Properties

Label 810.2.m.g.377.2
Level $810$
Weight $2$
Character 810.377
Analytic conductor $6.468$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [810,2,Mod(53,810)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(810, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([10, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("810.53");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 810.m (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.46788256372\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 377.2
Root \(0.258819 + 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 810.377
Dual form 810.2.m.g.593.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.965926 + 0.258819i) q^{2} +(0.866025 + 0.500000i) q^{4} +(1.48356 + 1.67303i) q^{5} +(1.13397 - 4.23205i) q^{7} +(0.707107 + 0.707107i) q^{8} +(1.00000 + 2.00000i) q^{10} +(1.22474 - 0.707107i) q^{11} +(-1.50000 - 5.59808i) q^{13} +(2.19067 - 3.79435i) q^{14} +(0.500000 + 0.866025i) q^{16} +(4.38134 - 4.38134i) q^{17} +3.19615i q^{19} +(0.448288 + 2.19067i) q^{20} +(1.36603 - 0.366025i) q^{22} +(-4.82963 + 1.29410i) q^{23} +(-0.598076 + 4.96410i) q^{25} -5.79555i q^{26} +(3.09808 - 3.09808i) q^{28} +(2.82843 + 4.89898i) q^{29} +(-3.09808 + 5.36603i) q^{31} +(0.258819 + 0.965926i) q^{32} +(5.36603 - 3.09808i) q^{34} +(8.76268 - 4.38134i) q^{35} +(5.19615 + 5.19615i) q^{37} +(-0.827225 + 3.08725i) q^{38} +(-0.133975 + 2.23205i) q^{40} +(1.10463 + 0.637756i) q^{41} +(-7.09808 - 1.90192i) q^{43} +1.41421 q^{44} -5.00000 q^{46} +(0.776457 + 0.208051i) q^{47} +(-10.5622 - 6.09808i) q^{49} +(-1.86250 + 4.64016i) q^{50} +(1.50000 - 5.59808i) q^{52} +(2.26002 + 2.26002i) q^{53} +(3.00000 + 1.00000i) q^{55} +(3.79435 - 2.19067i) q^{56} +(1.46410 + 5.46410i) q^{58} +(1.48356 - 2.56961i) q^{59} +(-1.90192 - 3.29423i) q^{61} +(-4.38134 + 4.38134i) q^{62} +1.00000i q^{64} +(7.14042 - 10.8147i) q^{65} +(-5.73205 + 1.53590i) q^{67} +(5.98502 - 1.60368i) q^{68} +(9.59808 - 1.96410i) q^{70} +10.1769i q^{71} +(4.00000 - 4.00000i) q^{73} +(3.67423 + 6.36396i) q^{74} +(-1.59808 + 2.76795i) q^{76} +(-1.60368 - 5.98502i) q^{77} +(-1.90192 + 1.09808i) q^{79} +(-0.707107 + 2.12132i) q^{80} +(0.901924 + 0.901924i) q^{82} +(-3.67423 + 13.7124i) q^{83} +(13.8301 + 0.830127i) q^{85} +(-6.36396 - 3.67423i) q^{86} +(1.36603 + 0.366025i) q^{88} -1.69161 q^{89} -25.3923 q^{91} +(-4.82963 - 1.29410i) q^{92} +(0.696152 + 0.401924i) q^{94} +(-5.34727 + 4.74170i) q^{95} +(-2.19615 + 8.19615i) q^{97} +(-8.62398 - 8.62398i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{7} + 8 q^{10} - 12 q^{13} + 4 q^{16} + 4 q^{22} + 16 q^{25} + 4 q^{28} - 4 q^{31} + 36 q^{34} - 8 q^{40} - 36 q^{43} - 40 q^{46} - 36 q^{49} + 12 q^{52} + 24 q^{55} - 16 q^{58} - 36 q^{61} - 32 q^{67}+ \cdots + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/810\mathbb{Z}\right)^\times\).

\(n\) \(487\) \(731\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.965926 + 0.258819i 0.683013 + 0.183013i
\(3\) 0 0
\(4\) 0.866025 + 0.500000i 0.433013 + 0.250000i
\(5\) 1.48356 + 1.67303i 0.663470 + 0.748203i
\(6\) 0 0
\(7\) 1.13397 4.23205i 0.428602 1.59956i −0.327327 0.944911i \(-0.606148\pi\)
0.755929 0.654654i \(-0.227186\pi\)
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 0 0
\(10\) 1.00000 + 2.00000i 0.316228 + 0.632456i
\(11\) 1.22474 0.707107i 0.369274 0.213201i −0.303867 0.952714i \(-0.598278\pi\)
0.673141 + 0.739514i \(0.264945\pi\)
\(12\) 0 0
\(13\) −1.50000 5.59808i −0.416025 1.55263i −0.782773 0.622307i \(-0.786196\pi\)
0.366748 0.930320i \(-0.380471\pi\)
\(14\) 2.19067 3.79435i 0.585481 1.01408i
\(15\) 0 0
\(16\) 0.500000 + 0.866025i 0.125000 + 0.216506i
\(17\) 4.38134 4.38134i 1.06263 1.06263i 0.0647285 0.997903i \(-0.479382\pi\)
0.997903 0.0647285i \(-0.0206181\pi\)
\(18\) 0 0
\(19\) 3.19615i 0.733248i 0.930369 + 0.366624i \(0.119486\pi\)
−0.930369 + 0.366624i \(0.880514\pi\)
\(20\) 0.448288 + 2.19067i 0.100240 + 0.489849i
\(21\) 0 0
\(22\) 1.36603 0.366025i 0.291238 0.0780369i
\(23\) −4.82963 + 1.29410i −1.00705 + 0.269838i −0.724395 0.689385i \(-0.757881\pi\)
−0.282652 + 0.959222i \(0.591214\pi\)
\(24\) 0 0
\(25\) −0.598076 + 4.96410i −0.119615 + 0.992820i
\(26\) 5.79555i 1.13660i
\(27\) 0 0
\(28\) 3.09808 3.09808i 0.585481 0.585481i
\(29\) 2.82843 + 4.89898i 0.525226 + 0.909718i 0.999568 + 0.0293774i \(0.00935245\pi\)
−0.474343 + 0.880340i \(0.657314\pi\)
\(30\) 0 0
\(31\) −3.09808 + 5.36603i −0.556431 + 0.963767i 0.441360 + 0.897330i \(0.354496\pi\)
−0.997791 + 0.0664364i \(0.978837\pi\)
\(32\) 0.258819 + 0.965926i 0.0457532 + 0.170753i
\(33\) 0 0
\(34\) 5.36603 3.09808i 0.920266 0.531316i
\(35\) 8.76268 4.38134i 1.48116 0.740582i
\(36\) 0 0
\(37\) 5.19615 + 5.19615i 0.854242 + 0.854242i 0.990652 0.136410i \(-0.0435565\pi\)
−0.136410 + 0.990652i \(0.543557\pi\)
\(38\) −0.827225 + 3.08725i −0.134194 + 0.500817i
\(39\) 0 0
\(40\) −0.133975 + 2.23205i −0.0211832 + 0.352918i
\(41\) 1.10463 + 0.637756i 0.172514 + 0.0996008i 0.583771 0.811919i \(-0.301577\pi\)
−0.411257 + 0.911519i \(0.634910\pi\)
\(42\) 0 0
\(43\) −7.09808 1.90192i −1.08245 0.290041i −0.326849 0.945077i \(-0.605987\pi\)
−0.755598 + 0.655036i \(0.772653\pi\)
\(44\) 1.41421 0.213201
\(45\) 0 0
\(46\) −5.00000 −0.737210
\(47\) 0.776457 + 0.208051i 0.113258 + 0.0303474i 0.315003 0.949091i \(-0.397995\pi\)
−0.201745 + 0.979438i \(0.564661\pi\)
\(48\) 0 0
\(49\) −10.5622 6.09808i −1.50888 0.871154i
\(50\) −1.86250 + 4.64016i −0.263397 + 0.656218i
\(51\) 0 0
\(52\) 1.50000 5.59808i 0.208013 0.776313i
\(53\) 2.26002 + 2.26002i 0.310438 + 0.310438i 0.845079 0.534641i \(-0.179553\pi\)
−0.534641 + 0.845079i \(0.679553\pi\)
\(54\) 0 0
\(55\) 3.00000 + 1.00000i 0.404520 + 0.134840i
\(56\) 3.79435 2.19067i 0.507042 0.292741i
\(57\) 0 0
\(58\) 1.46410 + 5.46410i 0.192246 + 0.717472i
\(59\) 1.48356 2.56961i 0.193144 0.334534i −0.753147 0.657852i \(-0.771465\pi\)
0.946290 + 0.323318i \(0.104798\pi\)
\(60\) 0 0
\(61\) −1.90192 3.29423i −0.243516 0.421783i 0.718197 0.695840i \(-0.244968\pi\)
−0.961713 + 0.274057i \(0.911634\pi\)
\(62\) −4.38134 + 4.38134i −0.556431 + 0.556431i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 7.14042 10.8147i 0.885660 1.34139i
\(66\) 0 0
