Properties

Label 810.2.f.d
Level 810810
Weight 22
Character orbit 810.f
Analytic conductor 6.4686.468
Analytic rank 00
Dimension 1616
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [810,2,Mod(323,810)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(810, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("810.323");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 810=2345 810 = 2 \cdot 3^{4} \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 810.f (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.467882563726.46788256372
Analytic rank: 00
Dimension: 1616
Relative dimension: 88 over Q(i)\Q(i)
Coefficient field: Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x1616x14+145x12976x10+5296x824400x6+90625x4250000x2+390625 x^{16} - 16x^{14} + 145x^{12} - 976x^{10} + 5296x^{8} - 24400x^{6} + 90625x^{4} - 250000x^{2} + 390625 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 22 2^{2}
Twist minimal: yes
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β151,\beta_1,\ldots,\beta_{15} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β14q2β6q4+(β13β9)q5+(β3+β21)q7β9q8+β11q10+(β15β14+β7)q11++(β15β13+β4)q98+O(q100) q + \beta_{14} q^{2} - \beta_{6} q^{4} + (\beta_{13} - \beta_{9}) q^{5} + (\beta_{3} + \beta_{2} - 1) q^{7} - \beta_{9} q^{8} + \beta_{11} q^{10} + (\beta_{15} - \beta_{14} + \cdots - \beta_{7}) q^{11}+ \cdots + (\beta_{15} - \beta_{13} + \cdots - \beta_{4}) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q4q78q1016q16+8q22+32q254q288q3112q374q40+48q43+40q4624q55+28q5872q61+8q67+4q7068q73+16q76++24q97+O(q100) 16 q - 4 q^{7} - 8 q^{10} - 16 q^{16} + 8 q^{22} + 32 q^{25} - 4 q^{28} - 8 q^{31} - 12 q^{37} - 4 q^{40} + 48 q^{43} + 40 q^{46} - 24 q^{55} + 28 q^{58} - 72 q^{61} + 8 q^{67} + 4 q^{70} - 68 q^{73} + 16 q^{76}+ \cdots + 24 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x1616x14+145x12976x10+5296x824400x6+90625x4250000x2+390625 x^{16} - 16x^{14} + 145x^{12} - 976x^{10} + 5296x^{8} - 24400x^{6} + 90625x^{4} - 250000x^{2} + 390625 : Copy content Toggle raw display

β1\beta_{1}== (44ν1428729ν12+107280ν10180944ν8+885424ν6++336734375)/186750000 ( 44 \nu^{14} - 28729 \nu^{12} + 107280 \nu^{10} - 180944 \nu^{8} + 885424 \nu^{6} + \cdots + 336734375 ) / 186750000 Copy content Toggle raw display
β2\beta_{2}== (1567ν14242897ν12+1523040ν109443392ν8+53796032ν6+1179640625)/933750000 ( 1567 \nu^{14} - 242897 \nu^{12} + 1523040 \nu^{10} - 9443392 \nu^{8} + 53796032 \nu^{6} + \cdots - 1179640625 ) / 933750000 Copy content Toggle raw display
β3\beta_{3}== (9011ν14+63901ν12160320ν10463264ν8+12176144ν6+792171875)/933750000 ( - 9011 \nu^{14} + 63901 \nu^{12} - 160320 \nu^{10} - 463264 \nu^{8} + 12176144 \nu^{6} + \cdots - 792171875 ) / 933750000 Copy content Toggle raw display
β4\beta_{4}== (4349ν1563109ν13+888880ν113642624ν9+19512704ν7+876703125ν)/1556250000 ( 4349 \nu^{15} - 63109 \nu^{13} + 888880 \nu^{11} - 3642624 \nu^{9} + 19512704 \nu^{7} + \cdots - 876703125 \nu ) / 1556250000 Copy content Toggle raw display
