Properties

Label 810.3.g.k
Level 810810
Weight 33
Character orbit 810.g
Analytic conductor 22.07122.071
Analytic rank 00
Dimension 1212
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [810,3,Mod(163,810)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(810, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("810.163"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: N N == 810=2345 810 = 2 \cdot 3^{4} \cdot 5
Weight: k k == 3 3
Character orbit: [χ][\chi] == 810.g (of order 44, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,12,0,0,0,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 22.070901413222.0709014132
Analytic rank: 00
Dimension: 1212
Relative dimension: 66 over Q(i)\Q(i)
Coefficient field: Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x1254x9+921x81350x7+1458x618792x5+231804x4552420x3++656100 x^{12} - 54 x^{9} + 921 x^{8} - 1350 x^{7} + 1458 x^{6} - 18792 x^{5} + 231804 x^{4} - 552420 x^{3} + \cdots + 656100 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 34 3^{4}
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β1+1)q2+2β1q4+(β7+β1)q5+(β5β4+β2+1)q7+(2β12)q8+(β7+β4+β11)q10+(β7β6β5++1)q11++(4β112β10+3)q98+O(q100) q + (\beta_1 + 1) q^{2} + 2 \beta_1 q^{4} + ( - \beta_{7} + \beta_1) q^{5} + ( - \beta_{5} - \beta_{4} + \beta_{2} + 1) q^{7} + (2 \beta_1 - 2) q^{8} + ( - \beta_{7} + \beta_{4} + \beta_1 - 1) q^{10} + (\beta_{7} - \beta_{6} - \beta_{5} + \cdots + 1) q^{11}+ \cdots + (4 \beta_{11} - 2 \beta_{10} + \cdots - 3) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q+12q2+6q724q86q10+12q1148q1618q1712q20+12q22+54q2354q2512q28+72q3148q32168q35+66q37+36q38++12q98+O(q100) 12 q + 12 q^{2} + 6 q^{7} - 24 q^{8} - 6 q^{10} + 12 q^{11} - 48 q^{16} - 18 q^{17} - 12 q^{20} + 12 q^{22} + 54 q^{23} - 54 q^{25} - 12 q^{28} + 72 q^{31} - 48 q^{32} - 168 q^{35} + 66 q^{37} + 36 q^{38}+ \cdots + 12 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x1254x9+921x81350x7+1458x618792x5+231804x4552420x3++656100 x^{12} - 54 x^{9} + 921 x^{8} - 1350 x^{7} + 1458 x^{6} - 18792 x^{5} + 231804 x^{4} - 552420 x^{3} + \cdots + 656100 : Copy content Toggle raw display

β1\beta_{1}== (1875243545ν11+2732664981ν10+2774149290ν9+104197645485ν8+866523189915450)/20 ⁣ ⁣70 ( - 1875243545 \nu^{11} + 2732664981 \nu^{10} + 2774149290 \nu^{9} + 104197645485 \nu^{8} + \cdots - 866523189915450 ) / 20\!\cdots\!70 Copy content Toggle raw display
β2\beta_{2}== (801101591ν1110289055060ν1084332616198ν9293504336784ν8+514673191072440)/452341418052060 ( 801101591 \nu^{11} - 10289055060 \nu^{10} - 84332616198 \nu^{9} - 293504336784 \nu^{8} + \cdots - 514673191072440 ) / 452341418052060 Copy content Toggle raw display
β3\beta_{3}== (801101591ν11+10289055060ν10+84332616198ν9++514673191072440)/452341418052060 ( - 801101591 \nu^{11} + 10289055060 \nu^{10} + 84332616198 \nu^{9} + \cdots + 514673191072440 ) / 452341418052060 Copy content Toggle raw display