\(67\) −5.73205 + 1.53590i −0.700281 + 0.187640i −0.591357 0.806410i \(-0.701407\pi\)
−0.108925 + 0.994050i \(0.534741\pi\)
\(68\) 5.98502 1.60368i 0.725791 0.194475i
\(69\) 0 0
\(70\) 9.59808 1.96410i 1.14719 0.234755i
\(71\) 10.1769i 1.20778i 0.797069 + 0.603888i \(0.206382\pi\)
−0.797069 + 0.603888i \(0.793618\pi\)
\(72\) 0 0
\(73\) 4.00000 4.00000i 0.468165 0.468165i −0.433155 0.901319i \(-0.642600\pi\)
0.901319 + 0.433155i \(0.142600\pi\)
\(74\) 3.67423 + 6.36396i 0.427121 + 0.739795i
\(75\) 0 0
\(76\) −1.59808 + 2.76795i −0.183312 + 0.317506i
\(77\) −1.60368 5.98502i −0.182757 0.682057i
\(78\) 0 0
\(79\) −1.90192 + 1.09808i −0.213983 + 0.123543i −0.603161 0.797619i \(-0.706092\pi\)
0.389178 + 0.921163i \(0.372759\pi\)
\(80\) −0.707107 + 2.12132i −0.0790569 + 0.237171i
\(81\) 0 0
\(82\) 0.901924 + 0.901924i 0.0996008 + 0.0996008i
\(83\) −3.67423 + 13.7124i −0.403300 + 1.50513i 0.403871 + 0.914816i \(0.367665\pi\)
−0.807170 + 0.590319i \(0.799002\pi\)
\(84\) 0 0
\(85\) 13.8301 + 0.830127i 1.50009 + 0.0900399i
\(86\) −6.36396 3.67423i −0.686244 0.396203i
\(87\) 0 0
\(88\) 1.36603 + 0.366025i 0.145619 + 0.0390184i
\(89\) −1.69161 −0.179311 −0.0896554 0.995973i \(-0.528577\pi\)
−0.0896554 + 0.995973i \(0.528577\pi\)
\(90\) 0 0
\(91\) −25.3923 −2.66184
\(92\) −4.82963 1.29410i −0.503524 0.134919i
\(93\) 0 0
\(94\) 0.696152 + 0.401924i 0.0718026 + 0.0414553i
\(95\) −5.34727 + 4.74170i −0.548618 + 0.486488i
\(96\) 0 0
\(97\) −2.19615 + 8.19615i −0.222985 + 0.832193i 0.760216 + 0.649670i \(0.225093\pi\)
−0.983202 + 0.182523i \(0.941574\pi\)
\(98\) −8.62398 8.62398i −0.871154 0.871154i
\(99\) 0 0
\(100\) −3.00000 + 4.00000i −0.300000 + 0.400000i
\(101\) 11.5032 6.64136i 1.14461 0.660840i 0.197041 0.980395i \(-0.436867\pi\)
0.947568 + 0.319555i \(0.103533\pi\)
\(102\) 0 0
\(103\) −1.42820 5.33013i −0.140725 0.525193i −0.999909 0.0135254i \(-0.995695\pi\)
0.859183 0.511668i \(-0.170972\pi\)
\(104\) 2.89778 5.01910i 0.284150 0.492163i
\(105\) 0 0
\(106\) 1.59808 + 2.76795i 0.155219 + 0.268847i
\(107\) 8.62398 8.62398i 0.833712 0.833712i −0.154311 0.988022i \(-0.549316\pi\)
0.988022 + 0.154311i \(0.0493156\pi\)
\(108\) 0 0
\(109\) 10.0000i 0.957826i −0.877862 0.478913i \(-0.841031\pi\)
0.877862 0.478913i \(-0.158969\pi\)
\(110\) 2.63896 + 1.74238i 0.251615 + 0.166130i
\(111\) 0 0
\(112\) 4.23205 1.13397i 0.399891 0.107151i
\(113\) −3.86370 + 1.03528i −0.363467 + 0.0973906i −0.435930 0.899980i \(-0.643581\pi\)
0.0724636 + 0.997371i \(0.476914\pi\)
\(114\) 0 0
\(115\) −9.33013 6.16025i −0.870039 0.574447i
\(116\) 5.65685i 0.525226i
\(117\) 0 0
\(118\) 2.09808 2.09808i 0.193144 0.193144i
\(119\) −13.5737 23.5104i −1.24430 2.15519i
\(120\) 0 0
\(121\) −4.50000 + 7.79423i −0.409091 + 0.708566i
\(122\) −0.984508 3.67423i −0.0891332 0.332650i
\(123\) 0 0
\(124\) −5.36603 + 3.09808i −0.481883 + 0.278215i
\(125\) −9.19239 + 6.36396i −0.822192 + 0.569210i
\(126\) 0 0
\(127\) −2.09808 2.09808i −0.186174 0.186174i 0.607866 0.794040i \(-0.292026\pi\)
−0.794040 + 0.607866i \(0.792026\pi\)
\(128\) −0.258819 + 0.965926i −0.0228766 + 0.0853766i
\(129\) 0 0
\(130\) 9.69615 8.59808i 0.850409 0.754101i
\(131\) 0.120118 + 0.0693504i 0.0104948 + 0.00605917i 0.505238 0.862980i \(-0.331405\pi\)
−0.494743 + 0.869039i \(0.664738\pi\)
\(132\) 0 0
\(133\) 13.5263 + 3.62436i 1.17288 + 0.314271i
\(134\) −5.93426 −0.512642
\(135\) 0 0
\(136\) 6.19615 0.531316
\(137\) −13.7124 3.67423i −1.17153 0.313911i −0.379969 0.924999i \(-0.624065\pi\)
−0.791563 + 0.611088i \(0.790732\pi\)
\(138\) 0 0
\(139\) −13.3301 7.69615i −1.13065 0.652779i −0.186549 0.982446i \(-0.559730\pi\)
−0.944097 + 0.329666i \(0.893064\pi\)
\(140\) 9.77938 + 0.586988i 0.826508 + 0.0496096i
\(141\) 0 0
\(142\) −2.63397 + 9.83013i −0.221038 + 0.824926i
\(143\) −5.79555 5.79555i −0.484649 0.484649i
\(144\) 0 0
\(145\) −4.00000 + 12.0000i −0.332182 + 0.996546i
\(146\) 4.89898 2.82843i 0.405442 0.234082i
\(147\) 0 0
\(148\) 1.90192 + 7.09808i 0.156337 + 0.583458i
\(149\) 0.568406 0.984508i 0.0465656 0.0806541i −0.841803 0.539785i \(-0.818506\pi\)
0.888369 + 0.459131i \(0.151839\pi\)
\(150\) 0 0
\(151\) 4.29423 + 7.43782i 0.349459 + 0.605281i 0.986154 0.165835i \(-0.0530319\pi\)
−0.636694 + 0.771116i \(0.719699\pi\)
\(152\) −2.26002 + 2.26002i −0.183312 + 0.183312i
\(153\) 0 0
\(154\) 6.19615i 0.499300i
\(155\) −13.5737 + 2.77766i −1.09027 + 0.223107i
\(156\) 0 0
\(157\) 4.50000 1.20577i 0.359139 0.0962310i −0.0747377 0.997203i \(-0.523812\pi\)
0.433877 + 0.900972i \(0.357145\pi\)
\(158\) −2.12132 + 0.568406i −0.168763 + 0.0452200i
\(159\) 0 0
\(160\) −1.23205 + 1.86603i −0.0974022 + 0.147522i
\(161\) 21.9067i 1.72649i
\(162\) 0 0
\(163\) 14.0000 14.0000i 1.09656 1.09656i 0.101755 0.994809i \(-0.467554\pi\)
0.994809 0.101755i \(-0.0324458\pi\)
\(164\) 0.637756 + 1.10463i 0.0498004 + 0.0862568i
\(165\) 0 0
\(166\) −7.09808 + 12.2942i −0.550918 + 0.954217i
\(167\) 5.89709 + 22.0082i 0.456331 + 1.70305i 0.684146 + 0.729345i \(0.260175\pi\)
−0.227816 + 0.973704i \(0.573158\pi\)
\(168\) 0 0
\(169\) −17.8301 + 10.2942i −1.37155 + 0.791864i
\(170\) 13.1440 + 4.38134i 1.00810 + 0.336034i
\(171\) 0 0
\(172\) −5.19615 5.19615i −0.396203 0.396203i
\(173\) −3.51695 + 13.1254i −0.267389 + 0.997909i 0.693383 + 0.720569i \(0.256119\pi\)
−0.960772 + 0.277340i \(0.910547\pi\)
\(174\) 0 0
\(175\) 20.3301 + 8.16025i 1.53681 + 0.616857i
\(176\) 1.22474 + 0.707107i 0.0923186 + 0.0533002i
\(177\) 0 0
\(178\) −1.63397 0.437822i −0.122472 0.0328162i
\(179\) −24.4577 −1.82806 −0.914028 0.405650i \(-0.867045\pi\)
−0.914028 + 0.405650i \(0.867045\pi\)
\(180\) 0 0
\(181\) 4.19615 0.311898 0.155949 0.987765i \(-0.450157\pi\)
0.155949 + 0.987765i \(0.450157\pi\)
\(182\) −24.5271 6.57201i −1.81807 0.487150i
\(183\) 0 0
\(184\) −4.33013 2.50000i −0.319221 0.184302i
\(185\) −0.984508 + 16.4022i −0.0723825 + 1.20591i
\(186\) 0 0
\(187\) 2.26795 8.46410i 0.165849 0.618956i
\(188\) 0.568406 + 0.568406i 0.0414553 + 0.0414553i
\(189\) 0 0
\(190\) −6.39230 + 3.19615i −0.463747 + 0.231873i
\(191\) −8.57321 + 4.94975i −0.620336 + 0.358151i −0.777000 0.629501i \(-0.783259\pi\)
0.156664 + 0.987652i \(0.449926\pi\)
\(192\) 0 0
\(193\) −1.60770 6.00000i −0.115724 0.431889i 0.883616 0.468213i \(-0.155102\pi\)
