Properties

Label 810.2.f.b
Level 810810
Weight 22
Character orbit 810.f
Analytic conductor 6.4686.468
Analytic rank 00
Dimension 88
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [810,2,Mod(323,810)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(810, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("810.323");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 810=2345 810 = 2 \cdot 3^{4} \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 810.f (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.467882563726.46788256372
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(i)\Q(i)
Coefficient field: Q(ζ24)\Q(\zeta_{24})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x4+1 x^{8} - x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 24 2^{4}
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+β3q4+(β5+β4+β1)q5+(β72β3+2)q7β5q8+(β7+β3+1)q10+(2β5+2β42β1)q11++(4β6+4β54β4)q98+O(q100) q + \beta_1 q^{2} + \beta_{3} q^{4} + (\beta_{5} + \beta_{4} + \beta_1) q^{5} + ( - \beta_{7} - 2 \beta_{3} + 2) q^{7} - \beta_{5} q^{8} + (\beta_{7} + \beta_{3} + 1) q^{10} + (2 \beta_{5} + 2 \beta_{4} - 2 \beta_1) q^{11}+ \cdots + (4 \beta_{6} + 4 \beta_{5} - 4 \beta_{4}) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+16q7+8q108q16+16q228q25+16q2816q3124q378q40+8q4648q55+8q5824q618q67+32q7016q73+32q7632q82+24q97+O(q100) 8 q + 16 q^{7} + 8 q^{10} - 8 q^{16} + 16 q^{22} - 8 q^{25} + 16 q^{28} - 16 q^{31} - 24 q^{37} - 8 q^{40} + 8 q^{46} - 48 q^{55} + 8 q^{58} - 24 q^{61} - 8 q^{67} + 32 q^{70} - 16 q^{73} + 32 q^{76} - 32 q^{82}+ \cdots - 24 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== ζ243 \zeta_{24}^{3} Copy content Toggle raw display
β2\beta_{2}== ζ245+ζ24 \zeta_{24}^{5} + \zeta_{24} Copy content Toggle raw display
β3\beta_{3}== ζ246 \zeta_{24}^{6} Copy content Toggle raw display
β4\beta_{4}== 2ζ2441 2\zeta_{24}^{4} - 1 Copy content Toggle raw display
β5\beta_{5}== ζ245+ζ24 -\zeta_{24}^{5} + \zeta_{24} Copy content Toggle raw display
β6\beta_{6}== ζ246+2ζ242 -\zeta_{24}^{6} + 2\zeta_{24}^{2} Copy content Toggle raw display
β7\beta_{7}== 2ζ247ζ243 2\zeta_{24}^{7} - \zeta_{24}^{3} Copy content Toggle raw display
ζ24\zeta_{24}== (β5+β2)/2 ( \beta_{5} + \beta_{2} ) / 2 Copy content Toggle raw display
ζ242\zeta_{24}^{2}== (β6+β3)/2 ( \beta_{6} + \beta_{3} ) / 2 Copy content Toggle raw display
ζ243\zeta_{24}^{3}== β1 \beta_1 Copy content Toggle raw display
ζ244\zeta_{24}^{4}== (β4+1)/2 ( \beta_{4} + 1 ) / 2 Copy content Toggle raw display
ζ245\zeta_{24}^{5}== (β5+β2)/2 ( -\beta_{5} + \beta_{2} ) / 2 Copy content Toggle raw display
ζ246\zeta_{24}^{6}== β3 \beta_{3} Copy content Toggle raw display
ζ247\zeta_{24}^{7}== (β7+β1)/2 ( \beta_{7} + \beta_1 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/810Z)×\left(\mathbb{Z}/810\mathbb{Z}\right)^\times.

nn 487487 731731
χ(n)\chi(n) β3-\beta_{3} 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
323.1
0.258819 + 0.965926i
−0.965926 0.258819i
−0.258819 0.965926i
0.965926 + 0.258819i
−0.965926 + 0.258819i
0.258819 0.965926i
0.965926 0.258819i
−0.258819 + 0.965926i
−0.707107 0.707107i 0 1.00000i −1.41421 1.73205i 0 3.22474 3.22474i 0.707107 0.707107i 0 −0.224745 + 2.22474i
323.2 −0.707107 0.707107i 0 1.00000i −1.41421 + 1.73205i 0 0.775255 0.775255i 0.707107 0.707107i 0 2.22474 0.224745i
323.3 0.707107 + 0.707107i 0 1.00000i 1.41421 1.73205i 0 0.775255 0.775255i −0.707107 + 0.707107i 0 2.22474 0.224745i
323.4 0.707107 + 0.707107i 0 1.00000i 1.41421 + 1.73205i 0 3.22474 3.22474i −0.707107 + 0.707107i 0 −0.224745 + 2.22474i
647.1 −0.707107 + 0.707107i 0 1.00000i −1.41421 1.73205i 0 0.775255 + 0.775255i 0.707107 + 0.707107i 0 2.22474 + 0.224745i
647.2 −0.707107 + 0.707107i 0 1.00000i −1.41421 + 1.73205i 0 3.22474 + 3.22474i 0.707107 + 0.707107i 0 −0.224745 2.22474i