β4\beta_{4}== (10813781488ν1118832079700ν10253052027046ν91619639566146ν8+13 ⁣ ⁣70)/20 ⁣ ⁣70 ( 10813781488 \nu^{11} - 18832079700 \nu^{10} - 253052027046 \nu^{9} - 1619639566146 \nu^{8} + \cdots - 13\!\cdots\!70 ) / 20\!\cdots\!70 Copy content Toggle raw display
β5\beta_{5}== (3622731026ν1125387385657ν10103969950084ν9404288852031ν8++809857776786660)/678512127078090 ( 3622731026 \nu^{11} - 25387385657 \nu^{10} - 103969950084 \nu^{9} - 404288852031 \nu^{8} + \cdots + 809857776786660 ) / 678512127078090 Copy content Toggle raw display
β6\beta_{6}== (16157749007ν1116169837742ν10+245744928891ν9++42 ⁣ ⁣00)/20 ⁣ ⁣70 ( - 16157749007 \nu^{11} - 16169837742 \nu^{10} + 245744928891 \nu^{9} + \cdots + 42\!\cdots\!00 ) / 20\!\cdots\!70 Copy content Toggle raw display
β7\beta_{7}== (5903758925ν1133865345891ν1067696741206ν9++10 ⁣ ⁣90)/678512127078090 ( - 5903758925 \nu^{11} - 33865345891 \nu^{10} - 67696741206 \nu^{9} + \cdots + 10\!\cdots\!90 ) / 678512127078090 Copy content Toggle raw display
β8\beta_{8}== (24025140695ν11+169173040263ν10+438081208245ν9+17 ⁣ ⁣00)/20 ⁣ ⁣70 ( - 24025140695 \nu^{11} + 169173040263 \nu^{10} + 438081208245 \nu^{9} + \cdots - 17\!\cdots\!00 ) / 20\!\cdots\!70 Copy content Toggle raw display
β9\beta_{9}== (28593720413ν11+60064310034ν1033351976611ν92346815029725ν8+98 ⁣ ⁣70)/20 ⁣ ⁣70 ( 28593720413 \nu^{11} + 60064310034 \nu^{10} - 33351976611 \nu^{9} - 2346815029725 \nu^{8} + \cdots - 98\!\cdots\!70 ) / 20\!\cdots\!70 Copy content Toggle raw display
β10\beta_{10}== (25717796021ν11+60311648106ν10+62594041086ν91808354936952ν8++34 ⁣ ⁣80)/13 ⁣ ⁣80 ( 25717796021 \nu^{11} + 60311648106 \nu^{10} + 62594041086 \nu^{9} - 1808354936952 \nu^{8} + \cdots + 34\!\cdots\!80 ) / 13\!\cdots\!80 Copy content Toggle raw display
β11\beta_{11}== (31183125983ν11+65859946686ν10+68463029196ν92101886170110ν8++59 ⁣ ⁣80)/13 ⁣ ⁣80 ( 31183125983 \nu^{11} + 65859946686 \nu^{10} + 68463029196 \nu^{9} - 2101886170110 \nu^{8} + \cdots + 59\!\cdots\!80 ) / 13\!\cdots\!80 Copy content Toggle raw display
ν\nu== (β3+β2)/3 ( \beta_{3} + \beta_{2} ) / 3 Copy content Toggle raw display
ν2\nu^{2}== β10+β7+β5β2+15β1 \beta_{10} + \beta_{7} + \beta_{5} - \beta_{2} + 15\beta_1 Copy content Toggle raw display
ν3\nu^{3}== 6β118β103β5+3β415β1+12 6\beta_{11} - 8\beta_{10} - 3\beta_{5} + 3\beta_{4} - 15\beta _1 + 12 Copy content Toggle raw display
ν4\nu^{4}== 5β11+29β1029β94β74β6+4β529β4+278 - 5 \beta_{11} + 29 \beta_{10} - 29 \beta_{9} - 4 \beta_{7} - 4 \beta_{6} + 4 \beta_{5} - 29 \beta_{4} + \cdots - 278 Copy content Toggle raw display
ν5\nu^{5}== 126β9+9β8+126β7+9β6+9β5+9β4128β3++495 126 \beta_{9} + 9 \beta_{8} + 126 \beta_{7} + 9 \beta_{6} + 9 \beta_{5} + 9 \beta_{4} - 128 \beta_{3} + \cdots + 495 Copy content Toggle raw display
ν6\nu^{6}== 207β11789β10261β9180β8834β7834β5+7074β1 207 \beta_{11} - 789 \beta_{10} - 261 \beta_{9} - 180 \beta_{8} - 834 \beta_{7} - 834 \beta_{5} + \cdots - 7074 \beta_1 Copy content Toggle raw display