−0.999340 + 0.0363235i \(0.988435\pi\)
\(194\) −4.24264 + 7.34847i −0.304604 + 0.527589i
\(195\) 0 0
\(196\) −6.09808 10.5622i −0.435577 0.754441i
\(197\) −9.46979 + 9.46979i −0.674695 + 0.674695i −0.958795 0.284100i \(-0.908305\pi\)
0.284100 + 0.958795i \(0.408305\pi\)
\(198\) 0 0
\(199\) 12.5885i 0.892372i −0.894940 0.446186i \(-0.852782\pi\)
0.894940 0.446186i \(-0.147218\pi\)
\(200\) −3.93305 + 3.08725i −0.278109 + 0.218301i
\(201\) 0 0
\(202\) 12.8301 3.43782i 0.902725 0.241884i
\(203\) 23.9401 6.41473i 1.68027 0.450226i
\(204\) 0 0
\(205\) 0.571797 + 2.79423i 0.0399360 + 0.195157i
\(206\) 5.51815i 0.384468i
\(207\) 0 0
\(208\) 4.09808 4.09808i 0.284150 0.284150i
\(209\) 2.26002 + 3.91447i 0.156329 + 0.270770i
\(210\) 0 0
\(211\) 9.50000 16.4545i 0.654007 1.13277i −0.328135 0.944631i \(-0.606420\pi\)
0.982142 0.188142i \(-0.0602466\pi\)
\(212\) 0.827225 + 3.08725i 0.0568141 + 0.212033i
\(213\) 0 0
\(214\) 10.5622 6.09808i 0.722016 0.416856i
\(215\) −7.34847 14.6969i −0.501161 1.00232i
\(216\) 0 0
\(217\) 19.1962 + 19.1962i 1.30312 + 1.30312i
\(218\) 2.58819 9.65926i 0.175294 0.654208i
\(219\) 0 0
\(220\) 2.09808 + 2.36603i 0.141452 + 0.159517i
\(221\) −31.0991 17.9551i −2.09195 1.20779i
\(222\) 0 0
\(223\) −23.4904 6.29423i −1.57303 0.421493i −0.636272 0.771465i \(-0.719524\pi\)
−0.936760 + 0.349972i \(0.886191\pi\)
\(224\) 4.38134 0.292741
\(225\) 0 0
\(226\) −4.00000 −0.266076
\(227\) 11.7806 + 3.15660i 0.781904 + 0.209511i 0.627624 0.778516i \(-0.284027\pi\)
0.154280 + 0.988027i \(0.450694\pi\)
\(228\) 0 0
\(229\) 19.3923 + 11.1962i 1.28148 + 0.739863i 0.977119 0.212694i \(-0.0682238\pi\)
0.304361 + 0.952557i \(0.401557\pi\)
\(230\) −7.41782 8.36516i −0.489117 0.551583i
\(231\) 0 0
\(232\) −1.46410 + 5.46410i −0.0961230 + 0.358736i
\(233\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(234\) 0 0
\(235\) 0.803848 + 1.60770i 0.0524372 + 0.104874i
\(236\) 2.56961 1.48356i 0.167267 0.0965718i
\(237\) 0 0
\(238\) −7.02628 26.2224i −0.455446 1.69975i
\(239\) 8.48528 14.6969i 0.548867 0.950666i −0.449485 0.893288i \(-0.648393\pi\)
0.998353 0.0573782i \(-0.0182741\pi\)
\(240\) 0 0
\(241\) 15.1962 + 26.3205i 0.978870 + 1.69545i 0.666522 + 0.745485i \(0.267782\pi\)
0.312348 + 0.949968i \(0.398884\pi\)
\(242\) −6.36396 + 6.36396i −0.409091 + 0.409091i
\(243\) 0 0
\(244\) 3.80385i 0.243516i
\(245\) −5.46739 26.7178i −0.349298 1.70693i
\(246\) 0 0
\(247\) 17.8923 4.79423i 1.13846 0.305049i
\(248\) −5.98502 + 1.60368i −0.380049 + 0.101834i
\(249\) 0 0
\(250\) −10.5263 + 3.76795i −0.665740 + 0.238306i
\(251\) 5.79555i 0.365812i −0.983130 0.182906i \(-0.941450\pi\)
0.983130 0.182906i \(-0.0585504\pi\)
\(252\) 0 0
\(253\) −5.00000 + 5.00000i −0.314347 + 0.314347i
\(254\) −1.48356 2.56961i −0.0930871 0.161232i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −4.86181 18.1445i −0.303272 1.13183i −0.934423 0.356165i \(-0.884084\pi\)
0.631151 0.775660i \(-0.282583\pi\)
\(258\) 0 0
\(259\) 27.8827 16.0981i 1.73255 1.00029i
\(260\) 11.5911 5.79555i 0.718850 0.359425i
\(261\) 0 0
\(262\) 0.0980762 + 0.0980762i 0.00605917 + 0.00605917i
\(263\) 0.258819 0.965926i 0.0159595 0.0595615i −0.957487 0.288477i \(-0.906851\pi\)
0.973446 + 0.228915i \(0.0735179\pi\)
\(264\) 0 0
\(265\) −0.428203 + 7.13397i −0.0263043 + 0.438237i
\(266\) 12.1273 + 7.00172i 0.743574 + 0.429303i
\(267\) 0 0
\(268\) −5.73205 1.53590i −0.350141 0.0938199i
\(269\) 3.96524 0.241765 0.120882 0.992667i \(-0.461428\pi\)
0.120882 + 0.992667i \(0.461428\pi\)
\(270\) 0 0
\(271\) −32.7846 −1.99152 −0.995762 0.0919719i \(-0.970683\pi\)
−0.995762 + 0.0919719i \(0.970683\pi\)
\(272\) 5.98502 + 1.60368i 0.362895 + 0.0972375i
\(273\) 0 0
\(274\) −12.2942 7.09808i −0.742722 0.428810i
\(275\) 2.77766 + 6.50266i 0.167499 + 0.392125i
\(276\) 0 0
\(277\) 2.30385 8.59808i 0.138425 0.516608i −0.861536 0.507697i \(-0.830497\pi\)
0.999960 0.00891102i \(-0.00283650\pi\)
\(278\) −10.8840 10.8840i −0.652779 0.652779i
\(279\) 0 0
\(280\) 9.29423 + 3.09808i 0.555436 + 0.185145i
\(281\) −13.3521 + 7.70882i −0.796518 + 0.459870i −0.842252 0.539084i \(-0.818771\pi\)
0.0457341 + 0.998954i \(0.485437\pi\)
\(282\) 0 0
\(283\) −1.97372 7.36603i −0.117326 0.437865i 0.882125 0.471016i \(-0.156112\pi\)
−0.999450 + 0.0331509i \(0.989446\pi\)
\(284\) −5.08845 + 8.81345i −0.301944 + 0.522982i
\(285\) 0 0
\(286\) −4.09808 7.09808i −0.242324 0.419718i
\(287\) 3.95164 3.95164i 0.233258 0.233258i
\(288\) 0 0
\(289\) 21.3923i 1.25837i
\(290\) −6.96953 + 10.5558i −0.409265 + 0.619860i
\(291\) 0 0
\(292\) 5.46410 1.46410i 0.319762 0.0856801i
\(293\) 7.14042 1.91327i 0.417148 0.111774i −0.0441393 0.999025i \(-0.514055\pi\)
0.461287 + 0.887251i \(0.347388\pi\)
\(294\) 0 0
\(295\) 6.50000 1.33013i 0.378445 0.0774430i
\(296\) 7.34847i 0.427121i
\(297\) 0 0
\(298\) 0.803848 0.803848i 0.0465656 0.0465656i
\(299\) 14.4889 + 25.0955i 0.837914 + 1.45131i
\(300\) 0 0
\(301\) −16.0981 + 27.8827i −0.927878 + 1.60713i
\(302\) 2.22286 + 8.29581i 0.127911 + 0.477370i
\(303\) 0 0
\(304\) −2.76795 + 1.59808i −0.158753 + 0.0916560i
\(305\) 2.68973 8.06918i 0.154013 0.462040i
\(306\) 0 0
\(307\) −0.803848 0.803848i −0.0458780 0.0458780i 0.683796 0.729674i \(-0.260328\pi\)
−0.729674 + 0.683796i \(0.760328\pi\)
\(308\) 1.60368 5.98502i 0.0913783 0.341028i
\(309\) 0 0
\(310\) −13.8301 0.830127i −0.785498 0.0471480i
\(311\) 14.9372 + 8.62398i 0.847009 + 0.489021i 0.859641 0.510899i \(-0.170687\pi\)
−0.0126312 + 0.999920i \(0.504021\pi\)
\(312\) 0 0
\(313\) 10.0981 + 2.70577i 0.570777 + 0.152939i 0.532653 0.846334i \(-0.321195\pi\)
0.0381241 + 0.999273i \(0.487862\pi\)
\(314\) 4.65874 0.262908
\(315\) 0 0
\(316\) −2.19615 −0.123543
\(317\) 26.0800 + 6.98811i 1.46480 + 0.392492i 0.901144 0.433519i \(-0.142728\pi\)
0.563654 + 0.826011i \(0.309395\pi\)
\(318\) 0 0
\(319\) 6.92820 + 4.00000i 0.387905 + 0.223957i
\(320\) −1.67303 + 1.48356i −0.0935254 + 0.0829337i
\(321\) 0 0
\(322\) −5.66987 + 21.1603i −0.315970 + 1.17921i
\(323\) 14.0034 + 14.0034i 0.779172 + 0.779172i
\(324\) 0 0
\(325\) 28.6865 4.09808i 1.59124 0.227320i
\(326\) 17.1464 9.89949i 0.949653 0.548282i
\(327\) 0 0
\(328\) 0.330127 + 1.23205i 0.0182282 + 0.0680286i
