Properties

Label 810.2.f.d
Level $810$
Weight $2$
Character orbit 810.f
Analytic conductor $6.468$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [810,2,Mod(323,810)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(810, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("810.323");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 810.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.46788256372\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 16x^{14} + 145x^{12} - 976x^{10} + 5296x^{8} - 24400x^{6} + 90625x^{4} - 250000x^{2} + 390625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{14} q^{2} - \beta_{6} q^{4} + (\beta_{13} - \beta_{9}) q^{5} + (\beta_{3} + \beta_{2} - 1) q^{7} - \beta_{9} q^{8} + \beta_{11} q^{10} + (\beta_{15} - \beta_{14} + \cdots - \beta_{7}) q^{11}+ \cdots + (\beta_{15} - \beta_{13} + \cdots - \beta_{4}) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{7} - 8 q^{10} - 16 q^{16} + 8 q^{22} + 32 q^{25} - 4 q^{28} - 8 q^{31} - 12 q^{37} - 4 q^{40} + 48 q^{43} + 40 q^{46} - 24 q^{55} + 28 q^{58} - 72 q^{61} + 8 q^{67} + 4 q^{70} - 68 q^{73} + 16 q^{76}+ \cdots + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - 16x^{14} + 145x^{12} - 976x^{10} + 5296x^{8} - 24400x^{6} + 90625x^{4} - 250000x^{2} + 390625 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 44 \nu^{14} - 28729 \nu^{12} + 107280 \nu^{10} - 180944 \nu^{8} + 885424 \nu^{6} + \cdots + 336734375 ) / 186750000 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 1567 \nu^{14} - 242897 \nu^{12} + 1523040 \nu^{10} - 9443392 \nu^{8} + 53796032 \nu^{6} + \cdots - 1179640625 ) / 933750000 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 9011 \nu^{14} + 63901 \nu^{12} - 160320 \nu^{10} - 463264 \nu^{8} + 12176144 \nu^{6} + \cdots - 792171875 ) / 933750000 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 4349 \nu^{15} - 63109 \nu^{13} + 888880 \nu^{11} - 3642624 \nu^{9} + 19512704 \nu^{7} + \cdots - 876703125 \nu ) / 1556250000 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 16061 \nu^{15} + 161549 \nu^{13} - 2185680 \nu^{11} + 15272464 \nu^{9} - 89721344 \nu^{7} + \cdots + 3677328125 \nu ) / 4668750000 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 577 \nu^{14} - 4232 \nu^{12} + 30540 \nu^{10} - 143152 \nu^{8} + 744542 \nu^{6} - 3328800 \nu^{4} + \cdots - 15875000 ) / 23343750 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 6363 \nu^{15} + 90892 \nu^{13} - 727440 \nu^{11} + 4863712 \nu^{9} - 15526752 \nu^{7} + \cdots + 443937500 \nu ) / 1556250000 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 69347 \nu^{14} + 790627 \nu^{12} - 6200640 \nu^{10} + 36236672 \nu^{8} - 177640912 \nu^{6} + \cdots + 4664171875 ) / 933750000 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 13367 \nu^{15} - 169072 \nu^{13} + 1194540 \nu^{11} - 6245192 \nu^{9} + 32279332 \nu^{7} + \cdots - 653312500 \nu ) / 1167187500 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 75019 \nu^{14} + 1022204 \nu^{12} - 8621280 \nu^{10} + 48696544 \nu^{8} - 247775024 \nu^{6} + \cdots + 6113187500 ) / 933750000 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 16697 \nu^{14} + 151852 \nu^{12} - 1130640 \nu^{10} + 6810272 \nu^{8} - 33044512 \nu^{6} + \cdots + 587687500 ) / 186750000 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 75019 \nu^{15} - 1022204 \nu^{13} + 8621280 \nu^{11} - 48696544 \nu^{9} + 247775024 \nu^{7} + \cdots - 2378187500 \nu ) / 4668750000 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 97372 \nu^{15} + 1140527 \nu^{13} - 10322640 \nu^{11} + 66769072 \nu^{9} + \cdots + 15696359375 \nu ) / 4668750000 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 24896 \nu^{15} + 254311 \nu^{13} - 1903020 \nu^{11} + 11552996 \nu^{9} + \cdots + 1293296875 \nu ) / 1167187500 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 123904 \nu^{15} + 1002989 \nu^{13} - 7284480 \nu^{11} + 41418304 \nu^{9} + \cdots + 4978578125 \nu ) / 4668750000 