gp: [N,k,chi] = [810,3,Mod(163,810)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(810, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([0, 3]))
N = Newforms(chi, 3, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("810.163");
S:= CuspForms(chi, 3);
N := Newforms(S);
Newform invariants
sage: traces = [12,12,0,0,0,0,6]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 11 1,\beta_1,\ldots,\beta_{11} 1 , β 1 , … , β 1 1 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 12 − 54 x 9 + 921 x 8 − 1350 x 7 + 1458 x 6 − 18792 x 5 + 231804 x 4 − 552420 x 3 + ⋯ + 656100 x^{12} - 54 x^{9} + 921 x^{8} - 1350 x^{7} + 1458 x^{6} - 18792 x^{5} + 231804 x^{4} - 552420 x^{3} + \cdots + 656100 x 1 2 − 5 4 x 9 + 9 2 1 x 8 − 1 3 5 0 x 7 + 1 4 5 8 x 6 − 1 8 7 9 2 x 5 + 2 3 1 8 0 4 x 4 − 5 5 2 4 2 0 x 3 + ⋯ + 6 5 6 1 0 0
x^12 - 54*x^9 + 921*x^8 - 1350*x^7 + 1458*x^6 - 18792*x^5 + 231804*x^4 - 552420*x^3 + 583200*x^2 + 874800*x + 656100
:
β 1 \beta_{1} β 1 = = =
( − 1875243545 ν 11 + 2732664981 ν 10 + 2774149290 ν 9 + 104197645485 ν 8 + ⋯ − 866523189915450 ) / 20 ⋯ 70 ( - 1875243545 \nu^{11} + 2732664981 \nu^{10} + 2774149290 \nu^{9} + 104197645485 \nu^{8} + \cdots - 866523189915450 ) / 20\!\cdots\!70 ( − 1 8 7 5 2 4 3 5 4 5 ν 1 1 + 2 7 3 2 6 6 4 9 8 1 ν 1 0 + 2 7 7 4 1 4 9 2 9 0 ν 9 + 1 0 4 1 9 7 6 4 5 4 8 5 ν 8 + ⋯ − 8 6 6 5 2 3 1 8 9 9 1 5 4 5 0 ) / 2 0 ⋯ 7 0
(-1875243545*v^11 + 2732664981*v^10 + 2774149290*v^9 + 104197645485*v^8 - 1873864921524*v^7 + 4981515908166*v^6 - 3891751338015*v^5 + 38281615930188*v^4 - 488606626316952*v^3 + 1738554979846284*v^2 - 1976060739252510*v - 866523189915450) / 2035536381234270
β 2 \beta_{2} β 2 = = =
( 801101591 ν 11 − 10289055060 ν 10 − 84332616198 ν 9 − 293504336784 ν 8 + ⋯ − 514673191072440 ) / 452341418052060 ( 801101591 \nu^{11} - 10289055060 \nu^{10} - 84332616198 \nu^{9} - 293504336784 \nu^{8} + \cdots - 514673191072440 ) / 452341418052060 ( 8 0 1 1 0 1 5 9 1 ν 1 1 − 1 0 2 8 9 0 5 5 0 6 0 ν 1 0 − 8 4 3 3 2 6 1 6 1 9 8 ν 9 − 2 9 3 5 0 4 3 3 6 7 8 4 ν 8 + ⋯ − 5 1 4 6 7 3 1 9 1 0 7 2 4 4 0 ) / 4 5 2 3 4 1 4 1 8 0 5 2 0 6 0
(801101591*v^11 - 10289055060*v^10 - 84332616198*v^9 - 293504336784*v^8 + 1034227795947*v^7 - 4340847960756*v^6 - 36538823429478*v^5 - 96577053626916*v^4 + 302362724947734*v^3 - 635889801951828*v^2 - 3374651669136840*v - 514673191072440) / 452341418052060
β 3 \beta_{3} β 3 = = =
( − 801101591 ν 11 + 10289055060 ν 10 + 84332616198 ν 9 + ⋯ + 514673191072440 ) / 452341418052060 ( - 801101591 \nu^{11} + 10289055060 \nu^{10} + 84332616198 \nu^{9} + \cdots + 514673191072440 ) / 452341418052060 ( − 8 0 1 1 0 1 5 9 1 ν 1 1 + 1 0 2 8 9 0 5 5 0 6 0 ν 1 0 + 8 4 3 3 2 6 1 6 1 9 8 ν 9 + ⋯ + 5 1 4 6 7 3 1 9 1 0 7 2 4 4 0 ) / 4 5 2 3 4 1 4 1 8 0 5 2 0 6 0
(-801101591*v^11 + 10289055060*v^10 + 84332616198*v^9 + 293504336784*v^8 - 1034227795947*v^7 + 4340847960756*v^6 + 36538823429478*v^5 + 96577053626916*v^4 - 302362724947734*v^3 + 635889801951828*v^2 + 4731675923293020*v + 514673191072440) / 452341418052060