\(329\) 1.76097 3.05008i 0.0970852 0.168156i
\(330\) 0 0
\(331\) −5.80385 10.0526i −0.319008 0.552539i 0.661273 0.750145i \(-0.270016\pi\)
−0.980281 + 0.197607i \(0.936683\pi\)
\(332\) −10.0382 + 10.0382i −0.550918 + 0.550918i
\(333\) 0 0
\(334\) 22.7846i 1.24672i
\(335\) −11.0735 7.31130i −0.605008 0.399459i
\(336\) 0 0
\(337\) −12.2942 + 3.29423i −0.669709 + 0.179448i −0.577624 0.816303i \(-0.696020\pi\)
−0.0920854 + 0.995751i \(0.529353\pi\)
\(338\) −19.8869 + 5.32868i −1.08171 + 0.289842i
\(339\) 0 0
\(340\) 11.5622 + 7.63397i 0.627047 + 0.414010i
\(341\) 8.76268i 0.474526i
\(342\) 0 0
\(343\) −16.0981 + 16.0981i −0.869214 + 0.869214i
\(344\) −3.67423 6.36396i −0.198101 0.343122i
\(345\) 0 0
\(346\) −6.79423 + 11.7679i −0.365260 + 0.632649i
\(347\) 1.45138 + 5.41662i 0.0779141 + 0.290779i 0.993878 0.110481i \(-0.0352390\pi\)
−0.915964 + 0.401260i \(0.868572\pi\)
\(348\) 0 0
\(349\) −1.73205 + 1.00000i −0.0927146 + 0.0535288i −0.545640 0.838019i \(-0.683714\pi\)
0.452926 + 0.891548i \(0.350380\pi\)
\(350\) 17.5254 + 13.1440i 0.936770 + 0.702578i
\(351\) 0 0
\(352\) 1.00000 + 1.00000i 0.0533002 + 0.0533002i
\(353\) 2.12132 7.91688i 0.112906 0.421373i −0.886215 0.463274i \(-0.846675\pi\)
0.999122 + 0.0419009i \(0.0133414\pi\)
\(354\) 0 0
\(355\) −17.0263 + 15.0981i −0.903661 + 0.801323i
\(356\) −1.46498 0.845807i −0.0776439 0.0448277i
\(357\) 0 0
\(358\) −23.6244 6.33013i −1.24859 0.334558i
\(359\) 11.8685 0.626396 0.313198 0.949688i \(-0.398600\pi\)
0.313198 + 0.949688i \(0.398600\pi\)
\(360\) 0 0
\(361\) 8.78461 0.462348
\(362\) 4.05317 + 1.08604i 0.213030 + 0.0570812i
\(363\) 0 0
\(364\) −21.9904 12.6962i −1.15261 0.665459i
\(365\) 12.6264 + 0.757875i 0.660895 + 0.0396690i
\(366\) 0 0
\(367\) 5.63397 21.0263i 0.294091 1.09756i −0.647845 0.761772i \(-0.724330\pi\)
0.941937 0.335791i \(-0.109004\pi\)
\(368\) −3.53553 3.53553i −0.184302 0.184302i
\(369\) 0 0
\(370\) −5.19615 + 15.5885i −0.270135 + 0.810405i
\(371\) 12.1273 7.00172i 0.629620 0.363511i
\(372\) 0 0
\(373\) −7.83013 29.2224i −0.405429 1.51308i −0.803264 0.595623i \(-0.796905\pi\)
0.397835 0.917457i \(-0.369762\pi\)
\(374\) 4.38134 7.58871i 0.226554 0.392403i
\(375\) 0 0
\(376\) 0.401924 + 0.696152i 0.0207276 + 0.0359013i
\(377\) 23.1822 23.1822i 1.19395 1.19395i
\(378\) 0 0
\(379\) 11.0000i 0.565032i −0.959263 0.282516i \(-0.908831\pi\)
0.959263 0.282516i \(-0.0911690\pi\)
\(380\) −7.00172 + 1.43280i −0.359181 + 0.0735009i
\(381\) 0 0
\(382\) −9.56218 + 2.56218i −0.489244 + 0.131092i
\(383\) 10.8147 2.89778i 0.552603 0.148070i 0.0282971 0.999600i \(-0.490992\pi\)
0.524306 + 0.851530i \(0.324325\pi\)
\(384\) 0 0
\(385\) 7.63397 11.5622i 0.389063 0.589263i
\(386\) 6.21166i 0.316165i
\(387\) 0 0
\(388\) −6.00000 + 6.00000i −0.304604 + 0.304604i
\(389\) 13.7124 + 23.7506i 0.695248 + 1.20420i 0.970097 + 0.242717i \(0.0780387\pi\)
−0.274849 + 0.961487i \(0.588628\pi\)
\(390\) 0 0
\(391\) −15.4904 + 26.8301i −0.783382 + 1.35686i
\(392\) −3.15660 11.7806i −0.159432 0.595009i
\(393\) 0 0
\(394\) −11.5981 + 6.69615i −0.584303 + 0.337347i
\(395\) −4.65874 1.55291i −0.234407 0.0781356i
\(396\) 0 0
\(397\) 3.19615 + 3.19615i 0.160410 + 0.160410i 0.782748 0.622338i \(-0.213817\pi\)
−0.622338 + 0.782748i \(0.713817\pi\)
\(398\) 3.25813 12.1595i 0.163315 0.609501i
\(399\) 0 0
\(400\) −4.59808 + 1.96410i −0.229904 + 0.0982051i
\(401\) −11.3831 6.57201i −0.568443 0.328191i 0.188084 0.982153i \(-0.439772\pi\)
−0.756527 + 0.653962i \(0.773106\pi\)
\(402\) 0 0
\(403\) 34.6865 + 9.29423i 1.72786 + 0.462979i
\(404\) 13.2827 0.660840
\(405\) 0 0
\(406\) 24.7846 1.23004
\(407\) 10.0382 + 2.68973i 0.497575 + 0.133325i
\(408\) 0 0
\(409\) 21.9904 + 12.6962i 1.08735 + 0.627784i 0.932871 0.360211i \(-0.117295\pi\)
0.154484 + 0.987995i \(0.450629\pi\)
\(410\) −0.170886 + 2.84701i −0.00843947 + 0.140604i
\(411\) 0 0
\(412\) 1.42820 5.33013i 0.0703625 0.262597i
\(413\) −9.19239 9.19239i −0.452328 0.452328i
\(414\) 0 0
\(415\) −28.3923 + 14.1962i −1.39372 + 0.696862i
\(416\) 5.01910 2.89778i 0.246082 0.142075i
\(417\) 0 0
\(418\) 1.16987 + 4.36603i 0.0572204 + 0.213549i
\(419\) −9.05369 + 15.6814i −0.442302 + 0.766089i −0.997860 0.0653888i \(-0.979171\pi\)
0.555558 + 0.831478i \(0.312505\pi\)
\(420\) 0 0
\(421\) −2.09808 3.63397i −0.102254 0.177109i 0.810359 0.585934i \(-0.199272\pi\)
−0.912613 + 0.408825i \(0.865939\pi\)
\(422\) 13.4350 13.4350i 0.654007 0.654007i
\(423\) 0 0
\(424\) 3.19615i 0.155219i
\(425\) 19.1290 + 24.3698i 0.927895 + 1.18211i
\(426\) 0 0
\(427\) −16.0981 + 4.31347i −0.779041 + 0.208743i
\(428\) 11.7806 3.15660i 0.569436 0.152580i
\(429\) 0 0
\(430\) −3.29423 16.0981i −0.158862 0.776318i
\(431\) 24.0416i 1.15804i −0.815312 0.579022i \(-0.803434\pi\)
0.815312 0.579022i \(-0.196566\pi\)
\(432\) 0 0
\(433\) 8.00000 8.00000i 0.384455 0.384455i −0.488249 0.872704i \(-0.662364\pi\)
0.872704 + 0.488249i \(0.162364\pi\)
\(434\) 13.5737 + 23.5104i 0.651560 + 1.12853i
\(435\) 0 0
\(436\) 5.00000 8.66025i 0.239457 0.414751i
\(437\) −4.13613 15.4362i −0.197858 0.738415i
\(438\) 0 0
\(439\) −8.15064 + 4.70577i −0.389009 + 0.224594i −0.681730 0.731603i \(-0.738772\pi\)
0.292722 + 0.956198i \(0.405439\pi\)
\(440\) 1.41421 + 2.82843i 0.0674200 + 0.134840i
\(441\) 0 0
\(442\) −25.3923 25.3923i −1.20779 1.20779i
\(443\) −3.10583 + 11.5911i −0.147562 + 0.550710i 0.852066 + 0.523435i \(0.175350\pi\)
−0.999628 + 0.0272752i \(0.991317\pi\)
\(444\) 0 0
\(445\) −2.50962 2.83013i −0.118967 0.134161i
\(446\) −21.0609 12.1595i −0.997262 0.575770i
\(447\) 0 0
\(448\) 4.23205 + 1.13397i 0.199946 + 0.0535753i
\(449\) −19.9377 −0.940918 −0.470459 0.882422i \(-0.655912\pi\)
−0.470459 + 0.882422i \(0.655912\pi\)
\(450\) 0 0
\(451\) 1.80385 0.0849399
\(452\) −3.86370 1.03528i −0.181733 0.0486953i
\(453\) 0 0
\(454\) 10.5622 + 6.09808i 0.495708 + 0.286197i
\(455\) −37.6711 42.4822i −1.76605 1.99159i
\(456\) 0 0
\(457\) 4.09808 15.2942i 0.191700 0.715434i −0.801397 0.598133i \(-0.795909\pi\)
0.993096 0.117300i \(-0.0374240\pi\)
\(458\) 15.8338 + 15.8338i 0.739863 + 0.739863i
\(459\) 0 0
\(460\) −5.00000 10.0000i −0.233126 0.466252i
\(461\) −7.10823 + 4.10394i −0.331063 + 0.191140i −0.656313 0.754489i \(-0.727885\pi\)
0.325250 + 0.945628i \(0.394552\pi\)
