Properties

Label 810.2.f.d.323.1
Level $810$
Weight $2$
Character 810.323
Analytic conductor $6.468$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [810,2,Mod(323,810)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(810, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("810.323");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 810.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.46788256372\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 16x^{14} + 145x^{12} - 976x^{10} + 5296x^{8} - 24400x^{6} + 90625x^{4} - 250000x^{2} + 390625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 323.1
Root \(-1.79407 - 1.33466i\) of defining polynomial
Character \(\chi\) \(=\) 810.323
Dual form 810.2.f.d.647.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{2} +1.00000i q^{4} +(-2.05289 + 0.886375i) q^{5} +(0.887499 - 0.887499i) q^{7} +(0.707107 - 0.707107i) q^{8} +(2.07837 + 0.824847i) q^{10} -0.918806i q^{11} +(1.40897 + 1.40897i) q^{13} -1.25511 q^{14} -1.00000 q^{16} +(-0.765342 - 0.765342i) q^{17} +2.42469i q^{19} +(-0.886375 - 2.05289i) q^{20} +(-0.649694 + 0.649694i) q^{22} +(-5.79806 + 5.79806i) q^{23} +(3.42868 - 3.63925i) q^{25} -1.99259i q^{26} +(0.887499 + 0.887499i) q^{28} +5.25752 q^{29} +8.70320 q^{31} +(0.707107 + 0.707107i) q^{32} +1.08236i q^{34} +(-1.03528 + 2.60859i) q^{35} +(-5.63527 + 5.63527i) q^{37} +(1.71452 - 1.71452i) q^{38} +(-0.824847 + 2.07837i) q^{40} +10.9973i q^{41} +(6.42469 + 6.42469i) q^{43} +0.918806 q^{44} +8.19969 q^{46} +(0.795710 + 0.795710i) q^{47} +5.42469i q^{49} +(-4.99778 + 0.148901i) q^{50} +(-1.40897 + 1.40897i) q^{52} +(8.52312 - 8.52312i) q^{53} +(0.814407 + 1.88620i) q^{55} -1.25511i q^{56} +(-3.71763 - 3.71763i) q^{58} +5.55349 q^{59} -2.83175 q^{61} +(-6.15409 - 6.15409i) q^{62} -1.00000i q^{64} +(-4.14134 - 1.64358i) q^{65} +(1.61028 - 1.61028i) q^{67} +(0.765342 - 0.765342i) q^{68} +(2.57660 - 1.11250i) q^{70} +11.1564i q^{71} +(-6.25352 - 6.25352i) q^{73} +7.96947 q^{74} -2.42469 q^{76} +(-0.815440 - 0.815440i) q^{77} +15.3020i q^{79} +(2.05289 - 0.886375i) q^{80} +(7.77629 - 7.77629i) q^{82} +(1.57331 - 1.57331i) q^{83} +(2.24954 + 0.892779i) q^{85} -9.08589i q^{86} +(-0.649694 - 0.649694i) q^{88} +4.28298 q^{89} +2.50092 q^{91} +(-5.79806 - 5.79806i) q^{92} -1.12530i q^{94} +(-2.14919 - 4.97761i) q^{95} +(0.350306 - 0.350306i) q^{97} +(3.83584 - 3.83584i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{7} - 8 q^{10} - 16 q^{16} + 8 q^{22} + 32 q^{25} - 4 q^{28} - 8 q^{31} - 12 q^{37} - 4 q^{40} + 48 q^{43} + 40 q^{46} - 24 q^{55} + 28 q^{58} - 72 q^{61} + 8 q^{67} + 4 q^{70} - 68 q^{73} + 16 q^{76}+ \cdots + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/810\mathbb{Z}\right)^\times\).

\(n\) \(487\) \(731\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 0.707107i −0.500000 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) −2.05289 + 0.886375i −0.918078 + 0.396399i
\(6\) 0 0
\(7\) 0.887499 0.887499i 0.335443 0.335443i −0.519206 0.854649i \(-0.673772\pi\)
0.854649 + 0.519206i \(0.173772\pi\)
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) 0 0
\(10\) 2.07837 + 0.824847i 0.657239 + 0.260840i
\(11\) 0.918806i 0.277031i −0.990360 0.138515i \(-0.955767\pi\)
0.990360 0.138515i \(-0.0442330\pi\)
\(12\) 0 0
\(13\) 1.40897 + 1.40897i 0.390779 + 0.390779i 0.874965 0.484186i \(-0.160884\pi\)
−0.484186 + 0.874965i \(0.660884\pi\)
\(14\) −1.25511 −0.335443
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −0.765342 0.765342i −0.185623 0.185623i 0.608178 0.793801i \(-0.291901\pi\)
−0.793801 + 0.608178i \(0.791901\pi\)
\(18\) 0 0
\(19\) 2.42469i 0.556262i 0.960543 + 0.278131i \(0.0897150\pi\)
−0.960543 + 0.278131i \(0.910285\pi\)
\(20\) −0.886375 2.05289i −0.198200 0.459039i
\(21\) 0 0
\(22\) −0.649694 + 0.649694i −0.138515 + 0.138515i
\(23\) −5.79806 + 5.79806i −1.20898 + 1.20898i −0.237620 + 0.971358i \(0.576367\pi\)
−0.971358 + 0.237620i \(0.923633\pi\)
\(24\) 0 0
\(25\) 3.42868 3.63925i 0.685735 0.727851i
\(26\) 1.99259i 0.390779i
\(27\) 0 0
\(28\) 0.887499 + 0.887499i 0.167722 + 0.167722i
\(29\) 5.25752 0.976296 0.488148 0.872761i \(-0.337673\pi\)
0.488148 + 0.872761i \(0.337673\pi\)
\(30\) 0 0
\(31\) 8.70320 1.56314 0.781571 0.623817i \(-0.214419\pi\)
0.781571 + 0.623817i \(0.214419\pi\)
\(32\) 0.707107 + 0.707107i 0.125000 + 0.125000i
\(33\) 0 0
\(34\) 1.08236i 0.185623i
\(35\) −1.03528 + 2.60859i −0.174994 + 0.440932i
\(36\) 0 0
\(37\) −5.63527 + 5.63527i −0.926433 + 0.926433i −0.997473 0.0710409i \(-0.977368\pi\)
0.0710409 + 0.997473i \(0.477368\pi\)
\(38\) 1.71452 1.71452i 0.278131 0.278131i
\(39\) 0 0
\(40\) −0.824847 + 2.07837i −0.130420 + 0.328619i
\(41\) 10.9973i 1.71750i 0.512398 + 0.858748i \(0.328757\pi\)
−0.512398 + 0.858748i \(0.671243\pi\)
\(42\) 0 0
\(43\) 6.42469 + 6.42469i 0.979756 + 0.979756i 0.999799 0.0200428i \(-0.00638025\pi\)
−0.0200428 + 0.999799i \(0.506380\pi\)
\(44\) 0.918806 0.138515
\(45\) 0 0
\(46\) 8.19969 1.20898
\(47\) 0.795710 + 0.795710i 0.116066 + 0.116066i 0.762754 0.646688i \(-0.223847\pi\)
−0.646688 + 0.762754i \(0.723847\pi\)
\(48\) 0 0
\(49\) 5.42469i 0.774956i
\(50\) −4.99778 + 0.148901i −0.706793 + 0.0210577i
\(51\) 0 0
\(52\) −1.40897 + 1.40897i −0.195389 + 0.195389i
\(53\) 8.52312 8.52312i 1.17074 1.17074i 0.188707 0.982034i \(-0.439571\pi\)
0.982034 0.188707i \(-0.0604295\pi\)
\(54\) 0 0
\(55\) 0.814407 + 1.88620i 0.109815 + 0.254336i
\(56\) 1.25511i 0.167722i
\(57\) 0 0
\(58\) −3.71763 3.71763i −0.488148 0.488148i
\(59\) 5.55349 0.723002 0.361501 0.932372i \(-0.382264\pi\)
0.361501 + 0.932372i \(0.382264\pi\)
\(60\) 0 0
\(61\) −2.83175 −0.362568 −0.181284 0.983431i \(-0.558025\pi\)
−0.181284 + 0.983431i \(0.558025\pi\)
