Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [810,2,Mod(23,810)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(810, base_ring=CyclotomicField(108))
chi = DirichletCharacter(H, H._module([22, 81]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("810.23");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 810 = 2 \cdot 3^{4} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 810.w (of order \(108\), degree \(36\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(6.46788256372\) |
Analytic rank: | \(0\) |
Dimension: | \(1944\) |
Relative dimension: | \(54\) over \(\Q(\zeta_{108})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{108}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
23.1 | −0.989442 | + | 0.144932i | −1.73193 | + | 0.0200796i | 0.957990 | − | 0.286803i | 2.19579 | − | 0.422505i | 1.71074 | − | 0.270880i | −1.03819 | − | 0.0302082i | −0.906308 | + | 0.422618i | 2.99919 | − | 0.0695530i | −2.11137 | + | 0.736284i |
23.2 | −0.989442 | + | 0.144932i | −1.72613 | − | 0.143043i | 0.957990 | − | 0.286803i | −0.303554 | − | 2.21537i | 1.72864 | − | 0.108639i | −2.33951 | − | 0.0680727i | −0.906308 | + | 0.422618i | 2.95908 | + | 0.493822i | 0.621426 | + | 2.14798i |
23.3 | −0.989442 | + | 0.144932i | −1.72037 | − | 0.200785i | 0.957990 | − | 0.286803i | −1.85060 | + | 1.25510i | 1.73131 | − | 0.0506719i | −2.85262 | − | 0.0830029i | −0.906308 | + | 0.422618i | 2.91937 | + | 0.690850i | 1.64916 | − | 1.51006i |
23.4 | −0.989442 | + | 0.144932i | −1.69878 | + | 0.337832i | 0.957990 | − | 0.286803i | −0.579902 | + | 2.15956i | 1.63189 | − | 0.580473i | 2.86135 | + | 0.0832567i | −0.906308 | + | 0.422618i | 2.77174 | − | 1.14781i | 0.260789 | − | 2.22081i |
23.5 | −0.989442 | + | 0.144932i | −1.59988 | − | 0.663620i | 0.957990 | − | 0.286803i | 1.84421 | + | 1.26447i | 1.67917 | + | 0.424740i | 2.81768 | + | 0.0819861i | −0.906308 | + | 0.422618i | 2.11922 | + | 2.12342i | −2.00800 | − | 0.983839i |
23.6 | −0.989442 | + | 0.144932i | −1.26007 | − | 1.18837i | 0.957990 | − | 0.286803i | 0.248557 | − | 2.22221i | 1.41899 | + | 0.993204i | 3.95411 | + | 0.115053i | −0.906308 | + | 0.422618i | 0.175532 | + | 2.99486i | 0.0761368 | + | 2.23477i |
23.7 | −0.989442 | + | 0.144932i | −1.21160 | + | 1.23775i | 0.957990 | − | 0.286803i | −2.06476 | − | 0.858353i | 1.01941 | − | 1.40029i | 0.637598 | + | 0.0185522i | −0.906308 | + | 0.422618i | −0.0640749 | − | 2.99932i | 2.16736 | + | 0.550041i |
23.8 | −0.989442 | + | 0.144932i | −1.00497 | + | 1.41068i | 0.957990 | − | 0.286803i | −2.23559 | − | 0.0464100i | 0.789908 | − | 1.54144i | 3.04427 | + | 0.0885793i | −0.906308 | + | 0.422618i | −0.980063 | − | 2.83540i | 2.21871 | − | 0.278088i |
23.9 | −0.989442 | + | 0.144932i | −0.865062 | − | 1.50056i | 0.957990 | − | 0.286803i | 2.22919 | − | 0.175246i | 1.07341 | + | 1.35934i | −2.04645 | − | 0.0595457i | −0.906308 | + | 0.422618i | −1.50333 | + | 2.59615i | −2.18025 | + | 0.496477i |
23.10 | −0.989442 | + | 0.144932i | −0.835230 | + | 1.51736i | 0.957990 | − | 0.286803i | 0.465389 | + | 2.18710i | 0.606497 | − | 1.62239i | −1.39952 | − | 0.0407218i | −0.906308 | + | 0.422618i | −1.60478 | − | 2.53469i | −0.777456 | − | 2.09656i |