ν7\nu^{7}== 2988β11+5340β10540β9+513β8+540β7513β6+15597 - 2988 \beta_{11} + 5340 \beta_{10} - 540 \beta_{9} + 513 \beta_{8} + 540 \beta_{7} - 513 \beta_{6} + \cdots - 15597 Copy content Toggle raw display
ν8\nu^{8}== 6771β1121387β10+24357β9+11076β7+6378β611076β5++152454 6771 \beta_{11} - 21387 \beta_{10} + 24357 \beta_{9} + 11076 \beta_{7} + 6378 \beta_{6} - 11076 \beta_{5} + \cdots + 152454 Copy content Toggle raw display
ν9\nu^{9}== 141048β920817β8141048β720817β621303β5+456705 - 141048 \beta_{9} - 20817 \beta_{8} - 141048 \beta_{7} - 20817 \beta_{6} - 21303 \beta_{5} + \cdots - 456705 Copy content Toggle raw display
ν10\nu^{10}== 206037β11+586557β10+397683β9+208872β8+718722β7++4667490β1 - 206037 \beta_{11} + 586557 \beta_{10} + 397683 \beta_{9} + 208872 \beta_{8} + 718722 \beta_{7} + \cdots + 4667490 \beta_1 Copy content Toggle raw display
ν11\nu^{11}== 1946268β114162068β10+717012β9735885β8717012β7++13089789 1946268 \beta_{11} - 4162068 \beta_{10} + 717012 \beta_{9} - 735885 \beta_{8} - 717012 \beta_{7} + \cdots + 13089789 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/810Z)×\left(\mathbb{Z}/810\mathbb{Z}\right)^\times.

nn 487487 731731
χ(n)\chi(n) β1\beta_{1} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
163.1
−3.83690 + 3.83690i
2.21548 2.21548i
2.49352 2.49352i
−0.509217 + 0.509217i
−3.24958 + 3.24958i
2.88670 2.88670i
−3.83690 3.83690i
2.21548 + 2.21548i
2.49352 + 2.49352i
−0.509217 0.509217i
−3.24958 3.24958i
2.88670 + 2.88670i
1.00000 1.00000i 0 2.00000i −4.31004 + 2.53448i 0 −2.41180 + 2.41180i −2.00000 2.00000i 0 −1.77556 + 6.84452i
163.2 1.00000 1.00000i 0 2.00000i −4.07172 2.90192i 0 7.16337 7.16337i −2.00000 2.00000i 0 −6.97363 + 1.16980i
163.3 1.00000 1.00000i 0 2.00000i 0.830091 + 4.93061i 0 0.952249 0.952249i −2.00000 2.00000i 0 5.76070 + 4.10052i
163.4 1.00000 1.00000i 0 2.00000i 1.18786 4.85685i 0 6.55284 6.55284i −2.00000 2.00000i 0 −3.66899 6.04471i
163.5 1.00000 1.00000i 0 2.00000i 1.76846 4.67681i 0 −4.32826 + 4.32826i −2.00000 2.00000i 0 −2.90835 6.44527i
163.6 1.00000 1.00000i 0 2.00000i 4.59534 + 1.97049i 0 −4.92840 + 4.92840i −2.00000 2.00000i 0 6.56583 2.62486i
487.1 1.00000 + 1.00000i 0 2.00000i −4.31004 2.53448i 0 −2.41180 2.41180i −2.00000 + 2.00000i 0 −1.77556 6.84452i
487.2 1.00000 + 1.00000i 0 2.00000i −4.07172 + 2.90192i 0 7.16337 + 7.16337i −2.00000 + 2.00000i 0 −6.97363 1.16980i
487.3 1.00000 + 1.00000i 0 2.00000i 0.830091 4.93061i 0 0.952249 + 0.952249i −2.00000 + 2.00000i 0 5.76070 4.10052i
487.4 1.00000 + 1.00000i 0 2.00000i 1.18786 + 4.85685i 0 6.55284 + 6.55284i −2.00000 + 2.00000i 0 −3.66899 + 6.04471i
487.5 1.00000 + 1.00000i 0 2.00000i 1.76846 + 4.67681i 0 −4.32826 4.32826i −2.00000 + 2.00000i 0 −2.90835 + 6.44527i
487.6 1.00000 + 1.00000i 0 2.00000i 4.59534 1.97049i 0 −4.92840 4.92840i −2.00000 + 2.00000i 0 6.56583 + 2.62486i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 163.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 810.3.g.k 12
3.b odd 2 1 810.3.g.i 12
5.c odd 4 1 inner 810.3.g.k 12
9.c even 3 2 90.3.k.a 24
9.d odd 6 2 270.3.l.b 24