\(62\) −6.15409 6.15409i −0.781571 0.781571i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −4.14134 1.64358i −0.513670 0.203861i
\(66\) 0 0
\(67\) 1.61028 1.61028i 0.196728 0.196728i −0.601868 0.798596i \(-0.705577\pi\)
0.798596 + 0.601868i \(0.205577\pi\)
\(68\) 0.765342 0.765342i 0.0928113 0.0928113i
\(69\) 0 0
\(70\) 2.57660 1.11250i 0.307963 0.132969i
\(71\) 11.1564i 1.32403i 0.749492 + 0.662013i \(0.230298\pi\)
−0.749492 + 0.662013i \(0.769702\pi\)
\(72\) 0 0
\(73\) −6.25352 6.25352i −0.731920 0.731920i 0.239080 0.971000i \(-0.423154\pi\)
−0.971000 + 0.239080i \(0.923154\pi\)
\(74\) 7.96947 0.926433
\(75\) 0 0
\(76\) −2.42469 −0.278131
\(77\) −0.815440 0.815440i −0.0929280 0.0929280i
\(78\) 0 0
\(79\) 15.3020i 1.72161i 0.508937 + 0.860803i \(0.330038\pi\)
−0.508937 + 0.860803i \(0.669962\pi\)
\(80\) 2.05289 0.886375i 0.229520 0.0990998i
\(81\) 0 0
\(82\) 7.77629 7.77629i 0.858748 0.858748i
\(83\) 1.57331 1.57331i 0.172694 0.172694i −0.615468 0.788162i \(-0.711033\pi\)
0.788162 + 0.615468i \(0.211033\pi\)
\(84\) 0 0
\(85\) 2.24954 + 0.892779i 0.243997 + 0.0968354i
\(86\) 9.08589i 0.979756i
\(87\) 0 0
\(88\) −0.649694 0.649694i −0.0692576 0.0692576i
\(89\) 4.28298 0.453995 0.226997 0.973895i \(-0.427109\pi\)
0.226997 + 0.973895i \(0.427109\pi\)
\(90\) 0 0
\(91\) 2.50092 0.262168
\(92\) −5.79806 5.79806i −0.604489 0.604489i
\(93\) 0 0
\(94\) 1.12530i 0.116066i
\(95\) −2.14919 4.97761i −0.220502 0.510692i
\(96\) 0 0
\(97\) 0.350306 0.350306i 0.0355682 0.0355682i −0.689099 0.724667i \(-0.741994\pi\)
0.724667 + 0.689099i \(0.241994\pi\)
\(98\) 3.83584 3.83584i 0.387478 0.387478i
\(99\) 0 0
\(100\) 3.63925 + 3.42868i 0.363925 + 0.342868i
\(101\) 5.32238i 0.529596i 0.964304 + 0.264798i \(0.0853054\pi\)
−0.964304 + 0.264798i \(0.914695\pi\)
\(102\) 0 0
\(103\) −8.94101 8.94101i −0.880983 0.880983i 0.112651 0.993635i \(-0.464066\pi\)
−0.993635 + 0.112651i \(0.964066\pi\)
\(104\) 1.99259 0.195389
\(105\) 0 0
\(106\) −12.0535 −1.17074
\(107\) −2.49212 2.49212i −0.240922 0.240922i 0.576309 0.817232i \(-0.304492\pi\)
−0.817232 + 0.576309i \(0.804492\pi\)
\(108\) 0 0
\(109\) 13.5420i 1.29709i −0.761176 0.648545i \(-0.775378\pi\)
0.761176 0.648545i \(-0.224622\pi\)
\(110\) 0.757875 1.90962i 0.0722605 0.182075i
\(111\) 0 0
\(112\) −0.887499 + 0.887499i −0.0838608 + 0.0838608i
\(113\) 5.42909 5.42909i 0.510725 0.510725i −0.404023 0.914749i \(-0.632389\pi\)
0.914749 + 0.404023i \(0.132389\pi\)
\(114\) 0 0
\(115\) 6.76349 17.0420i 0.630699 1.58917i
\(116\) 5.25752i 0.488148i
\(117\) 0 0
\(118\) −3.92691 3.92691i −0.361501 0.361501i
\(119\) −1.35848 −0.124532
\(120\) 0 0
\(121\) 10.1558 0.923254
\(122\) 2.00235 + 2.00235i 0.181284 + 0.181284i
\(123\) 0 0
\(124\) 8.70320i 0.781571i
\(125\) −3.81294 + 10.5101i −0.341039 + 0.940049i
\(126\) 0 0
\(127\) −9.70191 + 9.70191i −0.860905 + 0.860905i −0.991443 0.130538i \(-0.958329\pi\)
0.130538 + 0.991443i \(0.458329\pi\)
\(128\) −0.707107 + 0.707107i −0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) 1.76618 + 4.09055i 0.154904 + 0.358765i
\(131\) 5.11381i 0.446796i 0.974727 + 0.223398i \(0.0717150\pi\)
−0.974727 + 0.223398i \(0.928285\pi\)
\(132\) 0 0
\(133\) 2.15191 + 2.15191i 0.186594 + 0.186594i
\(134\) −2.27729 −0.196728
\(135\) 0 0
\(136\) −1.08236 −0.0928113
\(137\) 10.4115 + 10.4115i 0.889514 + 0.889514i 0.994476 0.104962i \(-0.0334721\pi\)
−0.104962 + 0.994476i \(0.533472\pi\)
\(138\) 0 0
\(139\) 17.7267i 1.50356i −0.659416 0.751778i \(-0.729196\pi\)
0.659416 0.751778i \(-0.270804\pi\)
\(140\) −2.60859 1.03528i −0.220466 0.0874968i
\(141\) 0 0
\(142\) 7.88879 7.88879i 0.662013 0.662013i
\(143\) 1.29457 1.29457i 0.108258 0.108258i
\(144\) 0 0
\(145\) −10.7931 + 4.66013i −0.896316 + 0.387003i
\(146\) 8.84382i 0.731920i
\(147\) 0 0
\(148\) −5.63527 5.63527i −0.463216 0.463216i
\(149\) 19.5049 1.59790 0.798950 0.601398i \(-0.205389\pi\)
0.798950 + 0.601398i \(0.205389\pi\)
\(150\) 0 0
\(151\) −14.9538 −1.21692 −0.608462 0.793583i \(-0.708213\pi\)
−0.608462 + 0.793583i \(0.708213\pi\)
\(152\) 1.71452 + 1.71452i 0.139066 + 0.139066i
\(153\) 0 0
\(154\) 1.15321i 0.0929280i
\(155\) −17.8667 + 7.71430i −1.43509 + 0.619628i
\(156\) 0 0
\(157\) −15.3004 + 15.3004i −1.22110 + 1.22110i −0.253860 + 0.967241i \(0.581700\pi\)
−0.967241 + 0.253860i \(0.918300\pi\)
\(158\) 10.8201 10.8201i 0.860803 0.860803i
\(159\) 0 0
\(160\) −2.07837 0.824847i −0.164310 0.0652099i
\(161\) 10.2915i 0.811087i
\(162\) 0 0
\(163\) −9.29939 9.29939i −0.728384 0.728384i 0.241914 0.970298i \(-0.422225\pi\)
−0.970298 + 0.241914i \(0.922225\pi\)
\(164\) −10.9973 −0.858748
\(165\) 0 0
\(166\) −2.22500 −0.172694
\(167\) −11.4746 11.4746i −0.887934 0.887934i 0.106390 0.994324i \(-0.466071\pi\)
−0.994324 + 0.106390i \(0.966071\pi\)
\(168\) 0 0
\(169\) 9.02959i 0.694584i
\(170\) −0.959374 2.22195i −0.0735807 0.170416i
\(171\) 0 0
\(172\) −6.42469 + 6.42469i −0.489878 + 0.489878i
\(173\) 2.45763 2.45763i 0.186850 0.186850i −0.607483 0.794333i \(-0.707821\pi\)
0.794333 + 0.607483i \(0.207821\pi\)
\(174\) 0 0
\(175\) −0.186887 6.27278i −0.0141273 0.474178i
\(176\) 0.918806i 0.0692576i
\(177\) 0 0
\(178\) −3.02852 3.02852i −0.226997 0.226997i
\(179\) −16.2803 −1.21684 −0.608422 0.793614i \(-0.708197\pi\)
−0.608422 + 0.793614i \(0.708197\pi\)
\(180\) 0 0
\(181\) 7.97440 0.592732 0.296366 0.955074i \(-0.404225\pi\)
0.296366 + 0.955074i \(0.404225\pi\)
\(182\) −1.76842 1.76842i −0.131084 0.131084i
\(183\) 0 0
\(184\) 8.19969i 0.604489i
\(185\) 6.57360 16.5635i 0.483301 1.21777i
\(186\) 0 0
\(187\) −0.703201 + 0.703201i −0.0514231 + 0.0514231i
\(188\) −0.795710 + 0.795710i −0.0580331 + 0.0580331i
\(189\) 0 0
\(190\) −2.00000 + 5.03941i −0.145095 + 0.365597i
\(191\) 17.8078i 1.28852i 0.764804 + 0.644262i \(0.222836\pi\)
−0.764804 + 0.644262i \(0.777164\pi\)
\(192\) 0 0