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{14} + 2\beta_{12} - \beta_{9} + \beta_{5} - \beta_{4} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 2\beta_{11} + 2\beta_{10} - 5\beta_{8} + 3\beta_{3} - 2\beta_{2} + 2\beta _1 + 2 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{15} + 5\beta_{14} - 3\beta_{13} + 3\beta_{12} + \beta_{9} - \beta_{7} + 6\beta_{5} - 2\beta_{4} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -2\beta_{11} + 2\beta_{10} - 5\beta_{8} - 10\beta_{6} + 13\beta_{3} - 12\beta_{2} + 14\beta _1 - 18 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 44\beta_{15} - 35\beta_{14} - 4\beta_{13} + 17\beta_{9} + 22\beta_{7} + 13\beta_{5} + 3\beta_{4} ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -26\beta_{11} - 10\beta_{10} + 52\beta_{8} + 55\beta_{6} + 68\beta_{3} + 16\beta_{2} + 16\beta _1 - 26 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 130\beta_{15} - 9\beta_{14} + 52\beta_{12} + 199\beta_{9} + 260\beta_{7} - 169\beta_{5} - 121\beta_{4} ) / 2 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 212\beta_{11} - 78\beta_{10} + 195\beta_{8} + 1300\beta_{6} + 533\beta_{3} + 78\beta_{2} + 212\beta _1 - 78 ) / 2 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 219 \beta_{15} + 890 \beta_{14} - 63 \beta_{13} + 63 \beta_{12} + 866 \beta_{9} + 219 \beta_{7} + \cdots + 78 \beta_{4} \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 1888 \beta_{11} - 1888 \beta_{10} + 565 \beta_{8} + 2190 \beta_{6} - 867 \beta_{3} - 2062 \beta_{2} + \cdots + 1432 ) / 2 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( -256\beta_{15} - 435\beta_{14} + 1606\beta_{13} - 1043\beta_{9} - 128\beta_{7} + 563\beta_{5} + 10003\beta_{4} ) / 2 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 304\beta_{11} - 4480\beta_{10} + 4312\beta_{8} - 320\beta_{6} - 472\beta_{3} - 4784\beta_{2} - 4784\beta _1 + 8799 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( 8320 \beta_{15} - 22609 \beta_{14} + 16382 \beta_{12} - 61711 \beta_{9} + 16640 \beta_{7} + \cdots + 33969 \beta_{4} ) / 2 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( - 11778 \beta_{11} + 27742 \beta_{10} - 20155 \beta_{8} + 83200 \beta_{6} + 34013 \beta_{3} + \cdots + 27742 ) / 2 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( - 26689 \beta_{15} + 27075 \beta_{14} - 32973 \beta_{13} + 32973 \beta_{12} - 68969 \beta_{9} + \cdots - 3142 \beta_{4} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/810\mathbb{Z}\right)^\times\).

\(n\) \(487\) \(731\)
\(\chi(n)\) \(\beta_{6}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
323.1
−1.79407 1.33466i
−2.22946 + 0.171822i
2.05289 + 0.886375i
1.26353 1.84485i
−1.26353 + 1.84485i
−2.05289 0.886375i
2.22946 0.171822i
1.79407 + 1.33466i
−1.79407 + 1.33466i
−2.22946 0.171822i
2.05289 0.886375i
1.26353 + 1.84485i
−1.26353 1.84485i
−2.05289 + 0.886375i
2.22946 + 0.171822i
1.79407 1.33466i
−0.707107 0.707107i 0 1.00000i −2.05289 + 0.886375i 0 0.887499 0.887499i 0.707107 0.707107i 0 2.07837 + 0.824847i
323.2 −0.707107 0.707107i 0 1.00000i −1.26353 1.84485i 0 −1.24299 + 1.24299i 0.707107 0.707107i 0 −0.411058 + 2.19796i
323.3 −0.707107 0.707107i 0 1.00000i 1.79407 1.33466i 0 −2.25352 + 2.25352i 0.707107 0.707107i 0 −2.21235 0.324847i
323.4 −0.707107 0.707107i 0 1.00000i 2.22946 + 0.171822i 0 1.60902 1.60902i 0.707107 0.707107i 0 −1.45497 1.69796i
323.5 0.707107 + 0.707107i 0 1.00000i −2.22946 0.171822i 0 1.60902 1.60902i −0.707107 + 0.707107i 0 −1.45497 1.69796i
323.6 0.707107 + 0.707107i 0 1.00000i −1.79407 + 1.33466i 0 −2.25352 + 2.25352i −0.707107 + 0.707107i 0 −2.21235 0.324847i
323.7 0.707107 + 0.707107i 0 1.00000i 1.26353 + 1.84485i 0 −1.24299 + 1.24299i −0.707107 + 0.707107i 0 −0.411058 + 2.19796i
323.8 0.707107 + 0.707107i 0 1.00000i 2.05289 0.886375i 0 0.887499 0.887499i −0.707107 + 0.707107i 0 2.07837 + 0.824847i
647.1 −0.707107 + 0.707107i 0 1.00000i −2.05289 0.886375i 0 0.887499 + 0.887499i 0.707107 + 0.707107i 0 2.07837 0.824847i