15.e even 4 1 810.3.g.i 12
45.k odd 12 2 90.3.k.a 24
45.l even 12 2 270.3.l.b 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
90.3.k.a 24 9.c even 3 2
90.3.k.a 24 45.k odd 12 2
270.3.l.b 24 9.d odd 6 2
270.3.l.b 24 45.l even 12 2
810.3.g.i 12 3.b odd 2 1
810.3.g.i 12 15.e even 4 1
810.3.g.k 12 1.a even 1 1 trivial
810.3.g.k 12 5.c odd 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S3new(810,[χ])S_{3}^{\mathrm{new}}(810, [\chi]):

T7126T711+18T710+544T79+7479T7812756T77++338449609 T_{7}^{12} - 6 T_{7}^{11} + 18 T_{7}^{10} + 544 T_{7}^{9} + 7479 T_{7}^{8} - 12756 T_{7}^{7} + \cdots + 338449609 Copy content Toggle raw display
T1166T115621T114+5228T113+87432T112913818T11+1018990 T_{11}^{6} - 6T_{11}^{5} - 621T_{11}^{4} + 5228T_{11}^{3} + 87432T_{11}^{2} - 913818T_{11} + 1018990 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T22T+2)6 (T^{2} - 2 T + 2)^{6} Copy content Toggle raw display
33 T12 T^{12} Copy content Toggle raw display
55 T12++244140625 T^{12} + \cdots + 244140625 Copy content Toggle raw display
77 T12++338449609 T^{12} + \cdots + 338449609 Copy content Toggle raw display
1111 (T66T5++1018990)2 (T^{6} - 6 T^{5} + \cdots + 1018990)^{2} Copy content Toggle raw display
1313 T12++3000191076 T^{12} + \cdots + 3000191076 Copy content Toggle raw display
1717 T12++9106503184 T^{12} + \cdots + 9106503184 Copy content Toggle raw display
1919 T12++87379360000 T^{12} + \cdots + 87379360000 Copy content Toggle raw display
2323 T12++34464707542225 T^{12} + \cdots + 34464707542225 Copy content Toggle raw display
2929 T12++22 ⁣ ⁣61 T^{12} + \cdots + 22\!\cdots\!61 Copy content Toggle raw display
3131 (T636T5+18709310)2 (T^{6} - 36 T^{5} + \cdots - 18709310)^{2} Copy content Toggle raw display
3737 T12++88 ⁣ ⁣16 T^{12} + \cdots + 88\!\cdots\!16 Copy content Toggle raw display
4141 (T6+12T5++2668453777)2 (T^{6} + 12 T^{5} + \cdots + 2668453777)^{2} Copy content Toggle raw display
4343 T12++38 ⁣ ⁣84 T^{12} + \cdots + 38\!\cdots\!84 Copy content Toggle raw display
4747 T12++26 ⁣ ⁣25 T^{12} + \cdots + 26\!\cdots\!25 Copy content Toggle raw display
5353 T12++23 ⁣ ⁣00 T^{12} + \cdots + 23\!\cdots\!00 Copy content Toggle raw display
5959 T12++27 ⁣ ⁣44 T^{12} + \cdots + 27\!\cdots\!44 Copy content Toggle raw display
6161 (T6228T5++1299208905)2 (T^{6} - 228 T^{5} + \cdots + 1299208905)^{2} Copy content Toggle raw display
6767 T12++37 ⁣ ⁣25 T^{12} + \cdots + 37\!\cdots\!25 Copy content Toggle raw display
7171 (T6+42T5++910683616)2 (T^{6} + 42 T^{5} + \cdots + 910683616)^{2} Copy content Toggle raw display
7373 T12++87 ⁣ ⁣56 T^{12} + \cdots + 87\!\cdots\!56 Copy content Toggle raw display
7979 T12++14 ⁣ ⁣04 T^{12} + \cdots + 14\!\cdots\!04 Copy content Toggle raw display
8383 T12++56 ⁣ ⁣29 T^{12} + \cdots + 56\!\cdots\!29 Copy content Toggle raw display
8989 T12++10 ⁣ ⁣00 T^{12} + \cdots + 10\!\cdots\!00 Copy content Toggle raw display
9797 T12++52 ⁣ ⁣84 T^{12} + \cdots + 52\!\cdots\!84 Copy content Toggle raw display
show more
show less