\(193\) 4.60383 + 4.60383i 0.331391 + 0.331391i 0.853115 0.521724i \(-0.174711\pi\)
−0.521724 + 0.853115i \(0.674711\pi\)
\(194\) −0.495407 −0.0355682
\(195\) 0 0
\(196\) −5.42469 −0.387478
\(197\) −0.969574 0.969574i −0.0690793 0.0690793i 0.671723 0.740802i \(-0.265554\pi\)
−0.740802 + 0.671723i \(0.765554\pi\)
\(198\) 0 0
\(199\) 5.55258i 0.393612i 0.980442 + 0.196806i \(0.0630570\pi\)
−0.980442 + 0.196806i \(0.936943\pi\)
\(200\) −0.148901 4.99778i −0.0105289 0.353397i
\(201\) 0 0
\(202\) 3.76349 3.76349i 0.264798 0.264798i
\(203\) 4.66604 4.66604i 0.327492 0.327492i
\(204\) 0 0
\(205\) −9.74777 22.5763i −0.680814 1.57680i
\(206\) 12.6445i 0.880983i
\(207\) 0 0
\(208\) −1.40897 1.40897i −0.0976946 0.0976946i
\(209\) 2.22782 0.154102
\(210\) 0 0
\(211\) −8.82148 −0.607296 −0.303648 0.952784i \(-0.598205\pi\)
−0.303648 + 0.952784i \(0.598205\pi\)
\(212\) 8.52312 + 8.52312i 0.585370 + 0.585370i
\(213\) 0 0
\(214\) 3.52439i 0.240922i
\(215\) −18.8838 7.49447i −1.28787 0.511118i
\(216\) 0 0
\(217\) 7.72408 7.72408i 0.524345 0.524345i
\(218\) −9.57566 + 9.57566i −0.648545 + 0.648545i
\(219\) 0 0
\(220\) −1.88620 + 0.814407i −0.127168 + 0.0549073i
\(221\) 2.15669i 0.145075i
\(222\) 0 0
\(223\) 0.503511 + 0.503511i 0.0337176 + 0.0337176i 0.723765 0.690047i \(-0.242410\pi\)
−0.690047 + 0.723765i \(0.742410\pi\)
\(224\) 1.25511 0.0838608
\(225\) 0 0
\(226\) −7.67789 −0.510725
\(227\) −12.0933 12.0933i −0.802664 0.802664i 0.180847 0.983511i \(-0.442116\pi\)
−0.983511 + 0.180847i \(0.942116\pi\)
\(228\) 0 0
\(229\) 6.65672i 0.439888i −0.975512 0.219944i \(-0.929412\pi\)
0.975512 0.219944i \(-0.0705875\pi\)
\(230\) −16.8330 + 7.26800i −1.10994 + 0.479238i
\(231\) 0 0
\(232\) 3.71763 3.71763i 0.244074 0.244074i
\(233\) 3.86934 3.86934i 0.253489 0.253489i −0.568911 0.822399i \(-0.692635\pi\)
0.822399 + 0.568911i \(0.192635\pi\)
\(234\) 0 0
\(235\) −2.33880 0.928203i −0.152566 0.0605493i
\(236\) 5.55349i 0.361501i
\(237\) 0 0
\(238\) 0.960590 + 0.960590i 0.0622658 + 0.0622658i
\(239\) −3.58630 −0.231979 −0.115989 0.993250i \(-0.537004\pi\)
−0.115989 + 0.993250i \(0.537004\pi\)
\(240\) 0 0
\(241\) −22.1279 −1.42538 −0.712691 0.701478i \(-0.752524\pi\)
−0.712691 + 0.701478i \(0.752524\pi\)
\(242\) −7.18123 7.18123i −0.461627 0.461627i
\(243\) 0 0
\(244\) 2.83175i 0.181284i
\(245\) −4.80831 11.1363i −0.307192 0.711470i
\(246\) 0 0
\(247\) −3.41632 + 3.41632i −0.217375 + 0.217375i
\(248\) 6.15409 6.15409i 0.390785 0.390785i
\(249\) 0 0
\(250\) 10.1279 4.73559i 0.640544 0.299505i
\(251\) 8.90685i 0.562195i −0.959679 0.281098i \(-0.909302\pi\)
0.959679 0.281098i \(-0.0906985\pi\)
\(252\) 0 0
\(253\) 5.32729 + 5.32729i 0.334924 + 0.334924i
\(254\) 13.7206 0.860905
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −8.47052 8.47052i −0.528376 0.528376i 0.391712 0.920088i \(-0.371883\pi\)
−0.920088 + 0.391712i \(0.871883\pi\)
\(258\) 0 0
\(259\) 10.0026i 0.621531i
\(260\) 1.64358 4.14134i 0.101931 0.256835i
\(261\) 0 0
\(262\) 3.61601 3.61601i 0.223398 0.223398i
\(263\) 4.75778 4.75778i 0.293377 0.293377i −0.545036 0.838413i \(-0.683484\pi\)
0.838413 + 0.545036i \(0.183484\pi\)
\(264\) 0 0
\(265\) −9.94230 + 25.0517i −0.610751 + 1.53891i
\(266\) 3.04326i 0.186594i
\(267\) 0 0
\(268\) 1.61028 + 1.61028i 0.0983638 + 0.0983638i
\(269\) 8.45361 0.515426 0.257713 0.966222i \(-0.417031\pi\)
0.257713 + 0.966222i \(0.417031\pi\)
\(270\) 0 0
\(271\) 30.6552 1.86217 0.931084 0.364804i \(-0.118864\pi\)
0.931084 + 0.364804i \(0.118864\pi\)
\(272\) 0.765342 + 0.765342i 0.0464057 + 0.0464057i
\(273\) 0 0
\(274\) 14.7241i 0.889514i
\(275\) −3.34377 3.15029i −0.201637 0.189970i
\(276\) 0 0
\(277\) 11.1895 11.1895i 0.672310 0.672310i −0.285938 0.958248i \(-0.592305\pi\)
0.958248 + 0.285938i \(0.0923050\pi\)
\(278\) −12.5346 + 12.5346i −0.751778 + 0.751778i
\(279\) 0 0
\(280\) 1.11250 + 2.57660i 0.0664847 + 0.153981i
\(281\) 8.02838i 0.478933i −0.970905 0.239466i \(-0.923027\pi\)
0.970905 0.239466i \(-0.0769725\pi\)
\(282\) 0 0
\(283\) −10.9632 10.9632i −0.651693 0.651693i 0.301707 0.953401i \(-0.402443\pi\)
−0.953401 + 0.301707i \(0.902443\pi\)
\(284\) −11.1564 −0.662013
\(285\) 0 0
\(286\) −1.83080 −0.108258
\(287\) 9.76012 + 9.76012i 0.576122 + 0.576122i
\(288\) 0 0
\(289\) 15.8285i 0.931088i
\(290\) 10.9271 + 4.33665i 0.641660 + 0.254657i
\(291\) 0 0
\(292\) 6.25352 6.25352i 0.365960 0.365960i
\(293\) 4.26388 4.26388i 0.249099 0.249099i −0.571502 0.820601i \(-0.693639\pi\)
0.820601 + 0.571502i \(0.193639\pi\)
\(294\) 0 0
\(295\) −11.4007 + 4.92247i −0.663773 + 0.286598i
\(296\) 7.96947i 0.463216i
\(297\) 0 0
\(298\) −13.7920 13.7920i −0.798950 0.798950i
\(299\) −16.3386 −0.944886
\(300\) 0 0
\(301\) 11.4038 0.657305
\(302\) 10.5739 + 10.5739i 0.608462 + 0.608462i
\(303\) 0 0
\(304\) 2.42469i 0.139066i
\(305\) 5.81326 2.50999i 0.332866 0.143722i
\(306\) 0 0
\(307\) −14.4876 + 14.4876i −0.826849 + 0.826849i −0.987080 0.160230i \(-0.948776\pi\)
0.160230 + 0.987080i \(0.448776\pi\)
\(308\) 0.815440 0.815440i 0.0464640 0.0464640i
\(309\) 0 0
\(310\) 18.0885 + 7.17881i 1.02736 + 0.407729i
\(311\) 21.7843i 1.23527i 0.786464 + 0.617637i \(0.211910\pi\)
−0.786464 + 0.617637i \(0.788090\pi\)
\(312\) 0 0
\(313\) 17.9961 + 17.9961i 1.01720 + 1.01720i 0.999849 + 0.0173522i \(0.00552367\pi\)
0.0173522 + 0.999849i \(0.494476\pi\)
\(314\) 21.6380 1.22110
\(315\) 0 0
\(316\) −15.3020 −0.860803
\(317\) 0.788243 + 0.788243i 0.0442721 + 0.0442721i 0.728896 0.684624i \(-0.240034\pi\)
−0.684624 + 0.728896i \(0.740034\pi\)
\(318\) 0 0
\(319\) 4.83064i 0.270464i
\(320\) 0.886375 + 2.05289i 0.0495499 + 0.114760i
\(321\) 0 0
\(322\) 7.27721 7.27721i 0.405543 0.405543i
\(323\) 1.85572 1.85572i 0.103255 0.103255i
\(324\) 0 0
\(325\) 9.95852 0.296698i 0.552399 0.0164578i
\(326\) 13.1513i 0.728384i
\(327\) 0 0
