0
\(922\) 32.7846 1.07970
\(923\) 1.60770 0.0529179
\(924\) 0 0
\(925\) 8.00000 0.263038
\(926\) 15.1962 0.499377
\(927\) 0 0
\(928\) 6.92820 0.227429
\(929\) 17.0718 0.560107 0.280054 0.959984i \(-0.409648\pi\)
0.280054 + 0.959984i \(0.409648\pi\)
\(930\) 0 0
\(931\) −41.0718 −1.34607
\(932\) −12.0000 −0.393073
\(933\) 0 0
\(934\) −6.00000 −0.196326
\(935\) 12.0000 0.392442
\(936\) 0 0
\(937\) 33.8564 1.10604 0.553020 0.833168i \(-0.313475\pi\)
0.553020 + 0.833168i \(0.313475\pi\)
\(938\) −2.14359 −0.0699908
\(939\) 0 0
\(940\) 0.464102 0.0151373
\(941\) −29.3205 −0.955821 −0.477911 0.878408i \(-0.658606\pi\)
−0.477911 + 0.878408i \(0.658606\pi\)
\(942\) 0 0
\(943\) 33.5885 1.09379
\(944\) 8.66025 0.281867
\(945\) 0 0
\(946\) 18.9282 0.615409
\(947\) −21.4641 −0.697490 −0.348745 0.937218i \(-0.613392\pi\)
−0.348745 + 0.937218i \(0.613392\pi\)
\(948\) 0 0
\(949\) −3.85641 −0.125184
\(950\) −5.92820 −0.192336
\(951\) 0 0
\(952\) −0.928203 −0.0300832
\(953\) 30.2487 0.979852 0.489926 0.871764i \(-0.337024\pi\)
0.489926 + 0.871764i \(0.337024\pi\)
\(954\) 0 0
\(955\) −9.46410 −0.306251
\(956\) −15.4641 −0.500145
\(957\) 0 0
\(958\) 0.928203 0.0299889
\(959\) 2.78461 0.0899197
\(960\) 0 0
\(961\) −28.8564 −0.930852
\(962\) −2.14359 −0.0691122
\(963\) 0 0
\(964\) −3.07180 −0.0989359
\(965\) 16.0000 0.515058
\(966\) 0 0
\(967\) −14.3923 −0.462825 −0.231413 0.972856i \(-0.574335\pi\)
−0.231413 + 0.972856i \(0.574335\pi\)
\(968\) −1.00000 −0.0321412
\(969\) 0 0
\(970\) 14.9282 0.479316
\(971\) −43.3013 −1.38960 −0.694802 0.719201i \(-0.744508\pi\)
−0.694802 + 0.719201i \(0.744508\pi\)
\(972\) 0 0
\(973\) −3.48334 −0.111671
\(974\) −31.4449 −1.00756
\(975\) 0 0
\(976\) 12.3923 0.396668
\(977\) 42.0000 1.34370 0.671850 0.740688i \(-0.265500\pi\)
0.671850 + 0.740688i \(0.265500\pi\)
\(978\) 0 0
\(979\) 41.5692 1.32856
\(980\) 6.92820 0.221313
\(981\) 0 0
\(982\) −12.1244 −0.386904
\(983\) −60.4974 −1.92957 −0.964784 0.263043i \(-0.915274\pi\)
−0.964784 + 0.263043i \(0.915274\pi\)
\(984\) 0 0
\(985\) 18.4641 0.588315
\(986\) 24.0000 0.764316
\(987\) 0 0
\(988\) 1.58846 0.0505356
\(989\) 35.3205 1.12313
\(990\) 0 0
\(991\) 52.7846 1.67676 0.838379 0.545087i \(-0.183504\pi\)
0.838379 + 0.545087i \(0.183504\pi\)
\(992\) 1.46410 0.0464853
\(993\) 0 0
\(994\) −1.60770 −0.0509930
\(995\) −26.2487 −0.832140
\(996\) 0 0
\(997\) 7.19615 0.227904 0.113952 0.993486i \(-0.463649\pi\)
0.113952 + 0.993486i \(0.463649\pi\)
\(998\) −37.7846 −1.19605
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 810.2.a.j.1.1 2
3.2 odd 2 810.2.a.l.1.1 yes 2
4.3 odd 2 6480.2.a.bb.1.2 2
5.2 odd 4 4050.2.c.z.649.1 4
5.3 odd 4 4050.2.c.z.649.4 4
5.4 even 2 4050.2.a.bt.1.2 2
9.2 odd 6 810.2.e.m.271.2 4
9.4 even 3 810.2.e.n.541.2 4
9.5 odd 6 810.2.e.m.541.2 4
9.7 even 3 810.2.e.n.271.2 4
12.11 even 2 6480.2.a.bj.1.2 2
15.2 even 4 4050.2.c.x.649.3 4
15.8 even 4 4050.2.c.x.649.2 4
15.14 odd 2 4050.2.a.bk.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
810.2.a.j.1.1 2 1.1 even 1 trivial
810.2.a.l.1.1 yes 2 3.2 odd 2
810.2.e.m.271.2 4 9.2 odd 6
810.2.e.m.541.2 4 9.5 odd 6
810.2.e.n.271.2 4 9.7 even 3
810.2.e.n.541.2 4 9.4 even 3
4050.2.a.bk.1.2 2 15.14 odd 2
4050.2.a.bt.1.2 2 5.4 even 2
4050.2.c.x.649.2 4 15.8 even 4
4050.2.c.x.649.3 4 15.2 even 4
4050.2.c.z.649.1 4 5.2 odd 4
4050.2.c.z.649.4 4 5.3 odd 4
6480.2.a.bb.1.2 2 4.3 odd 2
6480.2.a.bj.1.2 2 12.11 even 2