Properties

Label 810.2.f.c.323.5
Level $810$
Weight $2$
Character 810.323
Analytic conductor $6.468$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [810,2,Mod(323,810)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(810, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("810.323");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 810.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.46788256372\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: 16.0.9349208943630483456.9
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 48 x^{14} - 196 x^{13} + 642 x^{12} - 1668 x^{11} + 3580 x^{10} - 6328 x^{9} + \cdots + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 323.5
Root \(0.500000 + 0.410882i\) of defining polynomial
Character \(\chi\) \(=\) 810.323
Dual form 810.2.f.c.647.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{2} +1.00000i q^{4} +(-2.21569 - 0.301182i) q^{5} +(1.87542 - 1.87542i) q^{7} +(-0.707107 + 0.707107i) q^{8} +(-1.35376 - 1.77970i) q^{10} +4.79792i q^{11} +(-0.425935 - 0.425935i) q^{13} +2.65225 q^{14} -1.00000 q^{16} +(4.40865 + 4.40865i) q^{17} +5.19145i q^{19} +(0.301182 - 2.21569i) q^{20} +(-3.39264 + 3.39264i) q^{22} +(-1.86115 + 1.86115i) q^{23} +(4.81858 + 1.33465i) q^{25} -0.602363i q^{26} +(1.87542 + 1.87542i) q^{28} +1.84040 q^{29} +4.07776 q^{31} +(-0.707107 - 0.707107i) q^{32} +6.23478i q^{34} +(-4.72021 + 3.59052i) q^{35} +(0.632057 - 0.632057i) q^{37} +(-3.67091 + 3.67091i) q^{38} +(1.77970 - 1.35376i) q^{40} +6.44958i q^{41} +(-1.76059 - 1.76059i) q^{43} -4.79792 q^{44} -2.63206 q^{46} +(-2.80140 - 2.80140i) q^{47} -0.0344378i q^{49} +(2.46351 + 4.35099i) q^{50} +(0.425935 - 0.425935i) q^{52} +(-1.31215 + 1.31215i) q^{53} +(1.44505 - 10.6307i) q^{55} +2.65225i q^{56} +(1.30136 + 1.30136i) q^{58} +0.129095 q^{59} -12.5450 q^{61} +(2.88341 + 2.88341i) q^{62} -1.00000i q^{64} +(0.815457 + 1.07203i) q^{65} +(7.80770 - 7.80770i) q^{67} +(-4.40865 + 4.40865i) q^{68} +(-5.87657 - 0.798810i) q^{70} -10.4203i q^{71} +(3.30021 + 3.30021i) q^{73} +0.893864 q^{74} -5.19145 q^{76} +(8.99814 + 8.99814i) q^{77} +4.18916i q^{79} +(2.21569 + 0.301182i) q^{80} +(-4.56054 + 4.56054i) q^{82} +(-8.13293 + 8.13293i) q^{83} +(-8.44041 - 11.0960i) q^{85} -2.48985i q^{86} +(-3.39264 - 3.39264i) q^{88} +2.04989 q^{89} -1.59762 q^{91} +(-1.86115 - 1.86115i) q^{92} -3.96178i q^{94} +(1.56357 - 11.5027i) q^{95} +(12.2336 - 12.2336i) q^{97} +(0.0243512 - 0.0243512i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{7} - 8 q^{10} - 16 q^{16} - 16 q^{22} + 32 q^{25} - 16 q^{28} + 16 q^{31} + 8 q^{40} - 32 q^{46} + 24 q^{55} - 32 q^{58} + 48 q^{61} + 32 q^{67} - 32 q^{70} + 16 q^{73} - 32 q^{76} - 16 q^{82}+ \cdots + 96 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/810\mathbb{Z}\right)^\times\).

\(n\) \(487\) \(731\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 0.707107i 0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) −2.21569 0.301182i −0.990887 0.134693i
\(6\) 0 0
\(7\) 1.87542 1.87542i 0.708844 0.708844i −0.257448 0.966292i \(-0.582882\pi\)
0.966292 + 0.257448i \(0.0828816\pi\)
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) 0 0
\(10\) −1.35376 1.77970i −0.428097 0.562790i
\(11\) 4.79792i 1.44663i 0.690519 + 0.723314i \(0.257382\pi\)
−0.690519 + 0.723314i \(0.742618\pi\)
\(12\) 0 0
\(13\) −0.425935 0.425935i −0.118133 0.118133i 0.645569 0.763702i \(-0.276620\pi\)
−0.763702 + 0.645569i \(0.776620\pi\)
\(14\) 2.65225 0.708844
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 4.40865 + 4.40865i 1.06926 + 1.06926i 0.997416 + 0.0718393i \(0.0228869\pi\)
0.0718393 + 0.997416i \(0.477113\pi\)
\(18\) 0 0
\(19\) 5.19145i 1.19100i 0.803355 + 0.595501i \(0.203046\pi\)
−0.803355 + 0.595501i \(0.796954\pi\)
\(20\) 0.301182 2.21569i 0.0673463 0.495444i
\(21\) 0 0
\(22\) −3.39264 + 3.39264i −0.723314 + 0.723314i
\(23\) −1.86115 + 1.86115i −0.388076 + 0.388076i −0.874001 0.485925i \(-0.838483\pi\)
0.485925 + 0.874001i \(0.338483\pi\)
\(24\) 0 0
\(25\) 4.81858 + 1.33465i 0.963716 + 0.266930i
\(26\) 0.602363i 0.118133i
\(27\) 0 0
\(28\) 1.87542 + 1.87542i 0.354422 + 0.354422i
\(29\) 1.84040 0.341754 0.170877 0.985292i \(-0.445340\pi\)
0.170877 + 0.985292i \(0.445340\pi\)
\(30\) 0 0
\(31\) 4.07776 0.732388 0.366194 0.930539i \(-0.380661\pi\)
0.366194 + 0.930539i \(0.380661\pi\)
\(32\) −0.707107 0.707107i −0.125000 0.125000i
\(33\) 0 0
\(34\) 6.23478i 1.06926i
\(35\) −4.72021 + 3.59052i −0.797861 + 0.606909i
\(36\) 0 0
\(37\) 0.632057 0.632057i 0.103910 0.103910i −0.653241 0.757150i \(-0.726591\pi\)
0.757150 + 0.653241i \(0.226591\pi\)
\(38\) −3.67091 + 3.67091i −0.595501 + 0.595501i
\(39\) 0 0
\(40\) 1.77970 1.35376i 0.281395 0.214049i
\(41\) 6.44958i 1.00726i 0.863921 + 0.503628i \(0.168002\pi\)
−0.863921 + 0.503628i \(0.831998\pi\)
\(42\) 0 0
\(43\) −1.76059 1.76059i −0.268487 0.268487i 0.560003 0.828490i \(-0.310800\pi\)
−0.828490 + 0.560003i \(0.810800\pi\)
\(44\) −4.79792 −0.723314
\(45\) 0 0
\(46\) −2.63206 −0.388076
\(47\) −2.80140 2.80140i −0.408626 0.408626i 0.472633 0.881259i \(-0.343304\pi\)
−0.881259 + 0.472633i \(0.843304\pi\)
\(48\) 0 0
\(49\) 0.0344378i 0.00491969i
\(50\) 2.46351 + 4.35099i 0.348393 + 0.615323i
\(51\) 0 0
\(52\) 0.425935 0.425935i 0.0590666 0.0590666i
\(53\) −1.31215 + 1.31215i −0.180237 + 0.180237i −0.791459 0.611222i \(-0.790678\pi\)
0.611222 + 0.791459i \(0.290678\pi\)
\(54\) 0 0
\(55\) 1.44505 10.6307i 0.194850 1.43345i
\(56\) 2.65225i 0.354422i
\(57\) 0 0
\(58\) 1.30136 + 1.30136i 0.170877 + 0.170877i
\(59\) 0.129095 0.0168067 0.00840334 0.999965i \(-0.497325\pi\)
0.00840334 + 0.999965i \(0.497325\pi\)
\(60\) 0 0
\(61\) −12.5450 −1.60623 −0.803113 0.595827i \(-0.796824\pi\)
−0.803113 + 0.595827i \(0.796824\pi\)
\(62\) 2.88341 + 2.88341i 0.366194 + 0.366194i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 0.815457 + 1.07203i 0.101145 + 0.132968i