\(328\) 7.77629 + 7.77629i 0.429374 + 0.429374i
\(329\) 1.41238 0.0778672
\(330\) 0 0
\(331\) 20.1770 1.10903 0.554513 0.832175i \(-0.312905\pi\)
0.554513 + 0.832175i \(0.312905\pi\)
\(332\) 1.57331 + 1.57331i 0.0863468 + 0.0863468i
\(333\) 0 0
\(334\) 16.2276i 0.887934i
\(335\) −1.87841 + 4.73305i −0.102629 + 0.258594i
\(336\) 0 0
\(337\) −2.29939 + 2.29939i −0.125256 + 0.125256i −0.766956 0.641700i \(-0.778229\pi\)
0.641700 + 0.766956i \(0.278229\pi\)
\(338\) −6.38489 + 6.38489i −0.347292 + 0.347292i
\(339\) 0 0
\(340\) −0.892779 + 2.24954i −0.0484177 + 0.121998i
\(341\) 7.99656i 0.433038i
\(342\) 0 0
\(343\) 11.0269 + 11.0269i 0.595397 + 0.595397i
\(344\) 9.08589 0.489878
\(345\) 0 0
\(346\) −3.47561 −0.186850
\(347\) −9.44030 9.44030i −0.506782 0.506782i 0.406755 0.913537i \(-0.366660\pi\)
−0.913537 + 0.406755i \(0.866660\pi\)
\(348\) 0 0
\(349\) 9.47118i 0.506980i 0.967338 + 0.253490i \(0.0815786\pi\)
−0.967338 + 0.253490i \(0.918421\pi\)
\(350\) −4.30338 + 4.56768i −0.230025 + 0.244152i
\(351\) 0 0
\(352\) 0.649694 0.649694i 0.0346288 0.0346288i
\(353\) 16.7594 16.7594i 0.892012 0.892012i −0.102700 0.994712i \(-0.532748\pi\)
0.994712 + 0.102700i \(0.0327482\pi\)
\(354\) 0 0
\(355\) −9.88879 22.9029i −0.524843 1.21556i
\(356\) 4.28298i 0.226997i
\(357\) 0 0
\(358\) 11.5119 + 11.5119i 0.608422 + 0.608422i
\(359\) 22.6274 1.19423 0.597115 0.802156i \(-0.296314\pi\)
0.597115 + 0.802156i \(0.296314\pi\)
\(360\) 0 0
\(361\) 13.1209 0.690572
\(362\) −5.63875 5.63875i −0.296366 0.296366i
\(363\) 0 0
\(364\) 2.50092i 0.131084i
\(365\) 18.3807 + 7.29480i 0.962092 + 0.381827i
\(366\) 0 0
\(367\) −22.6779 + 22.6779i −1.18378 + 1.18378i −0.205018 + 0.978758i \(0.565725\pi\)
−0.978758 + 0.205018i \(0.934275\pi\)
\(368\) 5.79806 5.79806i 0.302245 0.302245i
\(369\) 0 0
\(370\) −16.3604 + 7.06395i −0.850538 + 0.367237i
\(371\) 15.1285i 0.785433i
\(372\) 0 0
\(373\) 23.5411 + 23.5411i 1.21891 + 1.21891i 0.968014 + 0.250897i \(0.0807255\pi\)
0.250897 + 0.968014i \(0.419274\pi\)
\(374\) 0.994476 0.0514231
\(375\) 0 0
\(376\) 1.12530 0.0580331
\(377\) 7.40769 + 7.40769i 0.381516 + 0.381516i
\(378\) 0 0
\(379\) 7.80549i 0.400941i −0.979700 0.200471i \(-0.935753\pi\)
0.979700 0.200471i \(-0.0642471\pi\)
\(380\) 4.97761 2.14919i 0.255346 0.110251i
\(381\) 0 0
\(382\) 12.5920 12.5920i 0.644262 0.644262i
\(383\) −25.1791 + 25.1791i −1.28659 + 1.28659i −0.349751 + 0.936843i \(0.613734\pi\)
−0.936843 + 0.349751i \(0.886266\pi\)
\(384\) 0 0
\(385\) 2.39679 + 0.951218i 0.122152 + 0.0484786i
\(386\) 6.51080i 0.331391i
\(387\) 0 0
\(388\) 0.350306 + 0.350306i 0.0177841 + 0.0177841i
\(389\) 29.5054 1.49598 0.747992 0.663708i \(-0.231018\pi\)
0.747992 + 0.663708i \(0.231018\pi\)
\(390\) 0 0
\(391\) 8.87499 0.448827
\(392\) 3.83584 + 3.83584i 0.193739 + 0.193739i
\(393\) 0 0
\(394\) 1.37119i 0.0690793i
\(395\) −13.5633 31.4132i −0.682444 1.58057i
\(396\) 0 0
\(397\) 8.04262 8.04262i 0.403647 0.403647i −0.475869 0.879516i \(-0.657866\pi\)
0.879516 + 0.475869i \(0.157866\pi\)
\(398\) 3.92627 3.92627i 0.196806 0.196806i
\(399\) 0 0
\(400\) −3.42868 + 3.63925i −0.171434 + 0.181963i
\(401\) 23.9673i 1.19687i 0.801171 + 0.598436i \(0.204211\pi\)
−0.801171 + 0.598436i \(0.795789\pi\)
\(402\) 0 0
\(403\) 12.2626 + 12.2626i 0.610842 + 0.610842i
\(404\) −5.32238 −0.264798
\(405\) 0 0
\(406\) −6.59878 −0.327492
\(407\) 5.17772 + 5.17772i 0.256650 + 0.256650i
\(408\) 0 0
\(409\) 5.42823i 0.268409i 0.990954 + 0.134204i \(0.0428478\pi\)
−0.990954 + 0.134204i \(0.957152\pi\)
\(410\) −9.07112 + 22.8566i −0.447991 + 1.12880i
\(411\) 0 0
\(412\) 8.94101 8.94101i 0.440492 0.440492i
\(413\) 4.92871 4.92871i 0.242526 0.242526i
\(414\) 0 0
\(415\) −1.83529 + 4.62438i −0.0900907 + 0.227002i
\(416\) 1.99259i 0.0976946i
\(417\) 0 0
\(418\) −1.57531 1.57531i −0.0770508 0.0770508i
\(419\) 0.712073 0.0347870 0.0173935 0.999849i \(-0.494463\pi\)
0.0173935 + 0.999849i \(0.494463\pi\)
\(420\) 0 0
\(421\) 0.0553510 0.00269764 0.00134882 0.999999i \(-0.499571\pi\)
0.00134882 + 0.999999i \(0.499571\pi\)
\(422\) 6.23773 + 6.23773i 0.303648 + 0.303648i
\(423\) 0 0
\(424\) 12.0535i 0.585370i
\(425\) −5.40938 + 0.161164i −0.262394 + 0.00781759i
\(426\) 0 0
\(427\) −2.51317 + 2.51317i −0.121621 + 0.121621i
\(428\) 2.49212 2.49212i 0.120461 0.120461i
\(429\) 0 0
\(430\) 8.05351 + 18.6523i 0.388375 + 0.899493i
\(431\) 17.8078i 0.857770i −0.903359 0.428885i \(-0.858907\pi\)
0.903359 0.428885i \(-0.141093\pi\)
\(432\) 0 0
\(433\) 15.6599 + 15.6599i 0.752568 + 0.752568i 0.974958 0.222390i \(-0.0713858\pi\)
−0.222390 + 0.974958i \(0.571386\pi\)
\(434\) −10.9235 −0.524345
\(435\) 0 0
\(436\) 13.5420 0.648545
\(437\) −14.0585 14.0585i −0.672509 0.672509i
\(438\) 0 0
\(439\) 4.87499i 0.232670i 0.993210 + 0.116335i \(0.0371147\pi\)
−0.993210 + 0.116335i \(0.962885\pi\)
\(440\) 1.90962 + 0.757875i 0.0910376 + 0.0361303i
\(441\) 0 0
\(442\) −1.52501 + 1.52501i −0.0725373 + 0.0725373i
\(443\) 22.1914 22.1914i 1.05435 1.05435i 0.0559097 0.998436i \(-0.482194\pi\)
0.998436 0.0559097i \(-0.0178059\pi\)
\(444\) 0 0
\(445\) −8.79246 + 3.79633i −0.416803 + 0.179963i
\(446\) 0.712073i 0.0337176i
\(447\) 0 0
\(448\) −0.887499 0.887499i −0.0419304 0.0419304i
\(449\) −2.54785 −0.120241 −0.0601203 0.998191i \(-0.519148\pi\)
−0.0601203 + 0.998191i \(0.519148\pi\)
\(450\) 0 0
\(451\) 10.1044 0.475799
\(452\) 5.42909 + 5.42909i 0.255363 + 0.255363i
\(453\) 0 0
\(454\) 17.1026i 0.802664i
\(455\) −5.13411 + 2.21676i −0.240691 + 0.103923i
\(456\) 0 0
\(457\) 1.73710 1.73710i 0.0812583 0.0812583i −0.665309 0.746568i \(-0.731700\pi\)
0.746568 + 0.665309i \(0.231700\pi\)
\(458\) −4.70701 + 4.70701i −0.219944 + 0.219944i
\(459\) 0 0
\(460\) 17.0420 + 6.76349i 0.794587 + 0.315349i
\(461\) 31.7007i 1.47645i −0.674555 0.738224i \(-0.735665\pi\)