\(462\) 0 0
\(463\) 9.33013 + 34.8205i 0.433608 + 1.61825i 0.744376 + 0.667761i \(0.232747\pi\)
−0.310768 + 0.950486i \(0.600586\pi\)
\(464\) −2.82843 + 4.89898i −0.131306 + 0.227429i
\(465\) 0 0
\(466\) 0 0
\(467\) 17.5254 17.5254i 0.810977 0.810977i −0.173803 0.984780i \(-0.555606\pi\)
0.984780 + 0.173803i \(0.0556057\pi\)
\(468\) 0 0
\(469\) 26.0000i 1.20057i
\(470\) 0.360355 + 1.76097i 0.0166219 + 0.0812273i
\(471\) 0 0
\(472\) 2.86603 0.767949i 0.131920 0.0353477i
\(473\) −10.0382 + 2.68973i −0.461557 + 0.123674i
\(474\) 0 0
\(475\) −15.8660 1.91154i −0.727983 0.0877076i
\(476\) 27.1475i 1.24430i
\(477\) 0 0
\(478\) 12.0000 12.0000i 0.548867 0.548867i
\(479\) −3.53553 6.12372i −0.161543 0.279800i 0.773879 0.633333i \(-0.218314\pi\)
−0.935422 + 0.353533i \(0.884980\pi\)
\(480\) 0 0
\(481\) 21.2942 36.8827i 0.970933 1.68171i
\(482\) 7.86611 + 29.3567i 0.358291 + 1.33716i
\(483\) 0 0
\(484\) −7.79423 + 4.50000i −0.354283 + 0.204545i
\(485\) −16.9706 + 8.48528i −0.770594 + 0.385297i
\(486\) 0 0
\(487\) 4.90192 + 4.90192i 0.222127 + 0.222127i 0.809394 0.587266i \(-0.199796\pi\)
−0.587266 + 0.809394i \(0.699796\pi\)
\(488\) 0.984508 3.67423i 0.0445666 0.166325i
\(489\) 0 0
\(490\) 1.63397 27.2224i 0.0738154 1.22978i
\(491\) −5.76337 3.32748i −0.260097 0.150167i 0.364282 0.931289i \(-0.381315\pi\)
−0.624379 + 0.781122i \(0.714648\pi\)
\(492\) 0 0
\(493\) 33.8564 + 9.07180i 1.52482 + 0.408573i
\(494\) 18.5235 0.833411
\(495\) 0 0
\(496\) −6.19615 −0.278215
\(497\) 43.0691 + 11.5403i 1.93192 + 0.517655i
\(498\) 0 0
\(499\) −30.8205 17.7942i −1.37972 0.796579i −0.387591 0.921832i \(-0.626693\pi\)
−0.992125 + 0.125253i \(0.960026\pi\)
\(500\) −11.1428 + 0.915158i −0.498322 + 0.0409271i
\(501\) 0 0
\(502\) 1.50000 5.59808i 0.0669483 0.249854i
\(503\) 28.5617 + 28.5617i 1.27350 + 1.27350i 0.944238 + 0.329264i \(0.106801\pi\)
0.329264 + 0.944238i \(0.393199\pi\)
\(504\) 0 0
\(505\) 28.1769 + 9.39230i 1.25386 + 0.417952i
\(506\) −6.12372 + 3.53553i −0.272233 + 0.157174i
\(507\) 0 0
\(508\) −0.767949 2.86603i −0.0340722 0.127159i
\(509\) 0.707107 1.22474i 0.0313420 0.0542859i −0.849929 0.526897i \(-0.823355\pi\)
0.881271 + 0.472611i \(0.156689\pi\)
\(510\) 0 0
\(511\) −12.3923 21.4641i −0.548203 0.949516i
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 18.7846i 0.828554i
\(515\) 6.79865 10.2970i 0.299584 0.453741i
\(516\) 0 0
\(517\) 1.09808 0.294229i 0.0482933 0.0129402i
\(518\) 31.0991 8.33298i 1.36642 0.366130i
\(519\) 0 0
\(520\) 12.6962 2.59808i 0.556763 0.113933i
\(521\) 42.8425i 1.87696i 0.345328 + 0.938482i \(0.387768\pi\)
−0.345328 + 0.938482i \(0.612232\pi\)
\(522\) 0 0
\(523\) −7.39230 + 7.39230i −0.323243 + 0.323243i −0.850010 0.526767i \(-0.823404\pi\)
0.526767 + 0.850010i \(0.323404\pi\)
\(524\) 0.0693504 + 0.120118i 0.00302958 + 0.00524739i
\(525\) 0 0
\(526\) 0.500000 0.866025i 0.0218010 0.0377605i
\(527\) 9.93666 + 37.0841i 0.432848 + 1.61541i
\(528\) 0 0
\(529\) 1.73205 1.00000i 0.0753066 0.0434783i
\(530\) −2.26002 + 6.78006i −0.0981690 + 0.294507i
\(531\) 0 0
\(532\) 9.90192 + 9.90192i 0.429303 + 0.429303i
\(533\) 1.91327 7.14042i 0.0828729 0.309286i
\(534\) 0 0
\(535\) 27.2224 + 1.63397i 1.17693 + 0.0706429i
\(536\) −5.13922 2.96713i −0.221980 0.128160i
\(537\) 0 0
\(538\) 3.83013 + 1.02628i 0.165129 + 0.0442460i
\(539\) −17.2480 −0.742922
\(540\) 0 0
\(541\) 16.0000 0.687894 0.343947 0.938989i \(-0.388236\pi\)
0.343947 + 0.938989i \(0.388236\pi\)
\(542\) −31.6675 8.48528i −1.36024 0.364474i
\(543\) 0 0
\(544\) 5.36603 + 3.09808i 0.230066 + 0.132829i
\(545\) 16.7303 14.8356i 0.716648 0.635489i
\(546\) 0 0
\(547\) −1.09808 + 4.09808i −0.0469503 + 0.175221i −0.985420 0.170142i \(-0.945577\pi\)
0.938469 + 0.345363i \(0.112244\pi\)
\(548\) −10.0382 10.0382i −0.428810 0.428810i
\(549\) 0 0
\(550\) 1.00000 + 7.00000i 0.0426401 + 0.298481i
\(551\) −15.6579 + 9.04008i −0.667048 + 0.385121i
\(552\) 0 0
\(553\) 2.49038 + 9.29423i 0.105902 + 0.395231i
\(554\) 4.45069 7.70882i 0.189092 0.327517i
\(555\) 0 0
\(556\) −7.69615 13.3301i −0.326390 0.565323i
\(557\) 12.1595 12.1595i 0.515215 0.515215i −0.400905 0.916120i \(-0.631304\pi\)
0.916120 + 0.400905i \(0.131304\pi\)
\(558\) 0 0
\(559\) 42.5885i 1.80130i
\(560\) 8.17569 + 5.39804i 0.345486 + 0.228109i
\(561\) 0 0
\(562\) −14.8923 + 3.99038i −0.628194 + 0.168324i
\(563\) 25.8719 6.93237i 1.09037 0.292164i 0.331534 0.943443i \(-0.392434\pi\)
0.758839 + 0.651279i \(0.225767\pi\)
\(564\) 0 0
\(565\) −7.46410 4.92820i −0.314017 0.207331i
\(566\) 7.62587i 0.320539i
\(567\) 0 0
\(568\) −7.19615 + 7.19615i −0.301944 + 0.301944i
\(569\) −14.6276 25.3357i −0.613220 1.06213i −0.990694 0.136109i \(-0.956540\pi\)
0.377474 0.926020i \(-0.376793\pi\)
\(570\) 0 0
\(571\) 8.58846 14.8756i 0.359416 0.622526i −0.628448 0.777852i \(-0.716309\pi\)
0.987863 + 0.155326i \(0.0496427\pi\)
\(572\) −2.12132 7.91688i −0.0886969 0.331021i
\(573\) 0 0
\(574\) 4.83975 2.79423i 0.202007 0.116629i
\(575\) −3.53553 24.7487i −0.147442 1.03209i
\(576\) 0 0
\(577\) −12.3923 12.3923i −0.515898 0.515898i 0.400429 0.916328i \(-0.368861\pi\)
−0.916328 + 0.400429i \(0.868861\pi\)
\(578\) 5.53674 20.6634i 0.230298 0.859483i
\(579\) 0 0
\(580\) −9.46410 + 8.39230i −0.392975 + 0.348471i
\(581\) 53.8652 + 31.0991i 2.23471 + 1.29021i
\(582\) 0 0
\(583\) 4.36603 + 1.16987i 0.180822 + 0.0484512i
\(584\) 5.65685 0.234082
\(585\) 0 0
\(586\) 7.39230 0.305373
\(587\) −7.91688 2.12132i −0.326764 0.0875563i 0.0917075 0.995786i \(-0.470768\pi\)
−0.418472 + 0.908230i \(0.637434\pi\)
\(588\) 0 0
\(589\) −17.1506 9.90192i −0.706680 0.408002i
\(590\) 6.62278 + 0.397520i 0.272656 + 0.0163656i
\(591\) 0 0
\(592\) −1.90192 + 7.09808i −0.0781686 + 0.291729i
\(593\) −32.9430 32.9430i −1.35281 1.35281i −0.882506 0.470302i \(-0.844145\pi\)
−0.470302 0.882506i \(-0.655855\pi\)
\(594\) 0 0
\(595\) 19.1962 57.5885i 0.786966 2.36090i
\(596\) 0.984508 0.568406i 0.0403270 0.0232828i
\(597\) 0 0
\(598\) 7.50000 + 27.9904i 0.306698 + 1.14461i
\(599\) −19.7854 + 34.2693i −0.808409 + 1.40021i 0.105556 + 0.994413i \(0.466338\pi\)
−0.913965 + 0.405792i \(0.866996\pi\)
\(600\) 0 0
\(601\) −2.79423 4.83975i −0.113979 0.197417i 0.803392 0.595450i \(-0.203026\pi\)