\(66\) 0 0
\(67\) 7.80770 7.80770i 0.953862 0.953862i −0.0451197 0.998982i \(-0.514367\pi\)
0.998982 + 0.0451197i \(0.0143669\pi\)
\(68\) −4.40865 + 4.40865i −0.534628 + 0.534628i
\(69\) 0 0
\(70\) −5.87657 0.798810i −0.702385 0.0954760i
\(71\) 10.4203i 1.23666i −0.785919 0.618329i \(-0.787810\pi\)
0.785919 0.618329i \(-0.212190\pi\)
\(72\) 0 0
\(73\) 3.30021 + 3.30021i 0.386261 + 0.386261i 0.873351 0.487091i \(-0.161942\pi\)
−0.487091 + 0.873351i \(0.661942\pi\)
\(74\) 0.893864 0.103910
\(75\) 0 0
\(76\) −5.19145 −0.595501
\(77\) 8.99814 + 8.99814i 1.02543 + 1.02543i
\(78\) 0 0
\(79\) 4.18916i 0.471317i 0.971836 + 0.235659i \(0.0757247\pi\)
−0.971836 + 0.235659i \(0.924275\pi\)
\(80\) 2.21569 + 0.301182i 0.247722 + 0.0336731i
\(81\) 0 0
\(82\) −4.56054 + 4.56054i −0.503628 + 0.503628i
\(83\) −8.13293 + 8.13293i −0.892705 + 0.892705i −0.994777 0.102072i \(-0.967453\pi\)
0.102072 + 0.994777i \(0.467453\pi\)
\(84\) 0 0
\(85\) −8.44041 11.0960i −0.915491 1.20353i
\(86\) 2.48985i 0.268487i
\(87\) 0 0
\(88\) −3.39264 3.39264i −0.361657 0.361657i
\(89\) 2.04989 0.217288 0.108644 0.994081i \(-0.465349\pi\)
0.108644 + 0.994081i \(0.465349\pi\)
\(90\) 0 0
\(91\) −1.59762 −0.167476
\(92\) −1.86115 1.86115i −0.194038 0.194038i
\(93\) 0 0
\(94\) 3.96178i 0.408626i
\(95\) 1.56357 11.5027i 0.160419 1.18015i
\(96\) 0 0
\(97\) 12.2336 12.2336i 1.24214 1.24214i 0.283024 0.959113i \(-0.408662\pi\)
0.959113 0.283024i \(-0.0913377\pi\)
\(98\) 0.0243512 0.0243512i 0.00245984 0.00245984i
\(99\) 0 0
\(100\) −1.33465 + 4.81858i −0.133465 + 0.481858i
\(101\) 11.9619i 1.19026i −0.803630 0.595129i \(-0.797101\pi\)
0.803630 0.595129i \(-0.202899\pi\)
\(102\) 0 0
\(103\) 7.61739 + 7.61739i 0.750564 + 0.750564i 0.974584 0.224021i \(-0.0719183\pi\)
−0.224021 + 0.974584i \(0.571918\pi\)
\(104\) 0.602363 0.0590666
\(105\) 0 0
\(106\) −1.85566 −0.180237
\(107\) 4.35367 + 4.35367i 0.420885 + 0.420885i 0.885508 0.464623i \(-0.153810\pi\)
−0.464623 + 0.885508i \(0.653810\pi\)
\(108\) 0 0
\(109\) 15.4546i 1.48028i −0.672452 0.740141i \(-0.734759\pi\)
0.672452 0.740141i \(-0.265241\pi\)
\(110\) 8.53886 6.49525i 0.814148 0.619298i
\(111\) 0 0
\(112\) −1.87542 + 1.87542i −0.177211 + 0.177211i
\(113\) 4.19556 4.19556i 0.394685 0.394685i −0.481668 0.876354i \(-0.659969\pi\)
0.876354 + 0.481668i \(0.159969\pi\)
\(114\) 0 0
\(115\) 4.68427 3.56318i 0.436810 0.332268i
\(116\) 1.84040i 0.170877i
\(117\) 0 0
\(118\) 0.0912837 + 0.0912837i 0.00840334 + 0.00840334i
\(119\) 16.5362 1.51587
\(120\) 0 0
\(121\) −12.0201 −1.09273
\(122\) −8.87067 8.87067i −0.803113 0.803113i
\(123\) 0 0
\(124\) 4.07776i 0.366194i
\(125\) −10.2745 4.40844i −0.918980 0.394303i
\(126\) 0 0
\(127\) 2.51837 2.51837i 0.223469 0.223469i −0.586489 0.809957i \(-0.699490\pi\)
0.809957 + 0.586489i \(0.199490\pi\)
\(128\) 0.707107 0.707107i 0.0625000 0.0625000i
\(129\) 0 0
\(130\) −0.181421 + 1.33465i −0.0159117 + 0.117057i
\(131\) 13.0599i 1.14105i −0.821279 0.570526i \(-0.806739\pi\)
0.821279 0.570526i \(-0.193261\pi\)
\(132\) 0 0
\(133\) 9.73618 + 9.73618i 0.844234 + 0.844234i
\(134\) 11.0417 0.953862
\(135\) 0 0
\(136\) −6.23478 −0.534628
\(137\) 2.29750 + 2.29750i 0.196288 + 0.196288i 0.798407 0.602118i \(-0.205677\pi\)
−0.602118 + 0.798407i \(0.705677\pi\)
\(138\) 0 0
\(139\) 21.9945i 1.86555i 0.360459 + 0.932775i \(0.382620\pi\)
−0.360459 + 0.932775i \(0.617380\pi\)
\(140\) −3.59052 4.72021i −0.303454 0.398930i
\(141\) 0 0
\(142\) 7.36824 7.36824i 0.618329 0.618329i
\(143\) 2.04360 2.04360i 0.170895 0.170895i
\(144\) 0 0
\(145\) −4.07776 0.554295i −0.338640 0.0460317i
\(146\) 4.66721i 0.386261i
\(147\) 0 0
\(148\) 0.632057 + 0.632057i 0.0519548 + 0.0519548i
\(149\) −13.1334 −1.07593 −0.537964 0.842968i \(-0.680806\pi\)
−0.537964 + 0.842968i \(0.680806\pi\)
\(150\) 0 0
\(151\) 0.335798 0.0273269 0.0136634 0.999907i \(-0.495651\pi\)
0.0136634 + 0.999907i \(0.495651\pi\)
\(152\) −3.67091 3.67091i −0.297750 0.297750i
\(153\) 0 0
\(154\) 12.7253i 1.02543i
\(155\) −9.03506 1.22815i −0.725714 0.0986472i
\(156\) 0 0
\(157\) −3.22360 + 3.22360i −0.257271 + 0.257271i −0.823943 0.566672i \(-0.808231\pi\)
0.566672 + 0.823943i \(0.308231\pi\)
\(158\) −2.96218 + 2.96218i −0.235659 + 0.235659i
\(159\) 0 0
\(160\) 1.35376 + 1.77970i 0.107024 + 0.140697i
\(161\) 6.98088i 0.550170i
\(162\) 0 0
\(163\) 9.01496 + 9.01496i 0.706106 + 0.706106i 0.965714 0.259608i \(-0.0835932\pi\)
−0.259608 + 0.965714i \(0.583593\pi\)
\(164\) −6.44958 −0.503628
\(165\) 0 0
\(166\) −11.5017 −0.892705
\(167\) 0.00628350 + 0.00628350i 0.000486232 + 0.000486232i 0.707350 0.706864i \(-0.249891\pi\)
−0.706864 + 0.707350i \(0.749891\pi\)
\(168\) 0 0
\(169\) 12.6372i 0.972089i
\(170\) 1.87780 13.8143i 0.144021 1.05951i
\(171\) 0 0
\(172\) 1.76059 1.76059i 0.134243 0.134243i
\(173\) 7.34182 7.34182i 0.558189 0.558189i −0.370603 0.928791i \(-0.620849\pi\)
0.928791 + 0.370603i \(0.120849\pi\)
\(174\) 0 0
\(175\) 11.5399 6.53384i 0.872336 0.493912i
\(176\) 4.79792i 0.361657i
\(177\) 0 0
\(178\) 1.44949 + 1.44949i 0.108644 + 0.108644i
\(179\) 1.46292 0.109343 0.0546717 0.998504i \(-0.482589\pi\)
0.0546717 + 0.998504i \(0.482589\pi\)
\(180\) 0 0
\(181\) −8.68576 −0.645607 −0.322804 0.946466i \(-0.604625\pi\)
−0.322804 + 0.946466i \(0.604625\pi\)
\(182\) −1.12969 1.12969i −0.0837380 0.0837380i
\(183\) 0 0
\(184\) 2.63206i 0.194038i
\(185\) −1.59081 + 1.21008i −0.116959 + 0.0889668i
\(186\) 0 0
\(187\) −21.1524 + 21.1524i −1.54682 + 1.54682i
\(188\) 2.80140 2.80140i 0.204313 0.204313i
\(189\) 0 0
\(190\) 9.23922 7.02800i 0.670284 0.509865i
\(191\) 5.00903i 0.362441i −0.983443 0.181220i \(-0.941995\pi\)
0.983443 0.181220i \(-0.0580047\pi\)
\(192\) 0 0
\(193\) 2.38176 + 2.38176i 0.171443 + 0.171443i 0.787613 0.616170i \(-0.211317\pi\)
−0.616170 + 0.787613i \(0.711317\pi\)
\(194\) 17.3010 1.24214
\(195\) 0 0
\(196\) 0.0344378 0.00245984