0.674555 0.738224i \(-0.264335\pi\)
\(462\) 0 0
\(463\) −1.87599 1.87599i −0.0871847 0.0871847i 0.662169 0.749354i \(-0.269636\pi\)
−0.749354 + 0.662169i \(0.769636\pi\)
\(464\) −5.25752 −0.244074
\(465\) 0 0
\(466\) −5.47207 −0.253489
\(467\) −8.83969 8.83969i −0.409052 0.409052i 0.472356 0.881408i \(-0.343404\pi\)
−0.881408 + 0.472356i \(0.843404\pi\)
\(468\) 0 0
\(469\) 2.85825i 0.131982i
\(470\) 0.997441 + 2.31012i 0.0460085 + 0.106558i
\(471\) 0 0
\(472\) 3.92691 3.92691i 0.180751 0.180751i
\(473\) 5.90305 5.90305i 0.271422 0.271422i
\(474\) 0 0
\(475\) 8.82407 + 8.31349i 0.404876 + 0.381449i
\(476\) 1.35848i 0.0622658i
\(477\) 0 0
\(478\) 2.53590 + 2.53590i 0.115989 + 0.115989i
\(479\) −16.7055 −0.763293 −0.381647 0.924308i \(-0.624643\pi\)
−0.381647 + 0.924308i \(0.624643\pi\)
\(480\) 0 0
\(481\) −15.8799 −0.724060
\(482\) 15.6468 + 15.6468i 0.712691 + 0.712691i
\(483\) 0 0
\(484\) 10.1558i 0.461627i
\(485\) −0.408635 + 1.02964i −0.0185552 + 0.0467535i
\(486\) 0 0
\(487\) 27.7395 27.7395i 1.25700 1.25700i 0.304475 0.952520i \(-0.401519\pi\)
0.952520 0.304475i \(-0.0984811\pi\)
\(488\) −2.00235 + 2.00235i −0.0906421 + 0.0906421i
\(489\) 0 0
\(490\) −4.47454 + 11.2745i −0.202139 + 0.509331i
\(491\) 5.94370i 0.268235i −0.990965 0.134118i \(-0.957180\pi\)
0.990965 0.134118i \(-0.0428200\pi\)
\(492\) 0 0
\(493\) −4.02380 4.02380i −0.181223 0.181223i
\(494\) 4.83141 0.217375
\(495\) 0 0
\(496\) −8.70320 −0.390785
\(497\) 9.90133 + 9.90133i 0.444135 + 0.444135i
\(498\) 0 0
\(499\) 0.605346i 0.0270990i 0.999908 + 0.0135495i \(0.00431307\pi\)
−0.999908 + 0.0135495i \(0.995687\pi\)
\(500\) −10.5101 3.81294i −0.470025 0.170520i
\(501\) 0 0
\(502\) −6.29809 + 6.29809i −0.281098 + 0.281098i
\(503\) −17.7321 + 17.7321i −0.790635 + 0.790635i −0.981597 0.190962i \(-0.938839\pi\)
0.190962 + 0.981597i \(0.438839\pi\)
\(504\) 0 0
\(505\) −4.71763 10.9262i −0.209932 0.486211i
\(506\) 7.53393i 0.334924i
\(507\) 0 0
\(508\) −9.70191 9.70191i −0.430452 0.430452i
\(509\) −35.1623 −1.55854 −0.779270 0.626688i \(-0.784410\pi\)
−0.779270 + 0.626688i \(0.784410\pi\)
\(510\) 0 0
\(511\) −11.1000 −0.491035
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) 11.9791i 0.528376i
\(515\) 26.2799 + 10.4298i 1.15803 + 0.459591i
\(516\) 0 0
\(517\) 0.731103 0.731103i 0.0321539 0.0321539i
\(518\) 7.07290 7.07290i 0.310765 0.310765i
\(519\) 0 0
\(520\) −4.09055 + 1.76618i −0.179383 + 0.0774521i
\(521\) 28.9982i 1.27043i −0.772334 0.635217i \(-0.780911\pi\)
0.772334 0.635217i \(-0.219089\pi\)
\(522\) 0 0
\(523\) 14.5709 + 14.5709i 0.637140 + 0.637140i 0.949849 0.312709i \(-0.101236\pi\)
−0.312709 + 0.949849i \(0.601236\pi\)
\(524\) −5.11381 −0.223398
\(525\) 0 0
\(526\) −6.72851 −0.293377
\(527\) −6.66092 6.66092i −0.290154 0.290154i
\(528\) 0 0
\(529\) 44.2349i 1.92326i
\(530\) 24.7445 10.6839i 1.07483 0.464080i
\(531\) 0 0
\(532\) −2.15191 + 2.15191i −0.0932972 + 0.0932972i
\(533\) −15.4949 + 15.4949i −0.671160 + 0.671160i
\(534\) 0 0
\(535\) 7.32499 + 2.90708i 0.316687 + 0.125684i
\(536\) 2.27729i 0.0983638i
\(537\) 0 0
\(538\) −5.97760 5.97760i −0.257713 0.257713i
\(539\) 4.98424 0.214686
\(540\) 0 0
\(541\) −27.1708 −1.16817 −0.584083 0.811694i \(-0.698546\pi\)
−0.584083 + 0.811694i \(0.698546\pi\)
\(542\) −21.6765 21.6765i −0.931084 0.931084i
\(543\) 0 0
\(544\) 1.08236i 0.0464057i
\(545\) 12.0033 + 27.8002i 0.514166 + 1.19083i
\(546\) 0 0
\(547\) 7.58497 7.58497i 0.324310 0.324310i −0.526108 0.850418i \(-0.676349\pi\)
0.850418 + 0.526108i \(0.176349\pi\)
\(548\) −10.4115 + 10.4115i −0.444757 + 0.444757i
\(549\) 0 0
\(550\) 0.136811 + 4.59199i 0.00583364 + 0.195803i
\(551\) 12.7479i 0.543077i
\(552\) 0 0
\(553\) 13.5805 + 13.5805i 0.577501 + 0.577501i
\(554\) −15.8243 −0.672310
\(555\) 0 0
\(556\) 17.7267 0.751778
\(557\) −2.13228 2.13228i −0.0903476 0.0903476i 0.660489 0.750836i \(-0.270349\pi\)
−0.750836 + 0.660489i \(0.770349\pi\)
\(558\) 0 0
\(559\) 18.1044i 0.765736i
\(560\) 1.03528 2.60859i 0.0437484 0.110233i
\(561\) 0 0
\(562\) −5.67692 + 5.67692i −0.239466 + 0.239466i
\(563\) −5.17138 + 5.17138i −0.217948 + 0.217948i −0.807633 0.589685i \(-0.799252\pi\)
0.589685 + 0.807633i \(0.299252\pi\)
\(564\) 0 0
\(565\) −6.33308 + 15.9575i −0.266435 + 0.671337i
\(566\) 15.5043i 0.651693i
\(567\) 0 0
\(568\) 7.88879 + 7.88879i 0.331006 + 0.331006i
\(569\) −7.01763 −0.294194 −0.147097 0.989122i \(-0.546993\pi\)
−0.147097 + 0.989122i \(0.546993\pi\)
\(570\) 0 0
\(571\) 17.9770 0.752313 0.376157 0.926556i \(-0.377245\pi\)
0.376157 + 0.926556i \(0.377245\pi\)
\(572\) 1.29457 + 1.29457i 0.0541288 + 0.0541288i
\(573\) 0 0
\(574\) 13.8029i 0.576122i
\(575\) 1.22094 + 40.9803i 0.0509167 + 1.70900i
\(576\) 0 0
\(577\) −12.5461 + 12.5461i −0.522302 + 0.522302i −0.918266 0.395964i \(-0.870411\pi\)
0.395964 + 0.918266i \(0.370411\pi\)
\(578\) −11.1924 + 11.1924i −0.465544 + 0.465544i
\(579\) 0 0
\(580\) −4.66013 10.7931i −0.193502 0.448158i
\(581\) 2.79263i 0.115858i
\(582\) 0 0
\(583\) −7.83109 7.83109i −0.324331 0.324331i
\(584\) −8.84382 −0.365960
\(585\) 0 0
\(586\) −6.03004 −0.249099
\(587\) −23.0889 23.0889i −0.952979 0.952979i 0.0459640 0.998943i \(-0.485364\pi\)
−0.998943 + 0.0459640i \(0.985364\pi\)
\(588\) 0 0
\(589\) 21.1026i 0.869517i
\(590\) 11.5422 + 4.58078i 0.475185 + 0.188588i
\(591\) 0 0
\(592\) 5.63527 5.63527i 0.231608 0.231608i
\(593\) 5.88645 5.88645i 0.241728 0.241728i −0.575837 0.817565i \(-0.695324\pi\)
0.817565 + 0.575837i \(0.195324\pi\)
\(594\) 0 0
\(595\) 2.78880 1.20412i 0.114330 0.0493642i
\(596\) 19.5049i 0.798950i
\(597\) 0 0
\(598\) 11.5531 + 11.5531i 0.472443 + 0.472443i
\(599\) 23.4284 0.957259 0.478630 0.878017i \(-0.341134\pi\)
0.478630 + 0.878017i \(0.341134\pi\)
\(600\) 0 0
\(601\) 22.8090 0.930400 0.465200 0.885206i \(-0.345982\pi\)