647.3 0.707107 0.707107i 0 1.00000i 1.41421 1.73205i 0 3.22474 + 3.22474i −0.707107 0.707107i 0 −0.224745 2.22474i
647.4 0.707107 0.707107i 0 1.00000i 1.41421 + 1.73205i 0 0.775255 + 0.775255i −0.707107 0.707107i 0 2.22474 + 0.224745i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 323.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.c odd 4 1 inner
15.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 810.2.f.b 8
3.b odd 2 1 inner 810.2.f.b 8
5.c odd 4 1 inner 810.2.f.b 8
9.c even 3 1 90.2.l.a 8
9.c even 3 1 270.2.m.a 8
9.d odd 6 1 90.2.l.a 8
9.d odd 6 1 270.2.m.a 8
15.e even 4 1 inner 810.2.f.b 8
36.f odd 6 1 720.2.cu.a 8
36.h even 6 1 720.2.cu.a 8
45.h odd 6 1 450.2.p.a 8
45.h odd 6 1 1350.2.q.g 8
45.j even 6 1 450.2.p.a 8
45.j even 6 1 1350.2.q.g 8
45.k odd 12 1 90.2.l.a 8
45.k odd 12 1 270.2.m.a 8
45.k odd 12 1 450.2.p.a 8
45.k odd 12 1 1350.2.q.g 8
45.l even 12 1 90.2.l.a 8
45.l even 12 1 270.2.m.a 8
45.l even 12 1 450.2.p.a 8
45.l even 12 1 1350.2.q.g 8
180.v odd 12 1 720.2.cu.a 8
180.x even 12 1 720.2.cu.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
90.2.l.a 8 9.c even 3 1
90.2.l.a 8 9.d odd 6 1
90.2.l.a 8 45.k odd 12 1
90.2.l.a 8 45.l even 12 1
270.2.m.a 8 9.c even 3 1
270.2.m.a 8 9.d odd 6 1
270.2.m.a 8 45.k odd 12 1
270.2.m.a 8 45.l even 12 1
450.2.p.a 8 45.h odd 6 1
450.2.p.a 8 45.j even 6 1
450.2.p.a 8 45.k odd 12 1
450.2.p.a 8 45.l even 12 1
720.2.cu.a 8 36.f odd 6 1
720.2.cu.a 8 36.h even 6 1
720.2.cu.a 8 180.v odd 12 1
720.2.cu.a 8 180.x even 12 1
810.2.f.b 8 1.a even 1 1 trivial
810.2.f.b 8 3.b odd 2 1 inner
810.2.f.b 8 5.c odd 4 1 inner
810.2.f.b 8 15.e even 4 1 inner
1350.2.q.g 8 45.h odd 6 1
1350.2.q.g 8 45.j even 6 1
1350.2.q.g 8 45.k odd 12 1
1350.2.q.g 8 45.l even 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T748T73+32T7240T7+25 T_{7}^{4} - 8T_{7}^{3} + 32T_{7}^{2} - 40T_{7} + 25 acting on S2new(810,[χ])S_{2}^{\mathrm{new}}(810, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T4+1)2 (T^{4} + 1)^{2} Copy content Toggle raw display
33 T8 T^{8} Copy content Toggle raw display
55 (T4+2T2+25)2 (T^{4} + 2 T^{2} + 25)^{2} Copy content Toggle raw display
77 (T48T3+32T2++25)2 (T^{4} - 8 T^{3} + 32 T^{2} + \cdots + 25)^{2} Copy content Toggle raw display
1111 (T4+40T2+16)2 (T^{4} + 40 T^{2} + 16)^{2} Copy content Toggle raw display
1313 (T4+144)2 (T^{4} + 144)^{2} Copy content Toggle raw display
1717 T8+392T4+16 T^{8} + 392T^{4} + 16 Copy content Toggle raw display
1919 (T4+44T2+100)2 (T^{4} + 44 T^{2} + 100)^{2} Copy content Toggle raw display
2323 (T4+1)2 (T^{4} + 1)^{2} Copy content Toggle raw display
2929 (T410T2+1)2 (T^{4} - 10 T^{2} + 1)^{2} Copy content Toggle raw display
3131 (T2+4T2)4 (T^{2} + 4 T - 2)^{4} Copy content Toggle raw display
3737 (T2+6T+18)4 (T^{2} + 6 T + 18)^{4} Copy content Toggle raw display
4141 (T4+70T2+841)2 (T^{4} + 70 T^{2} + 841)^{2} Copy content Toggle raw display
4343 (T4+144)2 (T^{4} + 144)^{2} Copy content Toggle raw display
4747 (T4+6561)2 (T^{4} + 6561)^{2} Copy content Toggle raw display
5353 T8+8456T4+6250000 T^{8} + 8456 T^{4} + 6250000 Copy content Toggle raw display
5959 (T4220T2+11236)2 (T^{4} - 220 T^{2} + 11236)^{2} Copy content Toggle raw display
6161 (T2+6T+3)4 (T^{2} + 6 T + 3)^{4} Copy content Toggle raw display
6767 (T4+4T3++625)2 (T^{4} + 4 T^{3} + \cdots + 625)^{2} Copy content Toggle raw display
7171 (T4+40T2+16)2 (T^{4} + 40 T^{2} + 16)^{2} Copy content Toggle raw display
7373 (T4+8T3++1600)2 (T^{4} + 8 T^{3} + \cdots + 1600)^{2} Copy content Toggle raw display
7979 (T2+6)4 (T^{2} + 6)^{4} Copy content Toggle raw display
8383 T8+882T4+81 T^{8} + 882T^{4} + 81 Copy content Toggle raw display
8989 (T470T2+361)2 (T^{4} - 70 T^{2} + 361)^{2} Copy content Toggle raw display
9797 (T4+12T3++900)2 (T^{4} + 12 T^{3} + \cdots + 900)^{2} Copy content Toggle raw display
show more
show less