\(197\) −15.5027 15.5027i −1.10452 1.10452i −0.993858 0.110665i \(-0.964702\pi\)
−0.110665 0.993858i \(-0.535298\pi\)
\(198\) 0 0
\(199\) 18.4607i 1.30864i 0.756217 + 0.654321i \(0.227045\pi\)
−0.756217 + 0.654321i \(0.772955\pi\)
\(200\) −4.35099 + 2.46351i −0.307662 + 0.174196i
\(201\) 0 0
\(202\) 8.45838 8.45838i 0.595129 0.595129i
\(203\) 3.45153 3.45153i 0.242250 0.242250i
\(204\) 0 0
\(205\) 1.94250 14.2903i 0.135670 0.998077i
\(206\) 10.7726i 0.750564i
\(207\) 0 0
\(208\) 0.425935 + 0.425935i 0.0295333 + 0.0295333i
\(209\) −24.9082 −1.72294
\(210\) 0 0
\(211\) −1.30893 −0.0901105 −0.0450552 0.998984i \(-0.514346\pi\)
−0.0450552 + 0.998984i \(0.514346\pi\)
\(212\) −1.31215 1.31215i −0.0901186 0.0901186i
\(213\) 0 0
\(214\) 6.15702i 0.420885i
\(215\) 3.37066 + 4.43117i 0.229877 + 0.302204i
\(216\) 0 0
\(217\) 7.64754 7.64754i 0.519149 0.519149i
\(218\) 10.9280 10.9280i 0.740141 0.740141i
\(219\) 0 0
\(220\) 10.6307 + 1.44505i 0.716723 + 0.0974250i
\(221\) 3.75560i 0.252629i
\(222\) 0 0
\(223\) 14.8324 + 14.8324i 0.993251 + 0.993251i 0.999977 0.00672662i \(-0.00214117\pi\)
−0.00672662 + 0.999977i \(0.502141\pi\)
\(224\) −2.65225 −0.177211
\(225\) 0 0
\(226\) 5.93342 0.394685
\(227\) 4.21080 + 4.21080i 0.279481 + 0.279481i 0.832902 0.553421i \(-0.186678\pi\)
−0.553421 + 0.832902i \(0.686678\pi\)
\(228\) 0 0
\(229\) 11.7574i 0.776954i −0.921458 0.388477i \(-0.873001\pi\)
0.921458 0.388477i \(-0.126999\pi\)
\(230\) 5.83183 + 0.792727i 0.384539 + 0.0522709i
\(231\) 0 0
\(232\) −1.30136 + 1.30136i −0.0854385 + 0.0854385i
\(233\) 13.4322 13.4322i 0.879973 0.879973i −0.113558 0.993531i \(-0.536225\pi\)
0.993531 + 0.113558i \(0.0362249\pi\)
\(234\) 0 0
\(235\) 5.36331 + 7.05077i 0.349864 + 0.459941i
\(236\) 0.129095i 0.00840334i
\(237\) 0 0
\(238\) 11.6929 + 11.6929i 0.757935 + 0.757935i
\(239\) 4.55886 0.294888 0.147444 0.989070i \(-0.452895\pi\)
0.147444 + 0.989070i \(0.452895\pi\)
\(240\) 0 0
\(241\) −16.0621 −1.03465 −0.517325 0.855789i \(-0.673072\pi\)
−0.517325 + 0.855789i \(0.673072\pi\)
\(242\) −8.49947 8.49947i −0.546367 0.546367i
\(243\) 0 0
\(244\) 12.5450i 0.803113i
\(245\) −0.0103720 + 0.0763036i −0.000662646 + 0.00487486i
\(246\) 0 0
\(247\) 2.21122 2.21122i 0.140697 0.140697i
\(248\) −2.88341 + 2.88341i −0.183097 + 0.183097i
\(249\) 0 0
\(250\) −4.14794 10.3824i −0.262339 0.656642i
\(251\) 18.9981i 1.19915i −0.800319 0.599574i \(-0.795337\pi\)
0.800319 0.599574i \(-0.204663\pi\)
\(252\) 0 0
\(253\) −8.92963 8.92963i −0.561401 0.561401i
\(254\) 3.56151 0.223469
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −2.36971 2.36971i −0.147819 0.147819i 0.629324 0.777143i \(-0.283332\pi\)
−0.777143 + 0.629324i \(0.783332\pi\)
\(258\) 0 0
\(259\) 2.37075i 0.147311i
\(260\) −1.07203 + 0.815457i −0.0664842 + 0.0505725i
\(261\) 0 0
\(262\) 9.23478 9.23478i 0.570526 0.570526i
\(263\) 11.8408 11.8408i 0.730133 0.730133i −0.240513 0.970646i \(-0.577316\pi\)
0.970646 + 0.240513i \(0.0773158\pi\)
\(264\) 0 0
\(265\) 3.30251 2.51212i 0.202871 0.154318i
\(266\) 13.7690i 0.844234i
\(267\) 0 0
\(268\) 7.80770 + 7.80770i 0.476931 + 0.476931i
\(269\) 0.535741 0.0326647 0.0163324 0.999867i \(-0.494801\pi\)
0.0163324 + 0.999867i \(0.494801\pi\)
\(270\) 0 0
\(271\) −15.5412 −0.944063 −0.472032 0.881582i \(-0.656479\pi\)
−0.472032 + 0.881582i \(0.656479\pi\)
\(272\) −4.40865 4.40865i −0.267314 0.267314i
\(273\) 0 0
\(274\) 3.24915i 0.196288i
\(275\) −6.40356 + 23.1192i −0.386149 + 1.39414i
\(276\) 0 0
\(277\) −12.2399 + 12.2399i −0.735423 + 0.735423i −0.971689 0.236265i \(-0.924076\pi\)
0.236265 + 0.971689i \(0.424076\pi\)
\(278\) −15.5525 + 15.5525i −0.932775 + 0.932775i
\(279\) 0 0
\(280\) 0.798810 5.87657i 0.0477380 0.351192i
\(281\) 24.1227i 1.43904i −0.694472 0.719519i \(-0.744362\pi\)
0.694472 0.719519i \(-0.255638\pi\)
\(282\) 0 0
\(283\) −11.7037 11.7037i −0.695715 0.695715i 0.267768 0.963483i \(-0.413714\pi\)
−0.963483 + 0.267768i \(0.913714\pi\)
\(284\) 10.4203 0.618329
\(285\) 0 0
\(286\) 2.89009 0.170895
\(287\) 12.0957 + 12.0957i 0.713987 + 0.713987i
\(288\) 0 0
\(289\) 21.8725i 1.28661i
\(290\) −2.49147 3.27536i −0.146304 0.192336i
\(291\) 0 0
\(292\) −3.30021 + 3.30021i −0.193130 + 0.193130i
\(293\) 11.4209 11.4209i 0.667214 0.667214i −0.289857 0.957070i \(-0.593608\pi\)
0.957070 + 0.289857i \(0.0936076\pi\)
\(294\) 0 0
\(295\) −0.286034 0.0388809i −0.0166535 0.00226374i
\(296\) 0.893864i 0.0519548i
\(297\) 0 0
\(298\) −9.28669 9.28669i −0.537964 0.537964i
\(299\) 1.58545 0.0916892
\(300\) 0 0
\(301\) −6.60370 −0.380631
\(302\) 0.237445 + 0.237445i 0.0136634 + 0.0136634i
\(303\) 0 0
\(304\) 5.19145i 0.297750i
\(305\) 27.7959 + 3.77833i 1.59159 + 0.216347i
\(306\) 0 0
\(307\) −1.45642 + 1.45642i −0.0831222 + 0.0831222i −0.747445 0.664323i \(-0.768720\pi\)
0.664323 + 0.747445i \(0.268720\pi\)
\(308\) −8.99814 + 8.99814i −0.512717 + 0.512717i
\(309\) 0 0
\(310\) −5.52032 7.25719i −0.313533 0.412180i
\(311\) 2.09535i 0.118816i 0.998234 + 0.0594081i \(0.0189213\pi\)
−0.998234 + 0.0594081i \(0.981079\pi\)
\(312\) 0 0
\(313\) −13.9667 13.9667i −0.789445 0.789445i 0.191958 0.981403i \(-0.438516\pi\)
−0.981403 + 0.191958i \(0.938516\pi\)
\(314\) −4.55886 −0.257271
\(315\) 0 0
\(316\) −4.18916 −0.235659
\(317\) 24.1026 + 24.1026i 1.35374 + 1.35374i 0.881437 + 0.472301i \(0.156577\pi\)
0.472301 + 0.881437i \(0.343423\pi\)
\(318\) 0 0
\(319\) 8.83010i 0.494391i
\(320\) −0.301182 + 2.21569i −0.0168366 + 0.123861i
\(321\) 0 0
\(322\) −4.93623 + 4.93623i −0.275085 + 0.275085i
\(323\) −22.8873 + 22.8873i −1.27348 + 1.27348i
\(324\) 0 0
\(325\) −1.48393 2.62088i −0.0823135 0.145380i
\(326\) 12.7491i 0.706106i
\(327\) 0 0
\(328\) −4.56054 4.56054i −0.251814 0.251814i
\(329\) −10.5076 −0.579304
\(330\) 0 0
\(331\) 24.0280 1.32070 0.660348 0.750959i \(-0.270409\pi\)
0.660348 + 0.750959i \(0.270409\pi\)
\(332\) −8.13293 8.13293i −0.446353 0.446353i
\(333\) 0 0
\(334\) 0.00888621i 0.000486232i