0.465200 + 0.885206i \(0.345982\pi\)
\(602\) −8.06371 8.06371i −0.328652 0.328652i
\(603\) 0 0
\(604\) 14.9538i 0.608462i
\(605\) −20.8487 + 9.00185i −0.847620 + 0.365977i
\(606\) 0 0
\(607\) 15.9144 15.9144i 0.645945 0.645945i −0.306065 0.952011i \(-0.599013\pi\)
0.952011 + 0.306065i \(0.0990125\pi\)
\(608\) −1.71452 + 1.71452i −0.0695328 + 0.0695328i
\(609\) 0 0
\(610\) −5.88543 2.33576i −0.238294 0.0945722i
\(611\) 2.24227i 0.0907124i
\(612\) 0 0
\(613\) 6.98979 + 6.98979i 0.282315 + 0.282315i 0.834032 0.551717i \(-0.186027\pi\)
−0.551717 + 0.834032i \(0.686027\pi\)
\(614\) 20.4885 0.826849
\(615\) 0 0
\(616\) −1.15321 −0.0464640
\(617\) −4.51624 4.51624i −0.181817 0.181817i 0.610330 0.792147i \(-0.291037\pi\)
−0.792147 + 0.610330i \(0.791037\pi\)
\(618\) 0 0
\(619\) 17.2767i 0.694408i −0.937790 0.347204i \(-0.887131\pi\)
0.937790 0.347204i \(-0.112869\pi\)
\(620\) −7.71430 17.8667i −0.309814 0.717543i
\(621\) 0 0
\(622\) 15.4038 15.4038i 0.617637 0.617637i
\(623\) 3.80114 3.80114i 0.152289 0.152289i
\(624\) 0 0
\(625\) −1.48835 24.9557i −0.0595339 0.998226i
\(626\) 25.4504i 1.01720i
\(627\) 0 0
\(628\) −15.3004 15.3004i −0.610551 0.610551i
\(629\) 8.62581 0.343934
\(630\) 0 0
\(631\) −25.3506 −1.00919 −0.504596 0.863356i \(-0.668358\pi\)
−0.504596 + 0.863356i \(0.668358\pi\)
\(632\) 10.8201 + 10.8201i 0.430402 + 0.430402i
\(633\) 0 0
\(634\) 1.11474i 0.0442721i
\(635\) 11.3174 28.5164i 0.449116 1.13164i
\(636\) 0 0
\(637\) −7.64324 + 7.64324i −0.302836 + 0.302836i
\(638\) −3.41578 + 3.41578i −0.135232 + 0.135232i
\(639\) 0 0
\(640\) 0.824847 2.07837i 0.0326049 0.0821548i
\(641\) 6.69427i 0.264408i −0.991223 0.132204i \(-0.957795\pi\)
0.991223 0.132204i \(-0.0422054\pi\)
\(642\) 0 0
\(643\) −5.10677 5.10677i −0.201391 0.201391i 0.599205 0.800596i \(-0.295484\pi\)
−0.800596 + 0.599205i \(0.795484\pi\)
\(644\) −10.2915 −0.405543
\(645\) 0 0
\(646\) −2.62438 −0.103255
\(647\) 27.8350 + 27.8350i 1.09431 + 1.09431i 0.995063 + 0.0992439i \(0.0316424\pi\)
0.0992439 + 0.995063i \(0.468358\pi\)
\(648\) 0 0
\(649\) 5.10258i 0.200294i
\(650\) −7.25153 6.83194i −0.284429 0.267971i
\(651\) 0 0
\(652\) 9.29939 9.29939i 0.364192 0.364192i
\(653\) −8.92495 + 8.92495i −0.349260 + 0.349260i −0.859834 0.510574i \(-0.829433\pi\)
0.510574 + 0.859834i \(0.329433\pi\)
\(654\) 0 0
\(655\) −4.53276 10.4981i −0.177110 0.410194i
\(656\) 10.9973i 0.429374i
\(657\) 0 0
\(658\) −0.998705 0.998705i −0.0389336 0.0389336i
\(659\) −33.4416 −1.30270 −0.651350 0.758777i \(-0.725797\pi\)
−0.651350 + 0.758777i \(0.725797\pi\)
\(660\) 0 0
\(661\) −29.9369 −1.16441 −0.582206 0.813042i \(-0.697810\pi\)
−0.582206 + 0.813042i \(0.697810\pi\)
\(662\) −14.2673 14.2673i −0.554513 0.554513i
\(663\) 0 0
\(664\) 2.22500i 0.0863468i
\(665\) −6.32503 2.51023i −0.245274 0.0973424i
\(666\) 0 0
\(667\) −30.4834 + 30.4834i −1.18032 + 1.18032i
\(668\) 11.4746 11.4746i 0.443967 0.443967i
\(669\) 0 0
\(670\) 4.67501 2.01853i 0.180611 0.0779826i
\(671\) 2.60183i 0.100443i
\(672\) 0 0
\(673\) −19.8718 19.8718i −0.766001 0.766001i 0.211399 0.977400i \(-0.432198\pi\)
−0.977400 + 0.211399i \(0.932198\pi\)
\(674\) 3.25183 0.125256
\(675\) 0 0
\(676\) 9.02959 0.347292
\(677\) 28.8193 + 28.8193i 1.10762 + 1.10762i 0.993463 + 0.114154i \(0.0364158\pi\)
0.114154 + 0.993463i \(0.463584\pi\)
\(678\) 0 0
\(679\) 0.621792i 0.0238622i
\(680\) 2.22195 0.959374i 0.0852080 0.0367903i
\(681\) 0 0
\(682\) −5.65442 + 5.65442i −0.216519 + 0.216519i
\(683\) −30.5158 + 30.5158i −1.16765 + 1.16765i −0.184895 + 0.982758i \(0.559194\pi\)
−0.982758 + 0.184895i \(0.940806\pi\)
\(684\) 0 0
\(685\) −30.6021 12.1451i −1.16925 0.464041i
\(686\) 15.5944i 0.595397i
\(687\) 0 0
\(688\) −6.42469 6.42469i −0.244939 0.244939i
\(689\) 24.0177 0.915000
\(690\) 0 0
\(691\) 46.7593 1.77881 0.889404 0.457123i \(-0.151120\pi\)
0.889404 + 0.457123i \(0.151120\pi\)
\(692\) 2.45763 + 2.45763i 0.0934250 + 0.0934250i
\(693\) 0 0
\(694\) 13.3506i 0.506782i
\(695\) 15.7125 + 36.3908i 0.596009 + 1.38038i
\(696\) 0 0
\(697\) 8.41672 8.41672i 0.318806 0.318806i
\(698\) 6.69713 6.69713i 0.253490 0.253490i
\(699\) 0 0
\(700\) 6.27278 0.186887i 0.237089 0.00706367i
\(701\) 24.2121i 0.914478i 0.889344 + 0.457239i \(0.151162\pi\)
−0.889344 + 0.457239i \(0.848838\pi\)
\(702\) 0 0
\(703\) −13.6638 13.6638i −0.515340 0.515340i
\(704\) −0.918806 −0.0346288
\(705\) 0 0
\(706\) −23.7014 −0.892012
\(707\) 4.72360 + 4.72360i 0.177649 + 0.177649i
\(708\) 0 0
\(709\) 19.5547i 0.734393i −0.930143 0.367196i \(-0.880318\pi\)
0.930143 0.367196i \(-0.119682\pi\)
\(710\) −9.20236 + 23.1872i −0.345358 + 0.870201i
\(711\) 0 0
\(712\) 3.02852 3.02852i 0.113499 0.113499i
\(713\) −50.4616 + 50.4616i −1.88980 + 1.88980i
\(714\) 0 0
\(715\) −1.51013 + 3.80509i −0.0564757 + 0.142302i
\(716\) 16.2803i 0.608422i
\(717\) 0 0
\(718\) −16.0000 16.0000i −0.597115 0.597115i
\(719\) −46.1448 −1.72091 −0.860454 0.509527i \(-0.829820\pi\)
−0.860454 + 0.509527i \(0.829820\pi\)
\(720\) 0 0
\(721\) −15.8703 −0.591039
\(722\) −9.27786 9.27786i −0.345286 0.345286i
\(723\) 0 0
\(724\) 7.97440i 0.296366i
\(725\) 18.0263 19.1334i 0.669481 0.710598i
\(726\) 0 0
\(727\) −20.2151 + 20.2151i −0.749736 + 0.749736i −0.974429 0.224694i \(-0.927862\pi\)
0.224694 + 0.974429i \(0.427862\pi\)
\(728\) 1.76842 1.76842i 0.0655420 0.0655420i
\(729\) 0 0
\(730\) −7.83894 18.1553i −0.290132 0.671960i
\(731\) 9.83417i 0.363730i
\(732\) 0 0
\(733\) −5.08330 5.08330i −0.187756 0.187756i 0.606969 0.794725i \(-0.292385\pi\)
−0.794725 + 0.606969i \(0.792385\pi\)
\(734\) 32.0714 1.18378
\(735\) 0 0
\(736\) −8.19969 −0.302245
\(737\) −1.47954 1.47954i −0.0544995 0.0544995i
\(738\) 0 0
\(739\) 1.12301i 0.0413104i −0.999787 0.0206552i \(-0.993425\pi\)
0.999787 0.0206552i \(-0.00657523\pi\)