β5\beta_{5}== (16061ν15+161549ν132185680ν11+15272464ν989721344ν7++3677328125ν)/4668750000 ( 16061 \nu^{15} + 161549 \nu^{13} - 2185680 \nu^{11} + 15272464 \nu^{9} - 89721344 \nu^{7} + \cdots + 3677328125 \nu ) / 4668750000 Copy content Toggle raw display
β6\beta_{6}== (577ν144232ν12+30540ν10143152ν8+744542ν63328800ν4+15875000)/23343750 ( 577 \nu^{14} - 4232 \nu^{12} + 30540 \nu^{10} - 143152 \nu^{8} + 744542 \nu^{6} - 3328800 \nu^{4} + \cdots - 15875000 ) / 23343750 Copy content Toggle raw display
β7\beta_{7}== (6363ν15+90892ν13727440ν11+4863712ν915526752ν7++443937500ν)/1556250000 ( 6363 \nu^{15} + 90892 \nu^{13} - 727440 \nu^{11} + 4863712 \nu^{9} - 15526752 \nu^{7} + \cdots + 443937500 \nu ) / 1556250000 Copy content Toggle raw display
β8\beta_{8}== (69347ν14+790627ν126200640ν10+36236672ν8177640912ν6++4664171875)/933750000 ( - 69347 \nu^{14} + 790627 \nu^{12} - 6200640 \nu^{10} + 36236672 \nu^{8} - 177640912 \nu^{6} + \cdots + 4664171875 ) / 933750000 Copy content Toggle raw display
β9\beta_{9}== (13367ν15169072ν13+1194540ν116245192ν9+32279332ν7+653312500ν)/1167187500 ( 13367 \nu^{15} - 169072 \nu^{13} + 1194540 \nu^{11} - 6245192 \nu^{9} + 32279332 \nu^{7} + \cdots - 653312500 \nu ) / 1167187500 Copy content Toggle raw display
β10\beta_{10}== (75019ν14+1022204ν128621280ν10+48696544ν8247775024ν6++6113187500)/933750000 ( - 75019 \nu^{14} + 1022204 \nu^{12} - 8621280 \nu^{10} + 48696544 \nu^{8} - 247775024 \nu^{6} + \cdots + 6113187500 ) / 933750000 Copy content Toggle raw display
β11\beta_{11}== (16697ν14+151852ν121130640ν10+6810272ν833044512ν6++587687500)/186750000 ( - 16697 \nu^{14} + 151852 \nu^{12} - 1130640 \nu^{10} + 6810272 \nu^{8} - 33044512 \nu^{6} + \cdots + 587687500 ) / 186750000 Copy content Toggle raw display
β12\beta_{12}== (75019ν151022204ν13+8621280ν1148696544ν9+247775024ν7+2378187500ν)/4668750000 ( 75019 \nu^{15} - 1022204 \nu^{13} + 8621280 \nu^{11} - 48696544 \nu^{9} + 247775024 \nu^{7} + \cdots - 2378187500 \nu ) / 4668750000 Copy content Toggle raw display
β13\beta_{13}== (97372ν15+1140527ν1310322640ν11+66769072ν9++15696359375ν)/4668750000 ( - 97372 \nu^{15} + 1140527 \nu^{13} - 10322640 \nu^{11} + 66769072 \nu^{9} + \cdots + 15696359375 \nu ) / 4668750000 Copy content Toggle raw display
β14\beta_{14}== (24896ν15+254311ν131903020ν11+11552996ν9++1293296875ν)/1167187500 ( - 24896 \nu^{15} + 254311 \nu^{13} - 1903020 \nu^{11} + 11552996 \nu^{9} + \cdots + 1293296875 \nu ) / 1167187500 Copy content Toggle raw display
β15\beta_{15}== (123904ν15+1002989ν137284480ν11+41418304ν9++4978578125ν)/4668750000 ( - 123904 \nu^{15} + 1002989 \nu^{13} - 7284480 \nu^{11} + 41418304 \nu^{9} + \cdots + 4978578125 \nu ) / 4668750000 Copy content Toggle raw display