\(335\) −19.6510 + 14.9479i −1.07365 + 0.816692i
\(336\) 0 0
\(337\) 8.66306 8.66306i 0.471907 0.471907i −0.430624 0.902531i \(-0.641707\pi\)
0.902531 + 0.430624i \(0.141707\pi\)
\(338\) 8.93582 8.93582i 0.486045 0.486045i
\(339\) 0 0
\(340\) 11.0960 8.44041i 0.601766 0.457746i
\(341\) 19.5648i 1.05949i
\(342\) 0 0
\(343\) 13.0634 + 13.0634i 0.705357 + 0.705357i
\(344\) 2.48985 0.134243
\(345\) 0 0
\(346\) 10.3829 0.558189
\(347\) 13.1446 + 13.1446i 0.705641 + 0.705641i 0.965616 0.259974i \(-0.0837141\pi\)
−0.259974 + 0.965616i \(0.583714\pi\)
\(348\) 0 0
\(349\) 31.4430i 1.68311i 0.540174 + 0.841553i \(0.318358\pi\)
−0.540174 + 0.841553i \(0.681642\pi\)
\(350\) 12.7801 + 3.53983i 0.683124 + 0.189212i
\(351\) 0 0
\(352\) 3.39264 3.39264i 0.180829 0.180829i
\(353\) −8.59724 + 8.59724i −0.457585 + 0.457585i −0.897862 0.440277i \(-0.854880\pi\)
0.440277 + 0.897862i \(0.354880\pi\)
\(354\) 0 0
\(355\) −3.13839 + 23.0881i −0.166569 + 1.22539i
\(356\) 2.04989i 0.108644i
\(357\) 0 0
\(358\) 1.03444 + 1.03444i 0.0546717 + 0.0546717i
\(359\) −4.31606 −0.227793 −0.113896 0.993493i \(-0.536333\pi\)
−0.113896 + 0.993493i \(0.536333\pi\)
\(360\) 0 0
\(361\) −7.95119 −0.418484
\(362\) −6.14176 6.14176i −0.322804 0.322804i
\(363\) 0 0
\(364\) 1.59762i 0.0837380i
\(365\) −6.31829 8.30622i −0.330715 0.434767i
\(366\) 0 0
\(367\) 14.0560 14.0560i 0.733717 0.733717i −0.237637 0.971354i \(-0.576373\pi\)
0.971354 + 0.237637i \(0.0763729\pi\)
\(368\) 1.86115 1.86115i 0.0970189 0.0970189i
\(369\) 0 0
\(370\) −1.98053 0.269215i −0.102963 0.0139958i
\(371\) 4.92166i 0.255520i
\(372\) 0 0
\(373\) −1.85795 1.85795i −0.0962009 0.0962009i 0.657368 0.753569i \(-0.271670\pi\)
−0.753569 + 0.657368i \(0.771670\pi\)
\(374\) −29.9140 −1.54682
\(375\) 0 0
\(376\) 3.96178 0.204313
\(377\) −0.783892 0.783892i −0.0403725 0.0403725i
\(378\) 0 0
\(379\) 3.03124i 0.155705i 0.996965 + 0.0778523i \(0.0248063\pi\)
−0.996965 + 0.0778523i \(0.975194\pi\)
\(380\) 11.5027 + 1.56357i 0.590074 + 0.0802095i
\(381\) 0 0
\(382\) 3.54192 3.54192i 0.181220 0.181220i
\(383\) −16.7944 + 16.7944i −0.858153 + 0.858153i −0.991120 0.132967i \(-0.957549\pi\)
0.132967 + 0.991120i \(0.457549\pi\)
\(384\) 0 0
\(385\) −17.2270 22.6472i −0.877971 1.15421i
\(386\) 3.36832i 0.171443i
\(387\) 0 0
\(388\) 12.2336 + 12.2336i 0.621069 + 0.621069i
\(389\) −6.66508 −0.337933 −0.168966 0.985622i \(-0.554043\pi\)
−0.168966 + 0.985622i \(0.554043\pi\)
\(390\) 0 0
\(391\) −16.4103 −0.829904
\(392\) 0.0243512 + 0.0243512i 0.00122992 + 0.00122992i
\(393\) 0 0
\(394\) 21.9241i 1.10452i
\(395\) 1.26170 9.28189i 0.0634829 0.467022i
\(396\) 0 0
\(397\) −13.2242 + 13.2242i −0.663703 + 0.663703i −0.956251 0.292548i \(-0.905497\pi\)
0.292548 + 0.956251i \(0.405497\pi\)
\(398\) −13.0537 + 13.0537i −0.654321 + 0.654321i
\(399\) 0 0
\(400\) −4.81858 1.33465i −0.240929 0.0667326i
\(401\) 5.39169i 0.269248i −0.990897 0.134624i \(-0.957017\pi\)
0.990897 0.134624i \(-0.0429827\pi\)
\(402\) 0 0
\(403\) −1.73686 1.73686i −0.0865193 0.0865193i
\(404\) 11.9619 0.595129
\(405\) 0 0
\(406\) 4.88121 0.242250
\(407\) 3.03256 + 3.03256i 0.150318 + 0.150318i
\(408\) 0 0
\(409\) 8.58606i 0.424553i 0.977210 + 0.212277i \(0.0680878\pi\)
−0.977210 + 0.212277i \(0.931912\pi\)
\(410\) 11.4783 8.73120i 0.566873 0.431203i
\(411\) 0 0
\(412\) −7.61739 + 7.61739i −0.375282 + 0.375282i
\(413\) 0.242107 0.242107i 0.0119133 0.0119133i
\(414\) 0 0
\(415\) 20.4696 15.5706i 1.00481 0.764329i
\(416\) 0.602363i 0.0295333i
\(417\) 0 0
\(418\) −17.6128 17.6128i −0.861468 0.861468i
\(419\) −15.4550 −0.755025 −0.377512 0.926005i \(-0.623220\pi\)
−0.377512 + 0.926005i \(0.623220\pi\)
\(420\) 0 0
\(421\) −18.9026 −0.921256 −0.460628 0.887593i \(-0.652376\pi\)
−0.460628 + 0.887593i \(0.652376\pi\)
\(422\) −0.925553 0.925553i −0.0450552 0.0450552i
\(423\) 0 0
\(424\) 1.85566i 0.0901186i
\(425\) 15.3594 + 27.1275i 0.745042 + 1.31588i
\(426\) 0 0
\(427\) −23.5273 + 23.5273i −1.13856 + 1.13856i
\(428\) −4.35367 + 4.35367i −0.210442 + 0.210442i
\(429\) 0 0
\(430\) −0.749896 + 5.51673i −0.0361632 + 0.266040i
\(431\) 3.91428i 0.188544i 0.995546 + 0.0942720i \(0.0300523\pi\)
−0.995546 + 0.0942720i \(0.969948\pi\)
\(432\) 0 0
\(433\) −27.2049 27.2049i −1.30738 1.30738i −0.923297 0.384086i \(-0.874517\pi\)
−0.384086 0.923297i \(-0.625483\pi\)
\(434\) 10.8152 0.519149
\(435\) 0 0
\(436\) 15.4546 0.740141
\(437\) −9.66205 9.66205i −0.462199 0.462199i
\(438\) 0 0
\(439\) 15.3257i 0.731457i −0.930722 0.365728i \(-0.880820\pi\)
0.930722 0.365728i \(-0.119180\pi\)
\(440\) 6.49525 + 8.53886i 0.309649 + 0.407074i
\(441\) 0 0
\(442\) 2.65561 2.65561i 0.126315 0.126315i
\(443\) 19.6716 19.6716i 0.934626 0.934626i −0.0633641 0.997990i \(-0.520183\pi\)
0.997990 + 0.0633641i \(0.0201830\pi\)
\(444\) 0 0
\(445\) −4.54192 0.617389i −0.215308 0.0292670i
\(446\) 20.9762i 0.993251i
\(447\) 0 0
\(448\) −1.87542 1.87542i −0.0886055 0.0886055i
\(449\) −24.3627 −1.14975 −0.574874 0.818242i \(-0.694949\pi\)
−0.574874 + 0.818242i \(0.694949\pi\)
\(450\) 0 0
\(451\) −30.9446 −1.45712
\(452\) 4.19556 + 4.19556i 0.197343 + 0.197343i
\(453\) 0 0
\(454\) 5.95497i 0.279481i
\(455\) 3.53983 + 0.481174i 0.165950 + 0.0225578i
\(456\) 0 0
\(457\) 9.27546 9.27546i 0.433888 0.433888i −0.456061 0.889949i \(-0.650740\pi\)
0.889949 + 0.456061i \(0.150740\pi\)
\(458\) 8.31377 8.31377i 0.388477 0.388477i
\(459\) 0 0
\(460\) 3.56318 + 4.68427i 0.166134 + 0.218405i
\(461\) 40.1471i 1.86984i 0.354861 + 0.934919i \(0.384528\pi\)
−0.354861 + 0.934919i \(0.615472\pi\)
\(462\) 0 0
\(463\) 8.46896 + 8.46896i 0.393586 + 0.393586i 0.875964 0.482377i \(-0.160227\pi\)
−0.482377 + 0.875964i \(0.660227\pi\)
\(464\) −1.84040 −0.0854385
\(465\) 0 0
\(466\) 18.9960 0.879973
\(467\) 8.63124 + 8.63124i 0.399406 + 0.399406i 0.878024 0.478617i \(-0.158862\pi\)
−0.478617 + 0.878024i \(0.658862\pi\)
\(468\) 0 0