β 4 \beta_{4} β 4 = = =
( 10813781488 ν 11 − 18832079700 ν 10 − 253052027046 ν 9 − 1619639566146 ν 8 + ⋯ − 13 ⋯ 70 ) / 20 ⋯ 70 ( 10813781488 \nu^{11} - 18832079700 \nu^{10} - 253052027046 \nu^{9} - 1619639566146 \nu^{8} + \cdots - 13\!\cdots\!70 ) / 20\!\cdots\!70 ( 1 0 8 1 3 7 8 1 4 8 8 ν 1 1 − 1 8 8 3 2 0 7 9 7 0 0 ν 1 0 − 2 5 3 0 5 2 0 2 7 0 4 6 ν 9 − 1 6 1 9 6 3 9 5 6 6 1 4 6 ν 8 + ⋯ − 1 3 ⋯ 7 0 ) / 2 0 ⋯ 7 0
(10813781488*v^11 - 18832079700*v^10 - 253052027046*v^9 - 1619639566146*v^8 + 8313264642702*v^7 - 18728224777575*v^6 - 112486169698992*v^5 - 595414451140695*v^4 + 1963277075631168*v^3 - 4781616191780274*v^2 - 10660201940923830*v - 13941613256310270) / 2035536381234270
β 5 \beta_{5} β 5 = = =
( 3622731026 ν 11 − 25387385657 ν 10 − 103969950084 ν 9 − 404288852031 ν 8 + ⋯ + 809857776786660 ) / 678512127078090 ( 3622731026 \nu^{11} - 25387385657 \nu^{10} - 103969950084 \nu^{9} - 404288852031 \nu^{8} + \cdots + 809857776786660 ) / 678512127078090 ( 3 6 2 2 7 3 1 0 2 6 ν 1 1 − 2 5 3 8 7 3 8 5 6 5 7 ν 1 0 − 1 0 3 9 6 9 9 5 0 0 8 4 ν 9 − 4 0 4 2 8 8 8 5 2 0 3 1 ν 8 + ⋯ + 8 0 9 8 5 7 7 7 6 7 8 6 6 6 0 ) / 6 7 8 5 1 2 1 2 7 0 7 8 0 9 0
(3622731026*v^11 - 25387385657*v^10 - 103969950084*v^9 - 404288852031*v^8 + 5012953239183*v^7 - 19655990449719*v^6 - 33937589503557*v^5 - 156345435879993*v^4 + 1453610115391716*v^3 - 4792172232064266*v^2 + 834168523429260*v + 809857776786660) / 678512127078090
β 6 \beta_{6} β 6 = = =
( − 16157749007 ν 11 − 16169837742 ν 10 + 245744928891 ν 9 + ⋯ + 42 ⋯ 00 ) / 20 ⋯ 70 ( - 16157749007 \nu^{11} - 16169837742 \nu^{10} + 245744928891 \nu^{9} + \cdots + 42\!\cdots\!00 ) / 20\!\cdots\!70 ( − 1 6 1 5 7 7 4 9 0 0 7 ν 1 1 − 1 6 1 6 9 8 3 7 7 4 2 ν 1 0 + 2 4 5 7 4 4 9 2 8 8 9 1 ν 9 + ⋯ + 4 2 ⋯ 0 0 ) / 2 0 ⋯ 7 0
(-16157749007*v^11 - 16169837742*v^10 + 245744928891*v^9 + 2957021682174*v^8 - 7713673859184*v^7 + 84861549207*v^6 + 63915908241492*v^5 + 1087697114716545*v^4 - 1588967847139608*v^3 + 2479719205493370*v^2 + 3365547885870840*v + 42423545727242100) / 2035536381234270
β 7 \beta_{7} β 7 = = =
( − 5903758925 ν 11 − 33865345891 ν 10 − 67696741206 ν 9 + ⋯ + 10 ⋯ 90 ) / 678512127078090 ( - 5903758925 \nu^{11} - 33865345891 \nu^{10} - 67696741206 \nu^{9} + \cdots + 10\!\cdots\!90 ) / 678512127078090 ( − 5 9 0 3 7 5 8 9 2 5 ν 1 1 − 3 3 8 6 5 3 4 5 8 9 1 ν 1 0 − 6 7 6 9 6 7 4 1 2 0 6 ν 9 + ⋯ + 1 0 ⋯ 9 0 ) / 6 7 8 5 1 2 1 2 7 0 7 8 0 9 0
(-5903758925*v^11 - 33865345891*v^10 - 67696741206*v^9 + 347221587906*v^8 - 2763963071277*v^7 - 15956005799406*v^6 - 14930684399106*v^5 + 140717902199823*v^4 - 348415585518852*v^3 - 1979731934181828*v^2 + 3303539986850910*v + 1007919072636390) / 678512127078090
β 8 \beta_{8} β 8 = = =