ν\nu== (β14+2β12β9+β5β4)/2 ( \beta_{14} + 2\beta_{12} - \beta_{9} + \beta_{5} - \beta_{4} ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (2β11+2β105β8+3β32β2+2β1+2)/2 ( 2\beta_{11} + 2\beta_{10} - 5\beta_{8} + 3\beta_{3} - 2\beta_{2} + 2\beta _1 + 2 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== β15+5β143β13+3β12+β9β7+6β52β4 \beta_{15} + 5\beta_{14} - 3\beta_{13} + 3\beta_{12} + \beta_{9} - \beta_{7} + 6\beta_{5} - 2\beta_{4} Copy content Toggle raw display
ν4\nu^{4}== (2β11+2β105β810β6+13β312β2+14β118)/2 ( -2\beta_{11} + 2\beta_{10} - 5\beta_{8} - 10\beta_{6} + 13\beta_{3} - 12\beta_{2} + 14\beta _1 - 18 ) / 2 Copy content Toggle raw display
ν5\nu^{5}== (44β1535β144β13+17β9+22β7+13β5+3β4)/2 ( 44\beta_{15} - 35\beta_{14} - 4\beta_{13} + 17\beta_{9} + 22\beta_{7} + 13\beta_{5} + 3\beta_{4} ) / 2 Copy content Toggle raw display
ν6\nu^{6}== 26β1110β10+52β8+55β6+68β3+16β2+16β126 -26\beta_{11} - 10\beta_{10} + 52\beta_{8} + 55\beta_{6} + 68\beta_{3} + 16\beta_{2} + 16\beta _1 - 26 Copy content Toggle raw display
ν7\nu^{7}== (130β159β14+52β12+199β9+260β7169β5121β4)/2 ( 130\beta_{15} - 9\beta_{14} + 52\beta_{12} + 199\beta_{9} + 260\beta_{7} - 169\beta_{5} - 121\beta_{4} ) / 2 Copy content Toggle raw display
ν8\nu^{8}== (212β1178β10+195β8+1300β6+533β3+78β2+212β178)/2 ( 212\beta_{11} - 78\beta_{10} + 195\beta_{8} + 1300\beta_{6} + 533\beta_{3} + 78\beta_{2} + 212\beta _1 - 78 ) / 2 Copy content Toggle raw display
ν9\nu^{9}== 219β15+890β1463β13+63β12+866β9+219β7++78β4 - 219 \beta_{15} + 890 \beta_{14} - 63 \beta_{13} + 63 \beta_{12} + 866 \beta_{9} + 219 \beta_{7} + \cdots + 78 \beta_{4} Copy content Toggle raw display
ν10\nu^{10}== (1888β111888β10+565β8+2190β6867β32062β2++1432)/2 ( 1888 \beta_{11} - 1888 \beta_{10} + 565 \beta_{8} + 2190 \beta_{6} - 867 \beta_{3} - 2062 \beta_{2} + \cdots + 1432 ) / 2 Copy content Toggle raw display
ν11\nu^{11}== (256β15435β14+1606β131043β9128β7+563β5+10003β4)/2 ( -256\beta_{15} - 435\beta_{14} + 1606\beta_{13} - 1043\beta_{9} - 128\beta_{7} + 563\beta_{5} + 10003\beta_{4} ) / 2 Copy content Toggle raw display
ν12\nu^{12}== 304β114480β10+4312β8320β6472β34784β24784β1+8799 304\beta_{11} - 4480\beta_{10} + 4312\beta_{8} - 320\beta_{6} - 472\beta_{3} - 4784\beta_{2} - 4784\beta _1 + 8799 Copy content Toggle raw display
ν13\nu^{13}== (8320β1522609β14+16382β1261711β9+16640β7++33969β4)/2 ( 8320 \beta_{15} - 22609 \beta_{14} + 16382 \beta_{12} - 61711 \beta_{9} + 16640 \beta_{7} + \cdots + 33969 \beta_{4} ) / 2 Copy content Toggle raw display
ν14\nu^{14}== (11778β11+27742β1020155β8+83200β6+34013β3++27742)/2 ( - 11778 \beta_{11} + 27742 \beta_{10} - 20155 \beta_{8} + 83200 \beta_{6} + 34013 \beta_{3} + \cdots + 27742 ) / 2 Copy content Toggle raw display
ν15\nu^{15}== 26689β15+27075β1432973β13+32973β1268969β9+3142β4 - 26689 \beta_{15} + 27075 \beta_{14} - 32973 \beta_{13} + 32973 \beta_{12} - 68969 \beta_{9} + \cdots - 3142 \beta_{4} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/810Z)×\left(\mathbb{Z}/810\mathbb{Z}\right)^\times.