\(469\) 29.2855i 1.35228i
\(470\) −1.19321 + 8.77808i −0.0550389 + 0.404902i
\(471\) 0 0
\(472\) −0.0912837 + 0.0912837i −0.00420167 + 0.00420167i
\(473\) 8.44716 8.44716i 0.388401 0.388401i
\(474\) 0 0
\(475\) −6.92878 + 25.0154i −0.317914 + 1.14779i
\(476\) 16.5362i 0.757935i
\(477\) 0 0
\(478\) 3.22360 + 3.22360i 0.147444 + 0.147444i
\(479\) −10.2698 −0.469238 −0.234619 0.972087i \(-0.575384\pi\)
−0.234619 + 0.972087i \(0.575384\pi\)
\(480\) 0 0
\(481\) −0.538431 −0.0245503
\(482\) −11.3576 11.3576i −0.517325 0.517325i
\(483\) 0 0
\(484\) 12.0201i 0.546367i
\(485\) −30.7905 + 23.4214i −1.39812 + 1.06351i
\(486\) 0 0
\(487\) 17.5218 17.5218i 0.793987 0.793987i −0.188153 0.982140i \(-0.560250\pi\)
0.982140 + 0.188153i \(0.0602500\pi\)
\(488\) 8.87067 8.87067i 0.401556 0.401556i
\(489\) 0 0
\(490\) −0.0612889 + 0.0466207i −0.00276875 + 0.00210611i
\(491\) 8.89235i 0.401306i 0.979662 + 0.200653i \(0.0643064\pi\)
−0.979662 + 0.200653i \(0.935694\pi\)
\(492\) 0 0
\(493\) 8.11369 + 8.11369i 0.365422 + 0.365422i
\(494\) 3.12714 0.140697
\(495\) 0 0
\(496\) −4.07776 −0.183097
\(497\) −19.5424 19.5424i −0.876597 0.876597i
\(498\) 0 0
\(499\) 29.3509i 1.31393i −0.753923 0.656963i \(-0.771841\pi\)
0.753923 0.656963i \(-0.228159\pi\)
\(500\) 4.40844 10.2745i 0.197152 0.459490i
\(501\) 0 0
\(502\) 13.4337 13.4337i 0.599574 0.599574i
\(503\) 10.0766 10.0766i 0.449293 0.449293i −0.445826 0.895120i \(-0.647090\pi\)
0.895120 + 0.445826i \(0.147090\pi\)
\(504\) 0 0
\(505\) −3.60272 + 26.5040i −0.160319 + 1.17941i
\(506\) 12.6284i 0.561401i
\(507\) 0 0
\(508\) 2.51837 + 2.51837i 0.111734 + 0.111734i
\(509\) 30.0048 1.32994 0.664970 0.746870i \(-0.268444\pi\)
0.664970 + 0.746870i \(0.268444\pi\)
\(510\) 0 0
\(511\) 12.3786 0.547597
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 3.35128i 0.147819i
\(515\) −14.5836 19.1720i −0.642629 0.844819i
\(516\) 0 0
\(517\) 13.4409 13.4409i 0.591130 0.591130i
\(518\) 1.67637 1.67637i 0.0736557 0.0736557i
\(519\) 0 0
\(520\) −1.33465 0.181421i −0.0585283 0.00795583i
\(521\) 6.40485i 0.280602i 0.990109 + 0.140301i \(0.0448070\pi\)
−0.990109 + 0.140301i \(0.955193\pi\)
\(522\) 0 0
\(523\) 16.0596 + 16.0596i 0.702237 + 0.702237i 0.964890 0.262653i \(-0.0845974\pi\)
−0.262653 + 0.964890i \(0.584597\pi\)
\(524\) 13.0599 0.570526
\(525\) 0 0
\(526\) 16.7454 0.730133
\(527\) 17.9774 + 17.9774i 0.783110 + 0.783110i
\(528\) 0 0
\(529\) 16.0723i 0.698795i
\(530\) 4.11156 + 0.558889i 0.178595 + 0.0242766i
\(531\) 0 0
\(532\) −9.73618 + 9.73618i −0.422117 + 0.422117i
\(533\) 2.74710 2.74710i 0.118990 0.118990i
\(534\) 0 0
\(535\) −8.33514 10.9576i −0.360360 0.473740i
\(536\) 11.0417i 0.476931i
\(537\) 0 0
\(538\) 0.378826 + 0.378826i 0.0163324 + 0.0163324i
\(539\) 0.165230 0.00711696
\(540\) 0 0
\(541\) 44.6389 1.91917 0.959587 0.281412i \(-0.0908026\pi\)
0.959587 + 0.281412i \(0.0908026\pi\)
\(542\) −10.9893 10.9893i −0.472032 0.472032i
\(543\) 0 0
\(544\) 6.23478i 0.267314i
\(545\) −4.65464 + 34.2426i −0.199383 + 1.46679i
\(546\) 0 0
\(547\) −3.77045 + 3.77045i −0.161213 + 0.161213i −0.783104 0.621891i \(-0.786365\pi\)
0.621891 + 0.783104i \(0.286365\pi\)
\(548\) −2.29750 + 2.29750i −0.0981442 + 0.0981442i
\(549\) 0 0
\(550\) −20.8757 + 11.8197i −0.890144 + 0.503995i
\(551\) 9.55436i 0.407029i
\(552\) 0 0
\(553\) 7.85646 + 7.85646i 0.334091 + 0.334091i
\(554\) −17.3098 −0.735423
\(555\) 0 0
\(556\) −21.9945 −0.932775
\(557\) 4.10329 + 4.10329i 0.173862 + 0.173862i 0.788674 0.614812i \(-0.210768\pi\)
−0.614812 + 0.788674i \(0.710768\pi\)
\(558\) 0 0
\(559\) 1.49979i 0.0634344i
\(560\) 4.72021 3.59052i 0.199465 0.151727i
\(561\) 0 0
\(562\) 17.0573 17.0573i 0.719519 0.719519i
\(563\) 4.19499 4.19499i 0.176798 0.176798i −0.613160 0.789958i \(-0.710102\pi\)
0.789958 + 0.613160i \(0.210102\pi\)
\(564\) 0 0
\(565\) −10.5597 + 8.03244i −0.444250 + 0.337927i
\(566\) 16.5516i 0.695715i
\(567\) 0 0
\(568\) 7.36824 + 7.36824i 0.309164 + 0.309164i
\(569\) −35.3427 −1.48164 −0.740822 0.671702i \(-0.765564\pi\)
−0.740822 + 0.671702i \(0.765564\pi\)
\(570\) 0 0
\(571\) −3.01059 −0.125989 −0.0629946 0.998014i \(-0.520065\pi\)
−0.0629946 + 0.998014i \(0.520065\pi\)
\(572\) 2.04360 + 2.04360i 0.0854474 + 0.0854474i
\(573\) 0 0
\(574\) 17.1059i 0.713987i
\(575\) −11.4521 + 6.48410i −0.477584 + 0.270405i
\(576\) 0 0
\(577\) −11.5350 + 11.5350i −0.480208 + 0.480208i −0.905198 0.424990i \(-0.860278\pi\)
0.424990 + 0.905198i \(0.360278\pi\)
\(578\) −15.4662 + 15.4662i −0.643307 + 0.643307i
\(579\) 0 0
\(580\) 0.554295 4.07776i 0.0230159 0.169320i
\(581\) 30.5054i 1.26558i
\(582\) 0 0
\(583\) −6.29558 6.29558i −0.260736 0.260736i
\(584\) −4.66721 −0.193130
\(585\) 0 0
\(586\) 16.1515 0.667214
\(587\) −8.06405 8.06405i −0.332839 0.332839i 0.520825 0.853664i \(-0.325625\pi\)
−0.853664 + 0.520825i \(0.825625\pi\)
\(588\) 0 0
\(589\) 21.1695i 0.872275i
\(590\) −0.174763 0.229749i −0.00719490 0.00945863i
\(591\) 0 0
\(592\) −0.632057 + 0.632057i −0.0259774 + 0.0259774i
\(593\) 23.4664 23.4664i 0.963651 0.963651i −0.0357109 0.999362i \(-0.511370\pi\)
0.999362 + 0.0357109i \(0.0113696\pi\)
\(594\) 0 0
\(595\) −36.6391 4.98040i −1.50206 0.204177i
\(596\) 13.1334i 0.537964i
\(597\) 0 0
\(598\) 1.12109 + 1.12109i 0.0458446 + 0.0458446i
\(599\) 34.5367 1.41113 0.705566 0.708645i \(-0.250693\pi\)
0.705566 + 0.708645i \(0.250693\pi\)
\(600\) 0 0
\(601\) 3.15518 0.128703 0.0643513 0.997927i \(-0.479502\pi\)
0.0643513 + 0.997927i \(0.479502\pi\)
\(602\) −4.66952 4.66952i −0.190315 0.190315i
\(603\) 0 0
\(604\) 0.335798i 0.0136634i
\(605\) 26.6328 + 3.62022i 1.08278 + 0.147183i
\(606\) 0 0
\(607\) 3.60821 3.60821i 0.146453 0.146453i −0.630079 0.776531i \(-0.716977\pi\)
0.776531 + 0.630079i \(0.216977\pi\)
\(608\) 3.67091 3.67091i 0.148875 0.148875i
\(609\) 0 0
\(610\) 16.9830 + 22.3264i 0.687621 + 0.903968i
\(611\) 2.38643i 0.0965446i
\(612\) 0 0