23.11 | −0.989442 | + | 0.144932i | −0.714289 | + | 1.57791i | 0.957990 | − | 0.286803i | 1.79217 | − | 1.33721i | 0.478058 | − | 1.66477i | −3.01476 | − | 0.0877205i | −0.906308 | + | 0.422618i | −1.97958 | − | 2.25416i | −1.57945 | + | 1.58283i |
23.12 | −0.989442 | + | 0.144932i | −0.686142 | − | 1.59035i | 0.957990 | − | 0.286803i | −2.10154 | − | 0.763888i | 0.909390 | + | 1.47411i | −2.89740 | − | 0.0843058i | −0.906308 | + | 0.422618i | −2.05842 | + | 2.18241i | 2.19006 | + | 0.451242i |
23.13 | −0.989442 | + | 0.144932i | −0.107384 | − | 1.72872i | 0.957990 | − | 0.286803i | 0.876175 | + | 2.05726i | 0.356797 | + | 1.69490i | −3.77684 | − | 0.109895i | −0.906308 | + | 0.422618i | −2.97694 | + | 0.371275i | −1.16509 | − | 1.90855i |
23.14 | −0.989442 | + | 0.144932i | 0.000411202 | 1.73205i | 0.957990 | − | 0.286803i | 2.15694 | + | 0.589579i | −0.251436 | − | 1.71370i | 4.85974 | + | 0.141404i | −0.906308 | + | 0.422618i | −3.00000 | + | 0.00142444i | −2.21962 | − | 0.270744i | |
23.15 | −0.989442 | + | 0.144932i | 0.128776 | − | 1.72726i | 0.957990 | − | 0.286803i | −1.90840 | + | 1.16533i | 0.122918 | + | 1.72768i | 3.82371 | + | 0.111259i | −0.906308 | + | 0.422618i | −2.96683 | − | 0.444858i | 1.71936 | − | 1.42962i |
23.16 | −0.989442 | + | 0.144932i | 0.148656 | − | 1.72566i | 0.957990 | − | 0.286803i | 0.753503 | − | 2.10529i | 0.103016 | + | 1.72898i | −0.00438391 | 0.000127559i | −0.906308 | + | 0.422618i | −2.95580 | − | 0.513061i | −0.440424 | + | 2.19227i | |
23.17 | −0.989442 | + | 0.144932i | 0.212730 | + | 1.71894i | 0.957990 | − | 0.286803i | −0.709703 | − | 2.12045i | −0.459612 | − | 1.66996i | 0.0329090 | 0.000957555i | −0.906308 | + | 0.422618i | −2.90949 | + | 0.731338i | 1.00953 | + | 1.99521i | |
23.18 | −0.989442 | + | 0.144932i | 0.691018 | + | 1.58824i | 0.957990 | − | 0.286803i | 0.152632 | + | 2.23085i | −0.913908 | − | 1.47132i | 0.335576 | + | 0.00976425i | −0.906308 | + | 0.422618i | −2.04499 | + | 2.19500i | −0.474342 | − | 2.18518i |
23.19 | −0.989442 | + | 0.144932i | 0.934576 | − | 1.45828i | 0.957990 | − | 0.286803i | 1.98946 | + | 1.02081i | −0.713358 | + | 1.57833i | 3.55193 | + | 0.103350i | −0.906308 | + | 0.422618i | −1.25313 | − | 2.72574i | −2.11640 | − | 0.721693i |
23.20 | −0.989442 | + | 0.144932i | 1.19124 | − | 1.25736i | 0.957990 | − | 0.286803i | −0.817927 | + | 2.08110i | −0.996433 | + | 1.41673i | −2.78353 | − | 0.0809924i | −0.906308 | + | 0.422618i | −0.161888 | − | 2.99563i | 0.507673 | − | 2.17767i |
See next 80 embeddings (of 1944 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
81.h | odd | 54 | 1 | inner |
405.x | even | 108 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 810.2.w.a | ✓ | 1944 |
5.c | odd | 4 | 1 | inner | 810.2.w.a | ✓ | 1944 |
81.h | odd | 54 | 1 | inner | 810.2.w.a | ✓ | 1944 |
405.x | even | 108 | 1 | inner | 810.2.w.a | ✓ | 1944 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
810.2.w.a | ✓ | 1944 | 1.a | even | 1 | 1 | trivial |
810.2.w.a | ✓ | 1944 | 5.c | odd | 4 | 1 | inner |
810.2.w.a | ✓ | 1944 | 81.h | odd | 54 | 1 | inner |
810.2.w.a | ✓ | 1944 | 405.x | even | 108 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(810, [\chi])\).