−0.917371 + 0.398033i \(0.869693\pi\)
\(602\) −22.7661 + 22.7661i −0.927878 + 0.927878i
\(603\) 0 0
\(604\) 8.58846i 0.349459i
\(605\) −19.7160 + 4.03459i −0.801571 + 0.164029i
\(606\) 0 0
\(607\) −4.09808 + 1.09808i −0.166336 + 0.0445695i −0.341026 0.940054i \(-0.610774\pi\)
0.174690 + 0.984623i \(0.444108\pi\)
\(608\) −3.08725 + 0.827225i −0.125204 + 0.0335484i
\(609\) 0 0
\(610\) 4.68653 7.09808i 0.189752 0.287393i
\(611\) 4.65874i 0.188473i
\(612\) 0 0
\(613\) −11.4904 + 11.4904i −0.464092 + 0.464092i −0.899994 0.435902i \(-0.856429\pi\)
0.435902 + 0.899994i \(0.356429\pi\)
\(614\) −0.568406 0.984508i −0.0229390 0.0397315i
\(615\) 0 0
\(616\) 3.09808 5.36603i 0.124825 0.216203i
\(617\) 3.25813 + 12.1595i 0.131167 + 0.489524i 0.999984 0.00561003i \(-0.00178574\pi\)
−0.868817 + 0.495134i \(0.835119\pi\)
\(618\) 0 0
\(619\) −15.4019 + 8.89230i −0.619056 + 0.357412i −0.776501 0.630116i \(-0.783007\pi\)
0.157446 + 0.987528i \(0.449674\pi\)
\(620\) −13.1440 4.38134i −0.527877 0.175959i
\(621\) 0 0
\(622\) 12.1962 + 12.1962i 0.489021 + 0.489021i
\(623\) −1.91825 + 7.15900i −0.0768530 + 0.286819i
\(624\) 0 0
\(625\) −24.2846 5.93782i −0.971384 0.237513i
\(626\) 9.05369 + 5.22715i 0.361858 + 0.208919i
\(627\) 0 0
\(628\) 4.50000 + 1.20577i 0.179570 + 0.0481155i
\(629\) 45.5322 1.81549
\(630\) 0 0
\(631\) 38.3923 1.52837 0.764187 0.644995i \(-0.223141\pi\)
0.764187 + 0.644995i \(0.223141\pi\)
\(632\) −2.12132 0.568406i −0.0843816 0.0226100i
\(633\) 0 0
\(634\) 23.3827 + 13.5000i 0.928645 + 0.536153i
\(635\) 0.397520 6.62278i 0.0157751 0.262817i
\(636\) 0 0
\(637\) −18.2942 + 68.2750i −0.724844 + 2.70515i
\(638\) 5.65685 + 5.65685i 0.223957 + 0.223957i
\(639\) 0 0
\(640\) −2.00000 + 1.00000i −0.0790569 + 0.0395285i
\(641\) −11.9837 + 6.91876i −0.473326 + 0.273275i −0.717631 0.696424i \(-0.754773\pi\)
0.244305 + 0.969698i \(0.421440\pi\)
\(642\) 0 0
\(643\) −1.68653 6.29423i −0.0665104 0.248220i 0.924664 0.380784i \(-0.124346\pi\)
−0.991174 + 0.132564i \(0.957679\pi\)
\(644\) −10.9534 + 18.9718i −0.431623 + 0.747592i
\(645\) 0 0
\(646\) 9.90192 + 17.1506i 0.389586 + 0.674783i
\(647\) −18.6622 + 18.6622i −0.733686 + 0.733686i −0.971348 0.237662i \(-0.923619\pi\)
0.237662 + 0.971348i \(0.423619\pi\)
\(648\) 0 0
\(649\) 4.19615i 0.164713i
\(650\) 28.7697 + 3.46618i 1.12844 + 0.135955i
\(651\) 0 0
\(652\) 19.1244 5.12436i 0.748968 0.200685i
\(653\) −24.3190 + 6.51626i −0.951677 + 0.255001i −0.701074 0.713089i \(-0.747296\pi\)
−0.250603 + 0.968090i \(0.580629\pi\)
\(654\) 0 0
\(655\) 0.0621778 + 0.303848i 0.00242949 + 0.0118723i
\(656\) 1.27551i 0.0498004i
\(657\) 0 0
\(658\) 2.49038 2.49038i 0.0970852 0.0970852i
\(659\) −2.62038 4.53862i −0.102075 0.176800i 0.810464 0.585788i \(-0.199215\pi\)
−0.912540 + 0.408988i \(0.865882\pi\)
\(660\) 0 0
\(661\) 14.2942 24.7583i 0.555981 0.962987i −0.441845 0.897091i \(-0.645676\pi\)
0.997826 0.0658962i \(-0.0209906\pi\)
\(662\) −3.00429 11.2122i −0.116765 0.435773i
\(663\) 0 0
\(664\) −12.2942 + 7.09808i −0.477109 + 0.275459i
\(665\) 14.0034 + 28.0069i 0.543030 + 1.08606i
\(666\) 0 0
\(667\) −20.0000 20.0000i −0.774403 0.774403i
\(668\) −5.89709 + 22.0082i −0.228165 + 0.851524i
\(669\) 0 0
\(670\) −8.80385 9.92820i −0.340122 0.383560i
\(671\) −4.65874 2.68973i −0.179849 0.103836i
\(672\) 0 0
\(673\) −16.6603 4.46410i −0.642206 0.172078i −0.0770033 0.997031i \(-0.524535\pi\)
−0.565202 + 0.824952i \(0.691202\pi\)
\(674\) −12.7279 −0.490261
\(675\) 0 0
\(676\) −20.5885 −0.791864
\(677\) −35.7393 9.57630i −1.37357 0.368047i −0.504789 0.863243i \(-0.668430\pi\)
−0.868782 + 0.495195i \(0.835097\pi\)
\(678\) 0 0
\(679\) 32.1962 + 18.5885i 1.23557 + 0.713360i
\(680\) 9.19239 + 10.3664i 0.352512 + 0.397532i
\(681\) 0 0
\(682\) −2.26795 + 8.46410i −0.0868443 + 0.324107i
\(683\) −12.7279 12.7279i −0.487020 0.487020i 0.420344 0.907365i \(-0.361909\pi\)
−0.907365 + 0.420344i \(0.861909\pi\)
\(684\) 0 0
\(685\) −14.1962 28.3923i −0.542407 1.08481i
\(686\) −19.7160 + 11.3831i −0.752762 + 0.434607i
\(687\) 0 0
\(688\) −1.90192 7.09808i −0.0725102 0.270612i
\(689\) 9.26174 16.0418i 0.352844 0.611144i
\(690\) 0 0
\(691\) 3.40192 + 5.89230i 0.129415 + 0.224154i 0.923450 0.383718i \(-0.125357\pi\)
−0.794035 + 0.607872i \(0.792023\pi\)
\(692\) −9.60849 + 9.60849i −0.365260 + 0.365260i
\(693\) 0 0
\(694\) 5.60770i 0.212865i
\(695\) −6.90018 33.7195i −0.261739 1.27905i
\(696\) 0 0
\(697\) 7.63397 2.04552i 0.289157 0.0774795i
\(698\) −1.93185 + 0.517638i −0.0731217 + 0.0195929i
\(699\) 0 0
\(700\) 13.5263 + 17.2321i 0.511245 + 0.651310i
\(701\) 22.9048i 0.865103i −0.901609 0.432552i \(-0.857613\pi\)
0.901609 0.432552i \(-0.142387\pi\)
\(702\) 0 0
\(703\) −16.6077 + 16.6077i −0.626371 + 0.626371i
\(704\) 0.707107 + 1.22474i 0.0266501 + 0.0461593i
\(705\) 0 0
\(706\) 4.09808 7.09808i 0.154233 0.267140i
\(707\) −15.0623 56.2132i −0.566475 2.11411i
\(708\) 0 0
\(709\) −12.6340 + 7.29423i −0.474479 + 0.273941i −0.718113 0.695927i \(-0.754994\pi\)
0.243634 + 0.969867i \(0.421660\pi\)
\(710\) −20.3538 + 10.1769i −0.763864 + 0.381932i
\(711\) 0 0
\(712\) −1.19615 1.19615i −0.0448277 0.0448277i
\(713\) 8.01841 29.9251i 0.300292 1.12070i
\(714\) 0 0
\(715\) 1.09808 18.2942i 0.0410657 0.684165i
\(716\) −21.1810 12.2289i −0.791572 0.457014i
\(717\) 0 0
\(718\) 11.4641 + 3.07180i 0.427836 + 0.114638i
\(719\) 1.69161 0.0630866 0.0315433 0.999502i \(-0.489958\pi\)
0.0315433 + 0.999502i \(0.489958\pi\)
\(720\) 0 0
\(721\) −24.1769 −0.900395
\(722\) 8.48528 + 2.27362i 0.315789 + 0.0846155i
\(723\) 0 0
\(724\) 3.63397 + 2.09808i 0.135056 + 0.0779744i
\(725\) −26.0106 + 11.1106i −0.966011 + 0.412639i
\(726\) 0 0
\(727\) 3.99038 14.8923i 0.147995 0.552325i −0.851609 0.524178i \(-0.824373\pi\)
0.999604 0.0281471i \(-0.00896067\pi\)
\(728\) −17.9551 17.9551i −0.665459 0.665459i
\(729\) 0 0
\(730\) 12.0000 + 4.00000i 0.444140 + 0.148047i
\(731\) −39.4321 + 22.7661i −1.45845 + 0.842035i
\(732\) 0 0
\(733\) −2.63397 9.83013i −0.0972881 0.363084i 0.900068 0.435749i \(-0.143516\pi\)
−0.997356 + 0.0726647i \(0.976850\pi\)
\(734\) 10.8840 18.8516i 0.401736 0.695827i
\(735\) 0 0
\(736\) −2.50000 4.33013i −0.0921512 0.159611i
\(737\) −5.93426 + 5.93426i −0.218591 + 0.218591i
\(738\) 0 0