\(613\) −9.09622 9.09622i −0.367393 0.367393i 0.499133 0.866525i \(-0.333652\pi\)
−0.866525 + 0.499133i \(0.833652\pi\)
\(614\) −2.05969 −0.0831222
\(615\) 0 0
\(616\) −12.7253 −0.512717
\(617\) −17.0566 17.0566i −0.686673 0.686673i 0.274822 0.961495i \(-0.411381\pi\)
−0.961495 + 0.274822i \(0.911381\pi\)
\(618\) 0 0
\(619\) 31.0938i 1.24977i 0.780718 + 0.624883i \(0.214853\pi\)
−0.780718 + 0.624883i \(0.785147\pi\)
\(620\) 1.22815 9.03506i 0.0493236 0.362857i
\(621\) 0 0
\(622\) −1.48163 + 1.48163i −0.0594081 + 0.0594081i
\(623\) 3.84441 3.84441i 0.154023 0.154023i
\(624\) 0 0
\(625\) 21.4374 + 12.8622i 0.857496 + 0.514490i
\(626\) 19.7519i 0.789445i
\(627\) 0 0
\(628\) −3.22360 3.22360i −0.128636 0.128636i
\(629\) 5.57304 0.222212
\(630\) 0 0
\(631\) 46.1604 1.83762 0.918809 0.394703i \(-0.129153\pi\)
0.918809 + 0.394703i \(0.129153\pi\)
\(632\) −2.96218 2.96218i −0.117829 0.117829i
\(633\) 0 0
\(634\) 34.0863i 1.35374i
\(635\) −6.33841 + 4.82144i −0.251532 + 0.191333i
\(636\) 0 0
\(637\) −0.0146683 + 0.0146683i −0.000581179 + 0.000581179i
\(638\) −6.24383 + 6.24383i −0.247195 + 0.247195i
\(639\) 0 0
\(640\) −1.77970 + 1.35376i −0.0703487 + 0.0535122i
\(641\) 3.93850i 0.155562i −0.996970 0.0777808i \(-0.975217\pi\)
0.996970 0.0777808i \(-0.0247834\pi\)
\(642\) 0 0
\(643\) 21.9554 + 21.9554i 0.865838 + 0.865838i 0.992009 0.126171i \(-0.0402686\pi\)
−0.126171 + 0.992009i \(0.540269\pi\)
\(644\) −6.98088 −0.275085
\(645\) 0 0
\(646\) −32.3676 −1.27348
\(647\) −18.0986 18.0986i −0.711531 0.711531i 0.255325 0.966855i \(-0.417818\pi\)
−0.966855 + 0.255325i \(0.917818\pi\)
\(648\) 0 0
\(649\) 0.619386i 0.0243130i
\(650\) 0.803945 2.90254i 0.0315333 0.113847i
\(651\) 0 0
\(652\) −9.01496 + 9.01496i −0.353053 + 0.353053i
\(653\) 9.93605 9.93605i 0.388828 0.388828i −0.485442 0.874269i \(-0.661341\pi\)
0.874269 + 0.485442i \(0.161341\pi\)
\(654\) 0 0
\(655\) −3.93342 + 28.9368i −0.153691 + 1.13066i
\(656\) 6.44958i 0.251814i
\(657\) 0 0
\(658\) −7.43002 7.43002i −0.289652 0.289652i
\(659\) 36.5419 1.42347 0.711734 0.702449i \(-0.247910\pi\)
0.711734 + 0.702449i \(0.247910\pi\)
\(660\) 0 0
\(661\) 35.8730 1.39530 0.697650 0.716439i \(-0.254229\pi\)
0.697650 + 0.716439i \(0.254229\pi\)
\(662\) 16.9903 + 16.9903i 0.660348 + 0.660348i
\(663\) 0 0
\(664\) 11.5017i 0.446353i
\(665\) −18.6400 24.5047i −0.722829 0.950253i
\(666\) 0 0
\(667\) −3.42525 + 3.42525i −0.132626 + 0.132626i
\(668\) −0.00628350 + 0.00628350i −0.000243116 + 0.000243116i
\(669\) 0 0
\(670\) −24.4651 3.32557i −0.945170 0.128478i
\(671\) 60.1901i 2.32361i
\(672\) 0 0
\(673\) −17.7365 17.7365i −0.683691 0.683691i 0.277139 0.960830i \(-0.410614\pi\)
−0.960830 + 0.277139i \(0.910614\pi\)
\(674\) 12.2514 0.471907
\(675\) 0 0
\(676\) 12.6372 0.486045
\(677\) 3.82902 + 3.82902i 0.147161 + 0.147161i 0.776849 0.629687i \(-0.216817\pi\)
−0.629687 + 0.776849i \(0.716817\pi\)
\(678\) 0 0
\(679\) 45.8865i 1.76096i
\(680\) 13.8143 + 1.87780i 0.529756 + 0.0720104i
\(681\) 0 0
\(682\) −13.8344 + 13.8344i −0.529746 + 0.529746i
\(683\) 14.3302 14.3302i 0.548331 0.548331i −0.377627 0.925958i \(-0.623260\pi\)
0.925958 + 0.377627i \(0.123260\pi\)
\(684\) 0 0
\(685\) −4.39858 5.78251i −0.168061 0.220938i
\(686\) 18.4744i 0.705357i
\(687\) 0 0
\(688\) 1.76059 + 1.76059i 0.0671217 + 0.0671217i
\(689\) 1.11778 0.0425840
\(690\) 0 0
\(691\) 11.7198 0.445843 0.222921 0.974836i \(-0.428441\pi\)
0.222921 + 0.974836i \(0.428441\pi\)
\(692\) 7.34182 + 7.34182i 0.279094 + 0.279094i
\(693\) 0 0
\(694\) 18.5893i 0.705641i
\(695\) 6.62435 48.7331i 0.251276 1.84855i
\(696\) 0 0
\(697\) −28.4340 + 28.4340i −1.07701 + 1.07701i
\(698\) −22.2336 + 22.2336i −0.841553 + 0.841553i
\(699\) 0 0
\(700\) 6.53384 + 11.5399i 0.246956 + 0.436168i
\(701\) 30.7235i 1.16041i −0.814471 0.580205i \(-0.802972\pi\)
0.814471 0.580205i \(-0.197028\pi\)
\(702\) 0 0
\(703\) 3.28129 + 3.28129i 0.123756 + 0.123756i
\(704\) 4.79792 0.180829
\(705\) 0 0
\(706\) −12.1583 −0.457585
\(707\) −22.4337 22.4337i −0.843708 0.843708i
\(708\) 0 0
\(709\) 31.7403i 1.19203i −0.802973 0.596015i \(-0.796750\pi\)
0.802973 0.596015i \(-0.203250\pi\)
\(710\) −18.5449 + 14.1066i −0.695979 + 0.529410i
\(711\) 0 0
\(712\) −1.44949 + 1.44949i −0.0543219 + 0.0543219i
\(713\) −7.58931 + 7.58931i −0.284222 + 0.284222i
\(714\) 0 0
\(715\) −5.14349 + 3.91250i −0.192356 + 0.146319i
\(716\) 1.46292i 0.0546717i
\(717\) 0 0
\(718\) −3.05191 3.05191i −0.113896 0.113896i
\(719\) −7.79879 −0.290846 −0.145423 0.989370i \(-0.546454\pi\)
−0.145423 + 0.989370i \(0.546454\pi\)
\(720\) 0 0
\(721\) 28.5717 1.06407
\(722\) −5.62234 5.62234i −0.209242 0.209242i
\(723\) 0 0
\(724\) 8.68576i 0.322804i
\(725\) 8.86812 + 2.45629i 0.329354 + 0.0912245i
\(726\) 0 0
\(727\) 31.3217 31.3217i 1.16166 1.16166i 0.177546 0.984113i \(-0.443184\pi\)
0.984113 0.177546i \(-0.0568158\pi\)
\(728\) 1.12969 1.12969i 0.0418690 0.0418690i
\(729\) 0 0
\(730\) 1.40568 10.3411i 0.0520265 0.382741i
\(731\) 15.5236i 0.574162i
\(732\) 0 0
\(733\) −19.7144 19.7144i −0.728169 0.728169i 0.242086 0.970255i \(-0.422168\pi\)
−0.970255 + 0.242086i \(0.922168\pi\)
\(734\) 19.8782 0.733717
\(735\) 0 0
\(736\) 2.63206 0.0970189
\(737\) 37.4607 + 37.4607i 1.37988 + 1.37988i
\(738\) 0 0
\(739\) 10.8068i 0.397536i −0.980047 0.198768i \(-0.936306\pi\)
0.980047 0.198768i \(-0.0636941\pi\)
\(740\) −1.21008 1.59081i −0.0444834 0.0584793i
\(741\) 0 0
\(742\) −3.48014 + 3.48014i −0.127760 + 0.127760i
\(743\) −15.7301 + 15.7301i −0.577082 + 0.577082i −0.934098 0.357016i \(-0.883794\pi\)
0.357016 + 0.934098i \(0.383794\pi\)
\(744\) 0 0
\(745\) 29.0995 + 3.95553i 1.06612 + 0.144919i
\(746\) 2.62754i 0.0962009i
\(747\) 0 0
\(748\) −21.1524 21.1524i −0.773408 0.773408i
\(749\) 16.3300 0.596684
\(750\) 0 0
\(751\) 41.2469 1.50512 0.752561 0.658523i \(-0.228818\pi\)
0.752561 + 0.658523i \(0.228818\pi\)
\(752\) 2.80140 + 2.80140i 0.102157 + 0.102157i
\(753\) 0 0