\(740\) 16.5635 + 6.57360i 0.608887 + 0.241650i
\(741\) 0 0
\(742\) −10.6975 + 10.6975i −0.392717 + 0.392717i
\(743\) 17.4501 17.4501i 0.640182 0.640182i −0.310418 0.950600i \(-0.600469\pi\)
0.950600 + 0.310418i \(0.100469\pi\)
\(744\) 0 0
\(745\) −40.0412 + 17.2886i −1.46700 + 0.633406i
\(746\) 33.2921i 1.21891i
\(747\) 0 0
\(748\) −0.703201 0.703201i −0.0257116 0.0257116i
\(749\) −4.42351 −0.161631
\(750\) 0 0
\(751\) −3.03004 −0.110568 −0.0552838 0.998471i \(-0.517606\pi\)
−0.0552838 + 0.998471i \(0.517606\pi\)
\(752\) −0.795710 0.795710i −0.0290165 0.0290165i
\(753\) 0 0
\(754\) 10.4761i 0.381516i
\(755\) 30.6985 13.2547i 1.11723 0.482387i
\(756\) 0 0
\(757\) 2.13781 2.13781i 0.0777002 0.0777002i −0.667189 0.744889i \(-0.732503\pi\)
0.744889 + 0.667189i \(0.232503\pi\)
\(758\) −5.51931 + 5.51931i −0.200471 + 0.200471i
\(759\) 0 0
\(760\) −5.03941 2.00000i −0.182799 0.0725476i
\(761\) 31.6191i 1.14619i −0.819489 0.573095i \(-0.805743\pi\)
0.819489 0.573095i \(-0.194257\pi\)
\(762\) 0 0
\(763\) −12.0185 12.0185i −0.435100 0.435100i
\(764\) −17.8078 −0.644262
\(765\) 0 0
\(766\) 35.6087 1.28659
\(767\) 7.82471 + 7.82471i 0.282534 + 0.282534i
\(768\) 0 0
\(769\) 19.8273i 0.714991i −0.933915 0.357496i \(-0.883631\pi\)
0.933915 0.357496i \(-0.116369\pi\)
\(770\) −1.02217 2.36740i −0.0368366 0.0853151i
\(771\) 0 0
\(772\) −4.60383 + 4.60383i −0.165695 + 0.165695i
\(773\) 8.31371 8.31371i 0.299023 0.299023i −0.541608 0.840631i \(-0.682184\pi\)
0.840631 + 0.541608i \(0.182184\pi\)
\(774\) 0 0
\(775\) 29.8405 31.6732i 1.07190 1.13773i
\(776\) 0.495407i 0.0177841i
\(777\) 0 0
\(778\) −20.8635 20.8635i −0.747992 0.747992i
\(779\) −26.6652 −0.955378
\(780\) 0 0
\(781\) 10.2506 0.366796
\(782\) −6.27556 6.27556i −0.224414 0.224414i
\(783\) 0 0
\(784\) 5.42469i 0.193739i
\(785\) 17.8480 44.9717i 0.637023 1.60511i
\(786\) 0 0
\(787\) −39.4573 + 39.4573i −1.40650 + 1.40650i −0.629505 + 0.776996i \(0.716742\pi\)
−0.776996 + 0.629505i \(0.783258\pi\)
\(788\) 0.969574 0.969574i 0.0345397 0.0345397i
\(789\) 0 0
\(790\) −12.6218 + 31.8032i −0.449063 + 1.13151i
\(791\) 9.63662i 0.342639i
\(792\) 0 0
\(793\) −3.98986 3.98986i −0.141684 0.141684i
\(794\) −11.3740 −0.403647
\(795\) 0 0
\(796\) −5.55258 −0.196806
\(797\) 26.1668 + 26.1668i 0.926876 + 0.926876i 0.997503 0.0706266i \(-0.0224999\pi\)
−0.0706266 + 0.997503i \(0.522500\pi\)
\(798\) 0 0
\(799\) 1.21798i 0.0430890i
\(800\) 4.99778 0.148901i 0.176698 0.00526444i
\(801\) 0 0
\(802\) 16.9475 16.9475i 0.598436 0.598436i
\(803\) −5.74578 + 5.74578i −0.202764 + 0.202764i
\(804\) 0 0
\(805\) −9.12216 21.1273i −0.321514 0.744641i
\(806\) 17.3419i 0.610842i
\(807\) 0 0
\(808\) 3.76349 + 3.76349i 0.132399 + 0.132399i
\(809\) −27.1027 −0.952880 −0.476440 0.879207i \(-0.658073\pi\)
−0.476440 + 0.879207i \(0.658073\pi\)
\(810\) 0 0
\(811\) −56.2469 −1.97510 −0.987548 0.157317i \(-0.949716\pi\)
−0.987548 + 0.157317i \(0.949716\pi\)
\(812\) 4.66604 + 4.66604i 0.163746 + 0.163746i
\(813\) 0 0
\(814\) 7.32240i 0.256650i
\(815\) 27.3333 + 10.8478i 0.957445 + 0.379983i
\(816\) 0 0
\(817\) −15.5779 + 15.5779i −0.545002 + 0.545002i
\(818\) 3.83834 3.83834i 0.134204 0.134204i
\(819\) 0 0
\(820\) 22.5763 9.74777i 0.788398 0.340407i
\(821\) 21.8316i 0.761928i 0.924590 + 0.380964i \(0.124408\pi\)
−0.924590 + 0.380964i \(0.875592\pi\)
\(822\) 0 0
\(823\) 12.4850 + 12.4850i 0.435199 + 0.435199i 0.890393 0.455193i \(-0.150430\pi\)
−0.455193 + 0.890393i \(0.650430\pi\)
\(824\) −12.6445 −0.440492
\(825\) 0 0
\(826\) −6.97025 −0.242526
\(827\) 0.260637 + 0.260637i 0.00906323 + 0.00906323i 0.711624 0.702561i \(-0.247960\pi\)
−0.702561 + 0.711624i \(0.747960\pi\)
\(828\) 0 0
\(829\) 6.87240i 0.238688i 0.992853 + 0.119344i \(0.0380792\pi\)
−0.992853 + 0.119344i \(0.961921\pi\)
\(830\) 4.56768 1.97219i 0.158546 0.0684556i
\(831\) 0 0
\(832\) 1.40897 1.40897i 0.0488473 0.0488473i
\(833\) 4.15174 4.15174i 0.143849 0.143849i
\(834\) 0 0
\(835\) 33.7270 + 13.3853i 1.16717 + 0.463217i
\(836\) 2.22782i 0.0770508i
\(837\) 0 0
\(838\) −0.503511 0.503511i −0.0173935 0.0173935i
\(839\) −23.9364 −0.826377 −0.413189 0.910645i \(-0.635585\pi\)
−0.413189 + 0.910645i \(0.635585\pi\)
\(840\) 0 0
\(841\) −1.35852 −0.0468454
\(842\) −0.0391391 0.0391391i −0.00134882 0.00134882i
\(843\) 0 0
\(844\) 8.82148i 0.303648i
\(845\) 8.00361 + 18.5367i 0.275333 + 0.637683i
\(846\) 0 0
\(847\) 9.01326 9.01326i 0.309699 0.309699i
\(848\) −8.52312 + 8.52312i −0.292685 + 0.292685i
\(849\) 0 0
\(850\) 3.93897 + 3.71105i 0.135106 + 0.127288i
\(851\) 65.3472i 2.24007i
\(852\) 0 0
\(853\) 11.9097 + 11.9097i 0.407779 + 0.407779i 0.880964 0.473184i \(-0.156895\pi\)
−0.473184 + 0.880964i \(0.656895\pi\)
\(854\) 3.55417 0.121621
\(855\) 0 0
\(856\) −3.52439 −0.120461
\(857\) 0.540503 + 0.540503i 0.0184632 + 0.0184632i 0.716278 0.697815i \(-0.245844\pi\)
−0.697815 + 0.716278i \(0.745844\pi\)
\(858\) 0 0
\(859\) 8.26465i 0.281986i 0.990011 + 0.140993i \(0.0450296\pi\)
−0.990011 + 0.140993i \(0.954970\pi\)
\(860\) 7.49447 18.8838i 0.255559 0.643934i
\(861\) 0 0
\(862\) −12.5920 + 12.5920i −0.428885 + 0.428885i
\(863\) −8.99415 + 8.99415i −0.306164 + 0.306164i −0.843420 0.537255i \(-0.819461\pi\)
0.537255 + 0.843420i \(0.319461\pi\)
\(864\) 0 0
\(865\) −2.86685 + 7.22361i −0.0974757 + 0.245610i
\(866\) 22.1465i 0.752568i
\(867\) 0 0
\(868\) 7.72408 + 7.72408i 0.262172 + 0.262172i
\(869\) 14.0596 0.476938
\(870\) 0 0
\(871\) 4.53769 0.153754
\(872\) −9.57566 9.57566i −0.324273 0.324273i
\(873\) 0 0
\(874\) 19.8817i 0.672509i
\(875\) 5.94370 + 12.7116i 0.200934 + 0.429732i
\(876\) 0 0
\(877\) 35.7424 35.7424i 1.20693 1.20693i 0.234920 0.972015i \(-0.424517\pi\)
0.972015 0.234920i \(-0.0754828\pi\)
\(878\) 3.44714 3.44714i 0.116335 0.116335i
\(879\) 0 0