nn 487487 731731
χ(n)\chi(n) β6\beta_{6} 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
323.1
−1.79407 1.33466i
−2.22946 + 0.171822i
2.05289 + 0.886375i
1.26353 1.84485i
−1.26353 + 1.84485i
−2.05289 0.886375i
2.22946 0.171822i
1.79407 + 1.33466i
−1.79407 + 1.33466i
−2.22946 0.171822i
2.05289 0.886375i
1.26353 + 1.84485i
−1.26353 1.84485i
−2.05289 + 0.886375i
2.22946 + 0.171822i
1.79407 1.33466i
−0.707107 0.707107i 0 1.00000i −2.05289 + 0.886375i 0 0.887499 0.887499i 0.707107 0.707107i 0 2.07837 + 0.824847i
323.2 −0.707107 0.707107i 0 1.00000i −1.26353 1.84485i 0 −1.24299 + 1.24299i 0.707107 0.707107i 0 −0.411058 + 2.19796i
323.3 −0.707107 0.707107i 0 1.00000i 1.79407 1.33466i 0 −2.25352 + 2.25352i 0.707107 0.707107i 0 −2.21235 0.324847i
323.4 −0.707107 0.707107i 0 1.00000i 2.22946 + 0.171822i 0 1.60902 1.60902i 0.707107 0.707107i 0 −1.45497 1.69796i
323.5 0.707107 + 0.707107i 0 1.00000i −2.22946 0.171822i 0 1.60902 1.60902i −0.707107 + 0.707107i 0 −1.45497 1.69796i
323.6 0.707107 + 0.707107i 0 1.00000i −1.79407 + 1.33466i 0 −2.25352 + 2.25352i −0.707107 + 0.707107i 0 −2.21235 0.324847i
323.7 0.707107 + 0.707107i 0 1.00000i 1.26353 + 1.84485i 0 −1.24299 + 1.24299i −0.707107 + 0.707107i 0 −0.411058 + 2.19796i
323.8 0.707107 + 0.707107i 0 1.00000i 2.05289 0.886375i 0 0.887499 0.887499i −0.707107 + 0.707107i 0 2.07837 + 0.824847i
647.1 −0.707107 + 0.707107i 0 1.00000i −2.05289 0.886375i 0 0.887499 + 0.887499i 0.707107 + 0.707107i 0 2.07837 0.824847i
647.2 −0.707107 + 0.707107i 0 1.00000i −1.26353 + 1.84485i 0 −1.24299 1.24299i 0.707107 + 0.707107i 0 −0.411058 2.19796i
647.3 −0.707107 + 0.707107i 0 1.00000i 1.79407 + 1.33466i 0 −2.25352 2.25352i 0.707107 + 0.707107i 0 −2.21235 + 0.324847i
647.4 −0.707107 + 0.707107i 0 1.00000i 2.22946 0.171822i 0 1.60902 + 1.60902i 0.707107 + 0.707107i 0 −1.45497 + 1.69796i
647.5 0.707107 0.707107i 0 1.00000i −2.22946 + 0.171822i 0 1.60902 + 1.60902i −0.707107 0.707107i 0 −1.45497 + 1.69796i
647.6 0.707107 0.707107i 0 1.00000i −1.79407 1.33466i 0 −2.25352 2.25352i −0.707107 0.707107i 0 −2.21235 + 0.324847i
647.7 0.707107 0.707107i 0 1.00000i 1.26353 1.84485i 0 −1.24299 1.24299i −0.707107 0.707107i 0 −0.411058 2.19796i
647.8 0.707107 0.707107i 0 1.00000i 2.05289 + 0.886375i 0 0.887499 + 0.887499i −0.707107 0.707107i 0 2.07837 0.824847i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 323.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.c odd 4 1 inner
15.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 810.2.f.d 16
3.b odd 2 1 inner 810.2.f.d 16
5.c odd 4 1 inner 810.2.f.d 16
9.c even 3 1 810.2.m.i 16
9.c even 3 1 810.2.m.j 16
9.d odd 6 1 810.2.m.i 16
9.d odd 6 1 810.2.m.j 16
15.e even 4 1 inner 810.2.f.d 16
45.k odd 12 1 810.2.m.i 16
45.k odd 12 1 810.2.m.j 16
45.l even 12 1 810.2.m.i 16
45.l even 12 1 810.2.m.j 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
810.2.f.d 16 1.a even 1 1 trivial