647.2 −0.707107 + 0.707107i 0 1.00000i −1.26353 + 1.84485i 0 −1.24299 1.24299i 0.707107 + 0.707107i 0 −0.411058 2.19796i
647.3 −0.707107 + 0.707107i 0 1.00000i 1.79407 + 1.33466i 0 −2.25352 2.25352i 0.707107 + 0.707107i 0 −2.21235 + 0.324847i
647.4 −0.707107 + 0.707107i 0 1.00000i 2.22946 0.171822i 0 1.60902 + 1.60902i 0.707107 + 0.707107i 0 −1.45497 + 1.69796i
647.5 0.707107 0.707107i 0 1.00000i −2.22946 + 0.171822i 0 1.60902 + 1.60902i −0.707107 0.707107i 0 −1.45497 + 1.69796i
647.6 0.707107 0.707107i 0 1.00000i −1.79407 1.33466i 0 −2.25352 2.25352i −0.707107 0.707107i 0 −2.21235 + 0.324847i
647.7 0.707107 0.707107i 0 1.00000i 1.26353 1.84485i 0 −1.24299 1.24299i −0.707107 0.707107i 0 −0.411058 2.19796i
647.8 0.707107 0.707107i 0 1.00000i 2.05289 + 0.886375i 0 0.887499 + 0.887499i −0.707107 0.707107i 0 2.07837 0.824847i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 323.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.c odd 4 1 inner
15.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 810.2.f.d 16
3.b odd 2 1 inner 810.2.f.d 16
5.c odd 4 1 inner 810.2.f.d 16
9.c even 3 1 810.2.m.i 16
9.c even 3 1 810.2.m.j 16
9.d odd 6 1 810.2.m.i 16
9.d odd 6 1 810.2.m.j 16
15.e even 4 1 inner 810.2.f.d 16
45.k odd 12 1 810.2.m.i 16
45.k odd 12 1 810.2.m.j 16
45.l even 12 1 810.2.m.i 16
45.l even 12 1 810.2.m.j 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
810.2.f.d 16 1.a even 1 1 trivial
810.2.f.d 16 3.b odd 2 1 inner
810.2.f.d 16 5.c odd 4 1 inner
810.2.f.d 16 15.e even 4 1 inner
810.2.m.i 16 9.c even 3 1
810.2.m.i 16 9.d odd 6 1
810.2.m.i 16 45.k odd 12 1
810.2.m.i 16 45.l even 12 1
810.2.m.j 16 9.c even 3 1
810.2.m.j 16 9.d odd 6 1
810.2.m.j 16 45.k odd 12 1
810.2.m.j 16 45.l even 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{8} + 2T_{7}^{7} + 2T_{7}^{6} - 10T_{7}^{5} + 49T_{7}^{4} + 40T_{7}^{3} + 32T_{7}^{2} - 128T_{7} + 256 \) acting on \(S_{2}^{\mathrm{new}}(810, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} + 1)^{4} \) Copy content Toggle raw display
$3$ \( T^{16} \) Copy content Toggle raw display
$5$ \( T^{16} - 16 T^{14} + \cdots + 390625 \) Copy content Toggle raw display
$7$ \( (T^{8} + 2 T^{7} + \cdots + 256)^{2} \) Copy content Toggle raw display
$11$ \( (T^{8} + 68 T^{6} + \cdots + 4096)^{2} \) Copy content Toggle raw display
$13$ \( (T^{8} - 24 T^{5} + \cdots + 19881)^{2} \) Copy content Toggle raw display
$17$ \( T^{16} + 874 T^{12} + \cdots + 6250000 \) Copy content Toggle raw display
$19$ \( (T^{8} + 46 T^{6} + \cdots + 256)^{2} \) Copy content Toggle raw display
$23$ \( T^{16} + \cdots + 409600000000 \) Copy content Toggle raw display
$29$ \( (T^{8} - 164 T^{6} + \cdots + 65536)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} + 2 T^{3} + \cdots + 736)^{4} \) Copy content Toggle raw display
$37$ \( (T^{8} + 6 T^{7} + \cdots + 324)^{2} \) Copy content Toggle raw display
$41$ \( (T^{8} + 176 T^{6} + \cdots + 487204)^{2} \) Copy content Toggle raw display
$43$ \( (T^{8} - 24 T^{7} + \cdots + 589824)^{2} \) Copy content Toggle raw display
$47$ \( T^{16} + \cdots + 429981696 \) Copy content Toggle raw display
$53$ \( T^{16} + \cdots + 260120641601536 \) Copy content Toggle raw display
$59$ \( (T^{8} - 236 T^{6} + \cdots + 495616)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} + 18 T^{3} + \cdots - 3378)^{4} \) Copy content Toggle raw display
$67$ \( (T^{8} - 4 T^{7} + \cdots + 4096)^{2} \) Copy content Toggle raw display
$71$ \( (T^{8} + 140 T^{6} + \cdots + 1024)^{2} \) Copy content Toggle raw display
$73$ \( (T^{8} + 34 T^{7} + \cdots + 952576)^{2} \) Copy content Toggle raw display
$79$ \( (T^{8} + 600 T^{6} + \cdots + 147456)^{2} \) Copy content Toggle raw display
$83$ \( T^{16} + 7032 T^{12} + \cdots + 84934656 \) Copy content Toggle raw display
$89$ \( (T^{8} - 176 T^{6} + \cdots + 1865956)^{2} \) Copy content Toggle raw display
$97$ \( (T^{8} - 12 T^{7} + \cdots + 2304)^{2} \) Copy content Toggle raw display
show more
show less