\(739\) 20.3923i 0.750143i −0.926996 0.375072i \(-0.877618\pi\)
0.926996 0.375072i \(-0.122382\pi\)
\(740\) −9.05369 + 13.7124i −0.332820 + 0.504079i
\(741\) 0 0
\(742\) 13.5263 3.62436i 0.496565 0.133054i
\(743\) −31.2886 + 8.38375i −1.14787 + 0.307570i −0.782110 0.623141i \(-0.785856\pi\)
−0.365756 + 0.930711i \(0.619190\pi\)
\(744\) 0 0
\(745\) 2.49038 0.509619i 0.0912405 0.0186710i
\(746\) 30.2533i 1.10765i
\(747\) 0 0
\(748\) 6.19615 6.19615i 0.226554 0.226554i
\(749\) −26.7178 46.2765i −0.976245 1.69091i
\(750\) 0 0
\(751\) 13.3923 23.1962i 0.488692 0.846440i −0.511223 0.859448i \(-0.670807\pi\)
0.999915 + 0.0130083i \(0.00414080\pi\)
\(752\) 0.208051 + 0.776457i 0.00758684 + 0.0283145i
\(753\) 0 0
\(754\) 28.3923 16.3923i 1.03399 0.596973i
\(755\) −6.07296 + 18.2189i −0.221018 + 0.663053i
\(756\) 0 0
\(757\) −15.2942 15.2942i −0.555878 0.555878i 0.372253 0.928131i \(-0.378585\pi\)
−0.928131 + 0.372253i \(0.878585\pi\)
\(758\) 2.84701 10.6252i 0.103408 0.385924i
\(759\) 0 0
\(760\) −7.13397 0.428203i −0.258776 0.0155326i
\(761\) 32.9244 + 19.0089i 1.19351 + 0.689073i 0.959101 0.283065i \(-0.0913512\pi\)
0.234409 + 0.972138i \(0.424685\pi\)
\(762\) 0 0
\(763\) −42.3205 11.3397i −1.53211 0.410526i
\(764\) −9.89949 −0.358151
\(765\) 0 0
\(766\) 11.1962 0.404533
\(767\) −16.6102 4.45069i −0.599760 0.160705i
\(768\) 0 0
\(769\) 44.6603 + 25.7846i 1.61049 + 0.929817i 0.989256 + 0.146191i \(0.0467015\pi\)
0.621234 + 0.783625i \(0.286632\pi\)
\(770\) 10.3664 9.19239i 0.373578 0.331271i
\(771\) 0 0
\(772\) 1.60770 6.00000i 0.0578622 0.215945i
\(773\) 31.6675 + 31.6675i 1.13900 + 1.13900i 0.988630 + 0.150371i \(0.0480469\pi\)
0.150371 + 0.988630i \(0.451953\pi\)
\(774\) 0 0
\(775\) −24.7846 18.5885i −0.890289 0.667717i
\(776\) −7.34847 + 4.24264i −0.263795 + 0.152302i
\(777\) 0 0
\(778\) 7.09808 + 26.4904i 0.254478 + 0.949726i
\(779\) −2.03837 + 3.53055i −0.0730321 + 0.126495i
\(780\) 0 0
\(781\) 7.19615 + 12.4641i 0.257499 + 0.446001i
\(782\) −21.9067 + 21.9067i −0.783382 + 0.783382i
\(783\) 0 0
\(784\) 12.1962i 0.435577i
\(785\) 8.69333 + 5.73981i 0.310278 + 0.204863i
\(786\) 0 0
\(787\) −23.7583 + 6.36603i −0.846893 + 0.226924i −0.656070 0.754700i \(-0.727782\pi\)
−0.190823 + 0.981624i \(0.561116\pi\)
\(788\) −12.9360 + 3.46618i −0.460825 + 0.123478i
\(789\) 0 0
\(790\) −4.09808 2.70577i −0.145803 0.0962670i
\(791\) 17.5254i 0.623130i
\(792\) 0 0
\(793\) −15.5885 + 15.5885i −0.553562 + 0.553562i
\(794\) 2.26002 + 3.91447i 0.0802051 + 0.138919i
\(795\) 0 0
\(796\) 6.29423 10.9019i 0.223093 0.386408i
\(797\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(798\) 0 0
\(799\) 4.31347 2.49038i 0.152599 0.0881033i
\(800\) −4.94975 + 0.707107i −0.175000 + 0.0250000i
\(801\) 0 0
\(802\) −9.29423 9.29423i −0.328191 0.328191i
\(803\) 2.07055 7.72741i 0.0730682 0.272694i
\(804\) 0 0
\(805\) −36.6506 + 32.5000i −1.29177 + 1.14547i
\(806\) 31.0991 + 17.9551i 1.09542 + 0.632440i
\(807\) 0 0
\(808\) 12.8301 + 3.43782i 0.451362 + 0.120942i
\(809\) −35.2166 −1.23815 −0.619076 0.785331i \(-0.712493\pi\)
−0.619076 + 0.785331i \(0.712493\pi\)
\(810\) 0 0
\(811\) 30.3923 1.06722 0.533609 0.845731i \(-0.320835\pi\)
0.533609 + 0.845731i \(0.320835\pi\)
\(812\) 23.9401 + 6.41473i 0.840133 + 0.225113i
\(813\) 0 0
\(814\) 9.00000 + 5.19615i 0.315450 + 0.182125i
\(815\) 44.1924 + 2.65256i 1.54799 + 0.0929152i
\(816\) 0 0
\(817\) 6.07884 22.6865i 0.212672 0.793701i
\(818\) 17.9551 + 17.9551i 0.627784 + 0.627784i
\(819\) 0 0
\(820\) −0.901924 + 2.70577i −0.0314965 + 0.0944896i
\(821\) 24.9754 14.4195i 0.871646 0.503245i 0.00375143 0.999993i \(-0.498806\pi\)
0.867895 + 0.496748i \(0.165473\pi\)
\(822\) 0 0
\(823\) 2.84936 + 10.6340i 0.0993226 + 0.370677i 0.997639 0.0686714i \(-0.0218760\pi\)
−0.898317 + 0.439348i \(0.855209\pi\)
\(824\) 2.75908 4.77886i 0.0961170 0.166480i
\(825\) 0 0
\(826\) −6.50000 11.2583i −0.226164 0.391727i
\(827\) −39.4321 + 39.4321i −1.37119 + 1.37119i −0.512501 + 0.858687i \(0.671281\pi\)
−0.858687 + 0.512501i \(0.828719\pi\)
\(828\) 0 0
\(829\) 18.7846i 0.652416i −0.945298 0.326208i \(-0.894229\pi\)
0.945298 0.326208i \(-0.105771\pi\)
\(830\) −31.0991 + 6.36396i −1.07947 + 0.220896i
\(831\) 0 0
\(832\) 5.59808 1.50000i 0.194078 0.0520031i
\(833\) −72.9943 + 19.5588i −2.52910 + 0.677671i
\(834\) 0 0
\(835\) −28.0718 + 42.5167i −0.971465 + 1.47135i
\(836\) 4.52004i 0.156329i
\(837\) 0 0
\(838\) −12.8038 + 12.8038i −0.442302 + 0.442302i
\(839\) 5.24075 + 9.07725i 0.180931 + 0.313381i 0.942198 0.335057i \(-0.108756\pi\)
−0.761267 + 0.648439i \(0.775422\pi\)
\(840\) 0 0
\(841\) −1.50000 + 2.59808i −0.0517241 + 0.0895888i
\(842\) −1.08604 4.05317i −0.0374276 0.139682i
\(843\) 0 0
\(844\) 16.4545 9.50000i 0.566387 0.327003i
\(845\) −43.6747 14.5582i −1.50246 0.500819i
\(846\) 0 0
\(847\) 27.8827 + 27.8827i 0.958060 + 0.958060i
\(848\) −0.827225 + 3.08725i −0.0284070 + 0.106016i
\(849\) 0 0
\(850\) 12.1699 + 28.4904i 0.417423 + 0.977212i
\(851\) −31.8198 18.3712i −1.09077 0.629756i
\(852\) 0 0
\(853\) −45.3468 12.1506i −1.55264 0.416030i −0.622319 0.782764i \(-0.713809\pi\)
−0.930326 + 0.366734i \(0.880476\pi\)
\(854\) −16.6660 −0.570297
\(855\) 0 0
\(856\) 12.1962 0.416856
\(857\) 33.2204 + 8.90138i 1.13479 + 0.304065i 0.776854 0.629681i \(-0.216815\pi\)
0.357934 + 0.933747i \(0.383481\pi\)
\(858\) 0 0
\(859\) 4.85641 + 2.80385i 0.165698 + 0.0956660i 0.580556 0.814220i \(-0.302835\pi\)
−0.414858 + 0.909886i \(0.636169\pi\)
\(860\) 0.984508 16.4022i 0.0335715 0.559309i
\(861\) 0 0
\(862\) 6.22243 23.2224i 0.211937 0.790959i
\(863\) 40.2779 + 40.2779i 1.37107 + 1.37107i 0.858853 + 0.512222i \(0.171177\pi\)
0.512222 + 0.858853i \(0.328823\pi\)
\(864\) 0 0
\(865\) −27.1769 + 13.5885i −0.924043 + 0.462021i
\(866\) 9.79796 5.65685i 0.332948 0.192228i
\(867\) 0 0
\(868\) 7.02628 + 26.2224i 0.238487 + 0.890047i
\(869\) −1.55291 + 2.68973i −0.0526790 + 0.0912427i
\(870\) 0 0
\(871\) 17.1962 + 29.7846i 0.582669 + 1.00921i
\(872\) 7.07107 7.07107i 0.239457 0.239457i
\(873\) 0 0
\(874\) 15.9808i 0.540557i
\(875\) 16.5087 + 46.1192i 0.558095 + 1.55911i
\(876\) 0 0
\(877\) −4.50000 + 1.20577i −0.151954 + 0.0407160i −0.333994 0.942575i \(-0.608397\pi\)
0.182040 + 0.983291i \(0.441730\pi\)