\(754\) 1.10859i 0.0403725i
\(755\) −0.744025 0.101136i −0.0270778 0.00368072i
\(756\) 0 0
\(757\) −20.5246 + 20.5246i −0.745978 + 0.745978i −0.973721 0.227743i \(-0.926865\pi\)
0.227743 + 0.973721i \(0.426865\pi\)
\(758\) −2.14341 + 2.14341i −0.0778523 + 0.0778523i
\(759\) 0 0
\(760\) 7.02800 + 9.23922i 0.254932 + 0.335142i
\(761\) 45.9788i 1.66673i −0.552724 0.833365i \(-0.686411\pi\)
0.552724 0.833365i \(-0.313589\pi\)
\(762\) 0 0
\(763\) −28.9839 28.9839i −1.04929 1.04929i
\(764\) 5.00903 0.181220
\(765\) 0 0
\(766\) −23.7508 −0.858153
\(767\) −0.0549859 0.0549859i −0.00198543 0.00198543i
\(768\) 0 0
\(769\) 30.7961i 1.11054i −0.831672 0.555268i \(-0.812616\pi\)
0.831672 0.555268i \(-0.187384\pi\)
\(770\) 3.83263 28.1953i 0.138118 1.01609i
\(771\) 0 0
\(772\) −2.38176 + 2.38176i −0.0857214 + 0.0857214i
\(773\) 29.6376 29.6376i 1.06599 1.06599i 0.0683287 0.997663i \(-0.478233\pi\)
0.997663 0.0683287i \(-0.0217667\pi\)
\(774\) 0 0
\(775\) 19.6490 + 5.44239i 0.705814 + 0.195496i
\(776\) 17.3010i 0.621069i
\(777\) 0 0
\(778\) −4.71292 4.71292i −0.168966 0.168966i
\(779\) −33.4827 −1.19964
\(780\) 0 0
\(781\) 49.9956 1.78898
\(782\) −11.6038 11.6038i −0.414952 0.414952i
\(783\) 0 0
\(784\) 0.0344378i 0.00122992i
\(785\) 8.11339 6.17161i 0.289579 0.220274i
\(786\) 0 0
\(787\) −19.0784 + 19.0784i −0.680070 + 0.680070i −0.960016 0.279946i \(-0.909683\pi\)
0.279946 + 0.960016i \(0.409683\pi\)
\(788\) 15.5027 15.5027i 0.552261 0.552261i
\(789\) 0 0
\(790\) 7.45544 5.67113i 0.265253 0.201770i
\(791\) 15.7369i 0.559540i
\(792\) 0 0
\(793\) 5.34337 + 5.34337i 0.189749 + 0.189749i
\(794\) −18.7018 −0.663703
\(795\) 0 0
\(796\) −18.4607 −0.654321
\(797\) −4.59865 4.59865i −0.162893 0.162893i 0.620954 0.783847i \(-0.286745\pi\)
−0.783847 + 0.620954i \(0.786745\pi\)
\(798\) 0 0
\(799\) 24.7008i 0.873851i
\(800\) −2.46351 4.35099i −0.0870982 0.153831i
\(801\) 0 0
\(802\) 3.81250 3.81250i 0.134624 0.134624i
\(803\) −15.8342 + 15.8342i −0.558776 + 0.558776i
\(804\) 0 0
\(805\) 2.10251 15.4675i 0.0741038 0.545157i
\(806\) 2.45629i 0.0865193i
\(807\) 0 0
\(808\) 8.45838 + 8.45838i 0.297565 + 0.297565i
\(809\) −5.79431 −0.203717 −0.101859 0.994799i \(-0.532479\pi\)
−0.101859 + 0.994799i \(0.532479\pi\)
\(810\) 0 0
\(811\) 1.90498 0.0668929 0.0334465 0.999441i \(-0.489352\pi\)
0.0334465 + 0.999441i \(0.489352\pi\)
\(812\) 3.45153 + 3.45153i 0.121125 + 0.121125i
\(813\) 0 0
\(814\) 4.28869i 0.150318i
\(815\) −17.2592 22.6895i −0.604565 0.794779i
\(816\) 0 0
\(817\) 9.14000 9.14000i 0.319768 0.319768i
\(818\) −6.07126 + 6.07126i −0.212277 + 0.212277i
\(819\) 0 0
\(820\) 14.2903 + 1.94250i 0.499038 + 0.0678349i
\(821\) 38.6250i 1.34802i −0.738721 0.674012i \(-0.764570\pi\)
0.738721 0.674012i \(-0.235430\pi\)
\(822\) 0 0
\(823\) −15.1323 15.1323i −0.527478 0.527478i 0.392342 0.919819i \(-0.371665\pi\)
−0.919819 + 0.392342i \(0.871665\pi\)
\(824\) −10.7726 −0.375282
\(825\) 0 0
\(826\) 0.342391 0.0119133
\(827\) 23.1603 + 23.1603i 0.805364 + 0.805364i 0.983928 0.178564i \(-0.0571453\pi\)
−0.178564 + 0.983928i \(0.557145\pi\)
\(828\) 0 0
\(829\) 34.1116i 1.18475i −0.805664 0.592373i \(-0.798191\pi\)
0.805664 0.592373i \(-0.201809\pi\)
\(830\) 25.4842 + 3.46410i 0.884570 + 0.120241i
\(831\) 0 0
\(832\) −0.425935 + 0.425935i −0.0147666 + 0.0147666i
\(833\) 0.151824 0.151824i 0.00526041 0.00526041i
\(834\) 0 0
\(835\) −0.0120298 0.0158148i −0.000416309 0.000547293i
\(836\) 24.9082i 0.861468i
\(837\) 0 0
\(838\) −10.9283 10.9283i −0.377512 0.377512i
\(839\) −37.6116 −1.29850 −0.649249 0.760576i \(-0.724917\pi\)
−0.649249 + 0.760576i \(0.724917\pi\)
\(840\) 0 0
\(841\) −25.6129 −0.883204
\(842\) −13.3661 13.3661i −0.460628 0.460628i
\(843\) 0 0
\(844\) 1.30893i 0.0450552i
\(845\) −3.80608 + 28.0000i −0.130933 + 0.963231i
\(846\) 0 0
\(847\) −22.5427 + 22.5427i −0.774577 + 0.774577i
\(848\) 1.31215 1.31215i 0.0450593 0.0450593i
\(849\) 0 0
\(850\) −8.32126 + 30.0428i −0.285417 + 1.03046i
\(851\) 2.35270i 0.0806495i
\(852\) 0 0
\(853\) −5.42972 5.42972i −0.185910 0.185910i 0.608015 0.793925i \(-0.291966\pi\)
−0.793925 + 0.608015i \(0.791966\pi\)
\(854\) −33.2726 −1.13856
\(855\) 0 0
\(856\) −6.15702 −0.210442
\(857\) 5.12629 + 5.12629i 0.175111 + 0.175111i 0.789221 0.614110i \(-0.210485\pi\)
−0.614110 + 0.789221i \(0.710485\pi\)
\(858\) 0 0
\(859\) 1.73720i 0.0592726i 0.999561 + 0.0296363i \(0.00943490\pi\)
−0.999561 + 0.0296363i \(0.990565\pi\)
\(860\) −4.43117 + 3.37066i −0.151102 + 0.114939i
\(861\) 0 0
\(862\) −2.76781 + 2.76781i −0.0942720 + 0.0942720i
\(863\) −36.4612 + 36.4612i −1.24115 + 1.24115i −0.281630 + 0.959523i \(0.590875\pi\)
−0.959523 + 0.281630i \(0.909125\pi\)
\(864\) 0 0
\(865\) −18.4784 + 14.0560i −0.628286 + 0.477918i
\(866\) 38.4735i 1.30738i
\(867\) 0 0
\(868\) 7.64754 + 7.64754i 0.259574 + 0.259574i
\(869\) −20.0993 −0.681821
\(870\) 0 0
\(871\) −6.65115 −0.225365
\(872\) 10.9280 + 10.9280i 0.370070 + 0.370070i
\(873\) 0 0
\(874\) 13.6642i 0.462199i
\(875\) −27.5368 + 11.0014i −0.930913 + 0.371914i
\(876\) 0 0
\(877\) 7.32721 7.32721i 0.247422 0.247422i −0.572490 0.819912i \(-0.694022\pi\)
0.819912 + 0.572490i \(0.194022\pi\)
\(878\) 10.8369 10.8369i 0.365728 0.365728i
\(879\) 0 0
\(880\) −1.44505 + 10.6307i −0.0487125 + 0.358361i
\(881\) 1.17719i 0.0396604i 0.999803 + 0.0198302i \(0.00631257\pi\)
−0.999803 + 0.0198302i \(0.993687\pi\)
\(882\) 0 0
\(883\) −22.1929 22.1929i −0.746850 0.746850i 0.227036 0.973886i \(-0.427097\pi\)
−0.973886 + 0.227036i \(0.927097\pi\)
\(884\) 3.75560 0.126315
\(885\) 0 0
\(886\) 27.8199 0.934626
\(887\) −6.44565 6.44565i −0.216424 0.216424i 0.590566 0.806989i \(-0.298905\pi\)
−0.806989 + 0.590566i \(0.798905\pi\)
\(888\) 0 0
\(889\) 9.44601i 0.316809i
\(890\) −2.77506 3.64818i −0.0930203 0.122287i
\(891\) 0 0
\(892\) −14.8324 + 14.8324i −0.496625 + 0.496625i
\(893\) 14.5433 14.5433i 0.486674 0.486674i
\(894\) 0 0