\(880\) −0.814407 1.88620i −0.0274537 0.0635839i
\(881\) 20.5731i 0.693127i 0.938027 + 0.346563i \(0.112651\pi\)
−0.938027 + 0.346563i \(0.887349\pi\)
\(882\) 0 0
\(883\) −26.9661 26.9661i −0.907480 0.907480i 0.0885882 0.996068i \(-0.471764\pi\)
−0.996068 + 0.0885882i \(0.971764\pi\)
\(884\) 2.15669 0.0725373
\(885\) 0 0
\(886\) −31.3834 −1.05435
\(887\) 35.8383 + 35.8383i 1.20333 + 1.20333i 0.973146 + 0.230187i \(0.0739339\pi\)
0.230187 + 0.973146i \(0.426066\pi\)
\(888\) 0 0
\(889\) 17.2209i 0.577569i
\(890\) 8.90162 + 3.53280i 0.298383 + 0.118420i
\(891\) 0 0
\(892\) −0.503511 + 0.503511i −0.0168588 + 0.0168588i
\(893\) −1.92935 + 1.92935i −0.0645633 + 0.0645633i
\(894\) 0 0
\(895\) 33.4215 14.4304i 1.11716 0.482356i
\(896\) 1.25511i 0.0419304i
\(897\) 0 0
\(898\) 1.80161 + 1.80161i 0.0601203 + 0.0601203i
\(899\) 45.7572 1.52609
\(900\) 0 0
\(901\) −13.0462 −0.434632
\(902\) −7.14491 7.14491i −0.237899 0.237899i
\(903\) 0 0
\(904\) 7.67789i 0.255363i
\(905\) −16.3705 + 7.06831i −0.544175 + 0.234959i
\(906\) 0 0
\(907\) 6.59648 6.59648i 0.219032 0.219032i −0.589058 0.808091i \(-0.700501\pi\)
0.808091 + 0.589058i \(0.200501\pi\)
\(908\) 12.0933 12.0933i 0.401332 0.401332i
\(909\) 0 0
\(910\) 5.19784 + 2.06288i 0.172307 + 0.0683838i
\(911\) 2.06055i 0.0682690i −0.999417 0.0341345i \(-0.989133\pi\)
0.999417 0.0341345i \(-0.0108675\pi\)
\(912\) 0 0
\(913\) −1.44557 1.44557i −0.0478414 0.0478414i
\(914\) −2.45664 −0.0812583
\(915\) 0 0
\(916\) 6.65672 0.219944
\(917\) 4.53850 + 4.53850i 0.149875 + 0.149875i
\(918\) 0 0
\(919\) 27.0352i 0.891810i 0.895080 + 0.445905i \(0.147118\pi\)
−0.895080 + 0.445905i \(0.852882\pi\)
\(920\) −7.26800 16.8330i −0.239619 0.554968i
\(921\) 0 0
\(922\) −22.4158 + 22.4158i −0.738224 + 0.738224i
\(923\) −15.7191 + 15.7191i −0.517401 + 0.517401i
\(924\) 0 0
\(925\) 1.18666 + 39.8297i 0.0390172 + 1.30959i
\(926\) 2.65305i 0.0871847i
\(927\) 0 0
\(928\) 3.71763 + 3.71763i 0.122037 + 0.122037i
\(929\) 45.3678 1.48847 0.744235 0.667918i \(-0.232814\pi\)
0.744235 + 0.667918i \(0.232814\pi\)
\(930\) 0 0
\(931\) −13.1532 −0.431079
\(932\) 3.86934 + 3.86934i 0.126744 + 0.126744i
\(933\) 0 0
\(934\) 12.5012i 0.409052i
\(935\) 0.820291 2.06689i 0.0268264 0.0675946i
\(936\) 0 0
\(937\) 3.90670 3.90670i 0.127626 0.127626i −0.640408 0.768035i \(-0.721235\pi\)
0.768035 + 0.640408i \(0.221235\pi\)
\(938\) −2.02109 + 2.02109i −0.0659909 + 0.0659909i
\(939\) 0 0
\(940\) 0.928203 2.33880i 0.0302747 0.0762832i
\(941\) 9.62122i 0.313643i 0.987627 + 0.156821i \(0.0501247\pi\)
−0.987627 + 0.156821i \(0.949875\pi\)
\(942\) 0 0
\(943\) −63.7632 63.7632i −2.07641 2.07641i
\(944\) −5.55349 −0.180751
\(945\) 0 0
\(946\) −8.34817 −0.271422
\(947\) 36.6735 + 36.6735i 1.19173 + 1.19173i 0.976582 + 0.215147i \(0.0690232\pi\)
0.215147 + 0.976582i \(0.430977\pi\)
\(948\) 0 0
\(949\) 17.6221i 0.572037i
\(950\) −0.361038 12.1181i −0.0117136 0.393162i
\(951\) 0 0
\(952\) −0.960590 + 0.960590i −0.0311329 + 0.0311329i
\(953\) 10.4115 10.4115i 0.337261 0.337261i −0.518074 0.855336i \(-0.673351\pi\)
0.855336 + 0.518074i \(0.173351\pi\)
\(954\) 0 0
\(955\) −15.7844 36.5573i −0.510770 1.18297i
\(956\) 3.58630i 0.115989i
\(957\) 0 0
\(958\) 11.8126 + 11.8126i 0.381647 + 0.381647i
\(959\) 18.4804 0.596763
\(960\) 0 0
\(961\) 44.7457 1.44341
\(962\) 11.2288 + 11.2288i 0.362030 + 0.362030i
\(963\) 0 0
\(964\) 22.1279i 0.712691i
\(965\) −13.5319 5.37041i −0.435606 0.172880i
\(966\) 0 0
\(967\) 25.3714 25.3714i 0.815890 0.815890i −0.169620 0.985510i \(-0.554254\pi\)
0.985510 + 0.169620i \(0.0542539\pi\)
\(968\) 7.18123 7.18123i 0.230814 0.230814i
\(969\) 0 0
\(970\) 1.01701 0.439117i 0.0326544 0.0140992i
\(971\) 15.1153i 0.485072i −0.970142 0.242536i \(-0.922021\pi\)
0.970142 0.242536i \(-0.0779792\pi\)
\(972\) 0 0
\(973\) −15.7324 15.7324i −0.504358 0.504358i
\(974\) −39.2295 −1.25700
\(975\) 0 0
\(976\) 2.83175 0.0906421
\(977\) −18.2080 18.2080i −0.582525 0.582525i 0.353071 0.935596i \(-0.385137\pi\)
−0.935596 + 0.353071i \(0.885137\pi\)
\(978\) 0 0
\(979\) 3.93523i 0.125770i
\(980\) 11.1363 4.80831i 0.355735 0.153596i
\(981\) 0 0
\(982\) −4.20283 + 4.20283i −0.134118 + 0.134118i
\(983\) 4.30838 4.30838i 0.137416 0.137416i −0.635053 0.772469i \(-0.719022\pi\)
0.772469 + 0.635053i \(0.219022\pi\)
\(984\) 0 0
\(985\) 2.84983 + 1.13102i 0.0908032 + 0.0360372i
\(986\) 5.69051i 0.181223i
\(987\) 0 0
\(988\) −3.41632 3.41632i −0.108688 0.108688i
\(989\) −74.5014 −2.36901
\(990\) 0 0
\(991\) 22.4463 0.713031 0.356515 0.934289i \(-0.383965\pi\)
0.356515 + 0.934289i \(0.383965\pi\)
\(992\) 6.15409 + 6.15409i 0.195393 + 0.195393i
\(993\) 0 0
\(994\) 14.0026i 0.444135i
\(995\) −4.92167 11.3988i −0.156028 0.361367i
\(996\) 0 0
\(997\) 21.4010 21.4010i 0.677777 0.677777i −0.281720 0.959497i \(-0.590905\pi\)
0.959497 + 0.281720i \(0.0909050\pi\)
\(998\) 0.428044 0.428044i 0.0135495 0.0135495i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 810.2.f.d.323.1 16
3.2 odd 2 inner 810.2.f.d.323.8 yes 16
5.2 odd 4 inner 810.2.f.d.647.8 yes 16
9.2 odd 6 810.2.m.j.53.4 16
9.4 even 3 810.2.m.i.593.4 16
9.5 odd 6 810.2.m.i.593.1 16
9.7 even 3 810.2.m.j.53.1 16
15.2 even 4 inner 810.2.f.d.647.1 yes 16
45.2 even 12 810.2.m.i.377.4 16
45.7 odd 12 810.2.m.i.377.1 16
45.22 odd 12 810.2.m.j.107.3 16
45.32 even 12 810.2.m.j.107.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
810.2.f.d.323.1 16 1.1 even 1 trivial
810.2.f.d.323.8 yes 16 3.2 odd 2 inner
810.2.f.d.647.1 yes 16 15.2 even 4 inner
810.2.f.d.647.8 yes 16 5.2 odd 4 inner
810.2.m.i.377.1 16 45.7 odd 12
810.2.m.i.377.4 16 45.2 even 12
810.2.m.i.593.1 16 9.5 odd 6
810.2.m.i.593.4 16 9.4 even 3
810.2.m.j.53.1 16 9.7 even 3
810.2.m.j.53.4 16 9.2 odd 6
810.2.m.j.107.2 16 45.32 even 12
810.2.m.j.107.3 16 45.22 odd 12