\(878\) −9.09085 + 2.43589i −0.306801 + 0.0822072i
\(879\) 0 0
\(880\) 0.633975 + 3.09808i 0.0213713 + 0.104436i
\(881\) 6.79367i 0.228884i 0.993430 + 0.114442i \(0.0365081\pi\)
−0.993430 + 0.114442i \(0.963492\pi\)
\(882\) 0 0
\(883\) 26.9808 26.9808i 0.907975 0.907975i −0.0881337 0.996109i \(-0.528090\pi\)
0.996109 + 0.0881337i \(0.0280903\pi\)
\(884\) −17.9551 31.0991i −0.603894 1.04598i
\(885\) 0 0
\(886\) −6.00000 + 10.3923i −0.201574 + 0.349136i
\(887\) 3.88229 + 14.4889i 0.130354 + 0.486489i 0.999974 0.00723339i \(-0.00230248\pi\)
−0.869619 + 0.493723i \(0.835636\pi\)
\(888\) 0 0
\(889\) −11.2583 + 6.50000i −0.377592 + 0.218003i
\(890\) −1.69161 3.38323i −0.0567031 0.113406i
\(891\) 0 0
\(892\) −17.1962 17.1962i −0.575770 0.575770i
\(893\) −0.664963 + 2.48168i −0.0222521 + 0.0830461i
\(894\) 0 0
\(895\) −36.2846 40.9186i −1.21286 1.36776i
\(896\) 3.79435 + 2.19067i 0.126760 + 0.0731852i
\(897\) 0 0
\(898\) −19.2583 5.16025i −0.642659 0.172200i
\(899\) −35.0507 −1.16901
\(900\) 0 0
\(901\) 19.8038 0.659762
\(902\) 1.74238 + 0.466870i 0.0580150 + 0.0155451i
\(903\) 0 0
\(904\) −3.46410 2.00000i −0.115214 0.0665190i
\(905\) 6.22526 + 7.02030i 0.206935 + 0.233363i
\(906\) 0 0
\(907\) 1.75833 6.56218i 0.0583844 0.217894i −0.930570 0.366114i \(-0.880688\pi\)
0.988954 + 0.148221i \(0.0473546\pi\)
\(908\) 8.62398 + 8.62398i 0.286197 + 0.286197i
\(909\) 0 0
\(910\) −25.3923 50.7846i −0.841747 1.68349i
\(911\) 7.82894 4.52004i 0.259384 0.149756i −0.364669 0.931137i \(-0.618818\pi\)
0.624054 + 0.781381i \(0.285485\pi\)
\(912\) 0 0
\(913\) 5.19615 + 19.3923i 0.171968 + 0.641792i
\(914\) 7.91688 13.7124i 0.261867 0.453567i
\(915\) 0 0
\(916\) 11.1962 + 19.3923i 0.369931 + 0.640740i
\(917\) 0.429705 0.429705i 0.0141901 0.0141901i
\(918\) 0 0
\(919\) 47.9615i 1.58210i 0.611748 + 0.791052i \(0.290466\pi\)
−0.611748 + 0.791052i \(0.709534\pi\)
\(920\) −2.24144 10.9534i −0.0738980 0.361121i
\(921\) 0 0
\(922\) −7.92820 + 2.12436i −0.261101 + 0.0699619i
\(923\) 56.9710 15.2653i 1.87522 0.502465i
\(924\) 0 0
\(925\) −28.9019 + 22.6865i −0.950289 + 0.745929i
\(926\) 36.0488i 1.18464i
\(927\) 0 0
\(928\) −4.00000 + 4.00000i −0.131306 + 0.131306i
\(929\) −17.0957 29.6106i −0.560890 0.971491i −0.997419 0.0718003i \(-0.977126\pi\)
0.436529 0.899690i \(-0.356208\pi\)
\(930\) 0 0
\(931\) 19.4904 33.7583i 0.638771 1.10638i
\(932\) 0 0
\(933\) 0 0
\(934\) 21.4641 12.3923i 0.702327 0.405489i
\(935\) 17.5254 8.76268i 0.573141 0.286570i
\(936\) 0 0
\(937\) −23.8038 23.8038i −0.777638 0.777638i 0.201791 0.979429i \(-0.435324\pi\)
−0.979429 + 0.201791i \(0.935324\pi\)
\(938\) −6.72930 + 25.1141i −0.219719 + 0.820004i
\(939\) 0 0
\(940\) −0.107695 + 1.79423i −0.00351263 + 0.0585213i
\(941\) 18.1074 + 10.4543i 0.590284 + 0.340800i 0.765210 0.643781i \(-0.222635\pi\)
−0.174926 + 0.984582i \(0.555969\pi\)
\(942\) 0 0
\(943\) −6.16025 1.65064i −0.200605 0.0537521i
\(944\) 2.96713 0.0965718
\(945\) 0 0
\(946\) −10.3923 −0.337883
\(947\) −34.5839 9.26672i −1.12382 0.301128i −0.351394 0.936228i \(-0.614292\pi\)
−0.772430 + 0.635100i \(0.780959\pi\)
\(948\) 0 0
\(949\) −28.3923 16.3923i −0.921653 0.532117i
\(950\) −14.8307 5.95284i −0.481170 0.193136i
\(951\) 0 0
\(952\) 7.02628 26.2224i 0.227723 0.849874i
\(953\) 7.76457 + 7.76457i 0.251519 + 0.251519i 0.821593 0.570074i \(-0.193086\pi\)
−0.570074 + 0.821593i \(0.693086\pi\)
\(954\) 0 0
\(955\) −21.0000 7.00000i −0.679544 0.226515i
\(956\) 14.6969 8.48528i 0.475333 0.274434i
\(957\) 0 0
\(958\) −1.83013 6.83013i −0.0591287 0.220671i
\(959\) −31.0991 + 53.8652i −1.00424 + 1.73940i
\(960\) 0 0
\(961\) −3.69615 6.40192i −0.119231 0.206514i
\(962\) 30.1146 30.1146i 0.970933 0.970933i
\(963\) 0 0
\(964\) 30.3923i 0.978870i
\(965\) 7.65308 11.5911i 0.246361 0.373131i
\(966\) 0 0
\(967\) −50.5429 + 13.5429i −1.62535 + 0.435512i −0.952567 0.304327i \(-0.901568\pi\)
−0.672784 + 0.739839i \(0.734902\pi\)
\(968\) −8.69333 + 2.32937i −0.279414 + 0.0748688i
\(969\) 0 0
\(970\) −18.5885 + 3.80385i −0.596839 + 0.122134i
\(971\) 48.1948i 1.54664i −0.634014 0.773322i \(-0.718594\pi\)
0.634014 0.773322i \(-0.281406\pi\)
\(972\) 0 0
\(973\) −47.6865 + 47.6865i −1.52876 + 1.52876i
\(974\) 3.46618 + 6.00361i 0.111064 + 0.192368i
\(975\) 0 0
\(976\) 1.90192 3.29423i 0.0608791 0.105446i
\(977\) −10.4543 39.0160i −0.334463 1.24823i −0.904451 0.426578i \(-0.859719\pi\)
0.569988 0.821653i \(-0.306948\pi\)
\(978\) 0 0
\(979\) −2.07180 + 1.19615i −0.0662149 + 0.0382292i
\(980\) 8.62398 25.8719i 0.275483 0.826449i
\(981\) 0 0
\(982\) −4.70577 4.70577i −0.150167 0.150167i
\(983\) 11.3781 42.4636i 0.362904 1.35438i −0.507335 0.861749i \(-0.669369\pi\)
0.870240 0.492629i \(-0.163964\pi\)
\(984\) 0 0
\(985\) −29.8923 1.79423i −0.952448 0.0571689i
\(986\) 30.3548 + 17.5254i 0.966695 + 0.558121i
\(987\) 0 0
\(988\) 17.8923 + 4.79423i 0.569230 + 0.152525i
\(989\) 36.7423 1.16834
\(990\) 0 0
\(991\) 20.3923 0.647783 0.323891 0.946094i \(-0.395009\pi\)
0.323891 + 0.946094i \(0.395009\pi\)
\(992\) −5.98502 1.60368i −0.190025 0.0509170i
\(993\) 0 0
\(994\) 38.6147 + 22.2942i 1.22479 + 0.707130i
\(995\) 21.0609 18.6758i 0.667675 0.592062i
\(996\) 0 0
\(997\) 1.57180 5.86603i 0.0497793 0.185779i −0.936559 0.350509i \(-0.886009\pi\)
0.986339 + 0.164730i \(0.0526753\pi\)
\(998\) −25.1648 25.1648i −0.796579 0.796579i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 810.2.m.g.377.2 8
3.2 odd 2 inner 810.2.m.g.377.1 8
5.3 odd 4 810.2.m.b.53.2 8
9.2 odd 6 810.2.m.b.107.2 8
9.4 even 3 810.2.f.a.647.2 yes 8
9.5 odd 6 810.2.f.a.647.4 yes 8
9.7 even 3 810.2.m.b.107.1 8
15.8 even 4 810.2.m.b.53.1 8
45.13 odd 12 810.2.f.a.323.4 yes 8
45.23 even 12 810.2.f.a.323.2 8
45.38 even 12 inner 810.2.m.g.593.2 8
45.43 odd 12 inner 810.2.m.g.593.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
810.2.f.a.323.2 8 45.23 even 12
810.2.f.a.323.4 yes 8 45.13 odd 12
810.2.f.a.647.2 yes 8 9.4 even 3
810.2.f.a.647.4 yes 8 9.5 odd 6
810.2.m.b.53.1 8 15.8 even 4
810.2.m.b.53.2 8 5.3 odd 4
810.2.m.b.107.1 8 9.7 even 3
810.2.m.b.107.2 8 9.2 odd 6
810.2.m.g.377.1 8 3.2 odd 2 inner
810.2.m.g.377.2 8 1.1 even 1 trivial
810.2.m.g.593.1 8 45.43 odd 12 inner
810.2.m.g.593.2 8 45.38 even 12 inner