\(895\) −3.24137 0.440604i −0.108347 0.0147278i
\(896\) 2.65225i 0.0886055i
\(897\) 0 0
\(898\) −17.2270 17.2270i −0.574874 0.574874i
\(899\) 7.50472 0.250296
\(900\) 0 0
\(901\) −11.5696 −0.385439
\(902\) −21.8811 21.8811i −0.728562 0.728562i
\(903\) 0 0
\(904\) 5.93342i 0.197343i
\(905\) 19.2450 + 2.61599i 0.639724 + 0.0869585i
\(906\) 0 0
\(907\) −5.38206 + 5.38206i −0.178708 + 0.178708i −0.790793 0.612084i \(-0.790331\pi\)
0.612084 + 0.790793i \(0.290331\pi\)
\(908\) −4.21080 + 4.21080i −0.139740 + 0.139740i
\(909\) 0 0
\(910\) 2.16280 + 2.84328i 0.0716960 + 0.0942538i
\(911\) 45.3246i 1.50167i 0.660490 + 0.750835i \(0.270349\pi\)
−0.660490 + 0.750835i \(0.729651\pi\)
\(912\) 0 0
\(913\) −39.0212 39.0212i −1.29141 1.29141i
\(914\) 13.1175 0.433888
\(915\) 0 0
\(916\) 11.7574 0.388477
\(917\) −24.4930 24.4930i −0.808829 0.808829i
\(918\) 0 0
\(919\) 19.9726i 0.658836i −0.944184 0.329418i \(-0.893148\pi\)
0.944184 0.329418i \(-0.106852\pi\)
\(920\) −0.792727 + 5.83183i −0.0261354 + 0.192270i
\(921\) 0 0
\(922\) −28.3883 + 28.3883i −0.934919 + 0.934919i
\(923\) −4.43836 + 4.43836i −0.146090 + 0.146090i
\(924\) 0 0
\(925\) 3.88919 2.20204i 0.127876 0.0724027i
\(926\) 11.9769i 0.393586i
\(927\) 0 0
\(928\) −1.30136 1.30136i −0.0427192 0.0427192i
\(929\) 49.7840 1.63336 0.816681 0.577090i \(-0.195812\pi\)
0.816681 + 0.577090i \(0.195812\pi\)
\(930\) 0 0
\(931\) 0.178782 0.00585936
\(932\) 13.4322 + 13.4322i 0.439986 + 0.439986i
\(933\) 0 0
\(934\) 12.2064i 0.399406i
\(935\) 53.2379 40.4964i 1.74106 1.32438i
\(936\) 0 0
\(937\) 28.6750 28.6750i 0.936771 0.936771i −0.0613453 0.998117i \(-0.519539\pi\)
0.998117 + 0.0613453i \(0.0195391\pi\)
\(938\) 20.7080 20.7080i 0.676139 0.676139i
\(939\) 0 0
\(940\) −7.05077 + 5.36331i −0.229971 + 0.174932i
\(941\) 49.0268i 1.59823i 0.601178 + 0.799115i \(0.294698\pi\)
−0.601178 + 0.799115i \(0.705302\pi\)
\(942\) 0 0
\(943\) −12.0036 12.0036i −0.390891 0.390891i
\(944\) −0.129095 −0.00420167
\(945\) 0 0
\(946\) 11.9461 0.388401
\(947\) 31.8740 + 31.8740i 1.03577 + 1.03577i 0.999336 + 0.0364298i \(0.0115985\pi\)
0.0364298 + 0.999336i \(0.488401\pi\)
\(948\) 0 0
\(949\) 2.81135i 0.0912604i
\(950\) −22.5880 + 12.7892i −0.732850 + 0.414936i
\(951\) 0 0
\(952\) −11.6929 + 11.6929i −0.378968 + 0.378968i
\(953\) −2.71971 + 2.71971i −0.0881001 + 0.0881001i −0.749783 0.661683i \(-0.769842\pi\)
0.661683 + 0.749783i \(0.269842\pi\)
\(954\) 0 0
\(955\) −1.50863 + 11.0985i −0.0488181 + 0.359138i
\(956\) 4.55886i 0.147444i
\(957\) 0 0
\(958\) −7.26182 7.26182i −0.234619 0.234619i
\(959\) 8.61756 0.278276
\(960\) 0 0
\(961\) −14.3719 −0.463608
\(962\) −0.380728 0.380728i −0.0122752 0.0122752i
\(963\) 0 0
\(964\) 16.0621i 0.517325i
\(965\) −4.55990 5.99459i −0.146789 0.192973i
\(966\) 0 0
\(967\) 22.1538 22.1538i 0.712419 0.712419i −0.254622 0.967041i \(-0.581951\pi\)
0.967041 + 0.254622i \(0.0819510\pi\)
\(968\) 8.49947 8.49947i 0.273183 0.273183i
\(969\) 0 0
\(970\) −38.3336 5.21073i −1.23082 0.167307i
\(971\) 31.9680i 1.02590i −0.858418 0.512951i \(-0.828552\pi\)
0.858418 0.512951i \(-0.171448\pi\)
\(972\) 0 0
\(973\) 41.2491 + 41.2491i 1.32238 + 1.32238i
\(974\) 24.7795 0.793987
\(975\) 0 0
\(976\) 12.5450 0.401556
\(977\) 6.19265 + 6.19265i 0.198120 + 0.198120i 0.799194 0.601073i \(-0.205260\pi\)
−0.601073 + 0.799194i \(0.705260\pi\)
\(978\) 0 0
\(979\) 9.83521i 0.314335i
\(980\) −0.0763036 0.0103720i −0.00243743 0.000331323i
\(981\) 0 0
\(982\) −6.28784 + 6.28784i −0.200653 + 0.200653i
\(983\) −29.8236 + 29.8236i −0.951224 + 0.951224i −0.998865 0.0476409i \(-0.984830\pi\)
0.0476409 + 0.998865i \(0.484830\pi\)
\(984\) 0 0
\(985\) 29.6801 + 39.0184i 0.945687 + 1.24323i
\(986\) 11.4745i 0.365422i
\(987\) 0 0
\(988\) 2.21122 + 2.21122i 0.0703484 + 0.0703484i
\(989\) 6.55342 0.208387
\(990\) 0 0
\(991\) −13.9120 −0.441929 −0.220964 0.975282i \(-0.570920\pi\)
−0.220964 + 0.975282i \(0.570920\pi\)
\(992\) −2.88341 2.88341i −0.0915485 0.0915485i
\(993\) 0 0
\(994\) 27.6372i 0.876597i
\(995\) 5.56002 40.9032i 0.176264 1.29672i
\(996\) 0 0
\(997\) −21.4033 + 21.4033i −0.677848 + 0.677848i −0.959513 0.281665i \(-0.909113\pi\)
0.281665 + 0.959513i \(0.409113\pi\)
\(998\) 20.7542 20.7542i 0.656963 0.656963i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 810.2.f.c.323.5 16
3.2 odd 2 inner 810.2.f.c.323.4 16
5.2 odd 4 inner 810.2.f.c.647.4 16
9.2 odd 6 270.2.m.b.233.1 16
9.4 even 3 270.2.m.b.143.1 16
9.5 odd 6 90.2.l.b.83.3 yes 16
9.7 even 3 90.2.l.b.23.3 16
15.2 even 4 inner 810.2.f.c.647.5 16
36.7 odd 6 720.2.cu.b.113.4 16
36.23 even 6 720.2.cu.b.353.3 16
45.2 even 12 270.2.m.b.17.1 16
45.4 even 6 1350.2.q.h.143.3 16
45.7 odd 12 90.2.l.b.77.3 yes 16
45.13 odd 12 1350.2.q.h.1007.4 16
45.14 odd 6 450.2.p.h.443.2 16
45.22 odd 12 270.2.m.b.197.1 16
45.23 even 12 450.2.p.h.407.2 16
45.29 odd 6 1350.2.q.h.1043.4 16
45.32 even 12 90.2.l.b.47.3 yes 16
45.34 even 6 450.2.p.h.293.2 16
45.38 even 12 1350.2.q.h.557.3 16
45.43 odd 12 450.2.p.h.257.2 16
180.7 even 12 720.2.cu.b.257.3 16
180.167 odd 12 720.2.cu.b.497.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.l.b.23.3 16 9.7 even 3
90.2.l.b.47.3 yes 16 45.32 even 12
90.2.l.b.77.3 yes 16 45.7 odd 12
90.2.l.b.83.3 yes 16 9.5 odd 6
270.2.m.b.17.1 16 45.2 even 12
270.2.m.b.143.1 16 9.4 even 3
270.2.m.b.197.1 16 45.22 odd 12
270.2.m.b.233.1 16 9.2 odd 6
450.2.p.h.257.2 16 45.43 odd 12
450.2.p.h.293.2 16 45.34 even 6
450.2.p.h.407.2 16 45.23 even 12
450.2.p.h.443.2 16 45.14 odd 6
720.2.cu.b.113.4 16 36.7 odd 6
720.2.cu.b.257.3 16 180.7 even 12
720.2.cu.b.353.3 16 36.23 even 6
720.2.cu.b.497.4 16 180.167 odd 12
810.2.f.c.323.4 16 3.2 odd 2 inner
810.2.f.c.323.5 16 1.1 even 1 trivial
810.2.f.c.647.4 16 5.2 odd 4 inner
810.2.f.c.647.5 16 15.2 even 4 inner
1350.2.q.h.143.3 16 45.4 even 6
1350.2.q.h.557.3 16 45.38 even 12
1350.2.q.h.1007.4 16 45.13 odd 12
1350.2.q.h.1043.4 16 45.29 odd 6