810.2.f.d 16 3.b odd 2 1 inner
810.2.f.d 16 5.c odd 4 1 inner
810.2.f.d 16 15.e even 4 1 inner
810.2.m.i 16 9.c even 3 1
810.2.m.i 16 9.d odd 6 1
810.2.m.i 16 45.k odd 12 1
810.2.m.i 16 45.l even 12 1
810.2.m.j 16 9.c even 3 1
810.2.m.j 16 9.d odd 6 1
810.2.m.j 16 45.k odd 12 1
810.2.m.j 16 45.l even 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T78+2T77+2T7610T75+49T74+40T73+32T72128T7+256 T_{7}^{8} + 2T_{7}^{7} + 2T_{7}^{6} - 10T_{7}^{5} + 49T_{7}^{4} + 40T_{7}^{3} + 32T_{7}^{2} - 128T_{7} + 256 acting on S2new(810,[χ])S_{2}^{\mathrm{new}}(810, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T4+1)4 (T^{4} + 1)^{4} Copy content Toggle raw display
33 T16 T^{16} Copy content Toggle raw display
55 T1616T14++390625 T^{16} - 16 T^{14} + \cdots + 390625 Copy content Toggle raw display
77 (T8+2T7++256)2 (T^{8} + 2 T^{7} + \cdots + 256)^{2} Copy content Toggle raw display
1111 (T8+68T6++4096)2 (T^{8} + 68 T^{6} + \cdots + 4096)^{2} Copy content Toggle raw display
1313 (T824T5++19881)2 (T^{8} - 24 T^{5} + \cdots + 19881)^{2} Copy content Toggle raw display
1717 T16+874T12++6250000 T^{16} + 874 T^{12} + \cdots + 6250000 Copy content Toggle raw display
1919 (T8+46T6++256)2 (T^{8} + 46 T^{6} + \cdots + 256)^{2} Copy content Toggle raw display
2323 T16++409600000000 T^{16} + \cdots + 409600000000 Copy content Toggle raw display
2929 (T8164T6++65536)2 (T^{8} - 164 T^{6} + \cdots + 65536)^{2} Copy content Toggle raw display
3131 (T4+2T3++736)4 (T^{4} + 2 T^{3} + \cdots + 736)^{4} Copy content Toggle raw display
3737 (T8+6T7++324)2 (T^{8} + 6 T^{7} + \cdots + 324)^{2} Copy content Toggle raw display
4141 (T8+176T6++487204)2 (T^{8} + 176 T^{6} + \cdots + 487204)^{2} Copy content Toggle raw display
4343 (T824T7++589824)2 (T^{8} - 24 T^{7} + \cdots + 589824)^{2} Copy content Toggle raw display
4747 T16++429981696 T^{16} + \cdots + 429981696 Copy content Toggle raw display
5353 T16++260120641601536 T^{16} + \cdots + 260120641601536 Copy content Toggle raw display
5959 (T8236T6++495616)2 (T^{8} - 236 T^{6} + \cdots + 495616)^{2} Copy content Toggle raw display
6161 (T4+18T3+3378)4 (T^{4} + 18 T^{3} + \cdots - 3378)^{4} Copy content Toggle raw display
6767 (T84T7++4096)2 (T^{8} - 4 T^{7} + \cdots + 4096)^{2} Copy content Toggle raw display
7171 (T8+140T6++1024)2 (T^{8} + 140 T^{6} + \cdots + 1024)^{2} Copy content Toggle raw display
7373 (T8+34T7++952576)2 (T^{8} + 34 T^{7} + \cdots + 952576)^{2} Copy content Toggle raw display
7979 (T8+600T6++147456)2 (T^{8} + 600 T^{6} + \cdots + 147456)^{2} Copy content Toggle raw display
8383 T16+7032T12++84934656 T^{16} + 7032 T^{12} + \cdots + 84934656 Copy content Toggle raw display
8989 (T8176T6++1865956)2 (T^{8} - 176 T^{6} + \cdots + 1865956)^{2} Copy content Toggle raw display
9797 (T812T7++2304)2 (T^{8} - 12 T^{7} + \cdots + 2304)^{2} Copy content Toggle raw display
show more
show less