( − 24025140695 ν 11 + 169173040263 ν 10 + 438081208245 ν 9 + ⋯ − 17 ⋯ 00 ) / 20 ⋯ 70 ( - 24025140695 \nu^{11} + 169173040263 \nu^{10} + 438081208245 \nu^{9} + \cdots - 17\!\cdots\!00 ) / 20\!\cdots\!70 ( − 2 4 0 2 5 1 4 0 6 9 5 ν 1 1 + 1 6 9 1 7 3 0 4 0 2 6 3 ν 1 0 + 4 3 8 0 8 1 2 0 8 2 4 5 ν 9 + ⋯ − 1 7 ⋯ 0 0 ) / 2 0 ⋯ 7 0
(-24025140695*v^11 + 169173040263*v^10 + 438081208245*v^9 + 1746363892779*v^8 - 34924088358249*v^7 + 134503746792381*v^6 + 29616968614149*v^5 + 630410445269325*v^4 - 9875460177547812*v^3 + 33458088034208070*v^2 - 39403384557775110*v - 17294039977500900) / 2035536381234270
β 9 \beta_{9} β 9 = = =
( 28593720413 ν 11 + 60064310034 ν 10 − 33351976611 ν 9 − 2346815029725 ν 8 + ⋯ − 98 ⋯ 70 ) / 20 ⋯ 70 ( 28593720413 \nu^{11} + 60064310034 \nu^{10} - 33351976611 \nu^{9} - 2346815029725 \nu^{8} + \cdots - 98\!\cdots\!70 ) / 20\!\cdots\!70 ( 2 8 5 9 3 7 2 0 4 1 3 ν 1 1 + 6 0 0 6 4 3 1 0 0 3 4 ν 1 0 − 3 3 3 5 1 9 7 6 6 1 1 ν 9 − 2 3 4 6 8 1 5 0 2 9 7 2 5 ν 8 + ⋯ − 9 8 ⋯ 7 0 ) / 2 0 ⋯ 7 0
(28593720413*v^11 + 60064310034*v^10 - 33351976611*v^9 - 2346815029725*v^8 + 19824337365018*v^7 + 12716029565406*v^6 - 8816718099276*v^5 - 870310936875519*v^4 + 4144343169038616*v^3 - 3848717489839236*v^2 - 1323689487856290*v - 9850536006124770) / 2035536381234270
β 10 \beta_{10} β 1 0 = = =
( 25717796021 ν 11 + 60311648106 ν 10 + 62594041086 ν 9 − 1808354936952 ν 8 + ⋯ + 34 ⋯ 80 ) / 13 ⋯ 80 ( 25717796021 \nu^{11} + 60311648106 \nu^{10} + 62594041086 \nu^{9} - 1808354936952 \nu^{8} + \cdots + 34\!\cdots\!80 ) / 13\!\cdots\!80 ( 2 5 7 1 7 7 9 6 0 2 1 ν 1 1 + 6 0 3 1 1 6 4 8 1 0 6 ν 1 0 + 6 2 5 9 4 0 4 1 0 8 6 ν 9 − 1 8 0 8 3 5 4 9 3 6 9 5 2 ν 8 + ⋯ + 3 4 ⋯ 8 0 ) / 1 3 ⋯ 8 0
(25717796021*v^11 + 60311648106*v^10 + 62594041086*v^9 - 1808354936952*v^8 + 17343352267269*v^7 + 8386289534322*v^6 + 27037590897042*v^5 - 641292252822288*v^4 + 3582765378266994*v^3 - 4392386617669956*v^2 + 1361235364554240*v + 3485658627091080) / 1357024254156180
β 11 \beta_{11} β 1 1 = = =
( 31183125983 ν 11 + 65859946686 ν 10 + 68463029196 ν 9 − 2101886170110 ν 8 + ⋯ + 59 ⋯ 80 ) / 13 ⋯ 80 ( 31183125983 \nu^{11} + 65859946686 \nu^{10} + 68463029196 \nu^{9} - 2101886170110 \nu^{8} + \cdots + 59\!\cdots\!80 ) / 13\!\cdots\!80 ( 3 1 1 8 3 1 2 5 9 8 3 ν 1 1 + 6 5 8 5 9 9 4 6 6 8 6 ν 1 0 + 6 8 4 6 3 0 2 9 1 9 6 ν 9 − 2 1 0 1 8 8 6 1 7 0 1 1 0 ν 8 + ⋯ + 5 9 ⋯ 8 0 ) / 1 3 ⋯ 8 0
(31183125983*v^11 + 65859946686*v^10 + 68463029196*v^9 - 2101886170110*v^8 + 22243226512101*v^7 + 6070997035512*v^6 + 33121669362138*v^5 - 749127596045832*v^4 + 4988031259701762*v^3 - 6157224025286976*v^2 + 2909115091055340*v + 5946353206840080) / 1357024254156180
ν \nu ν = = =
( β 3 + β 2 ) / 3 ( \beta_{3} + \beta_{2} ) / 3 ( β 3 + β 2 ) / 3
(b3 + b2) / 3
ν 2 \nu^{2} ν 2 = = =
β 10 + β 7 + β 5 − β 2 + 15 β 1 \beta_{10} + \beta_{7} + \beta_{5} - \beta_{2} + 15\beta_1 β 1 0 + β 7 + β 5 − β 2 + 1 5 β 1
b10 + b7 + b5 - b2 + 15*b1
ν 3 \nu^{3} ν 3 = = =
6 β 11 − 8 β 10 − 3 β 5 + 3 β 4 − 15 β 1 + 12 6\beta_{11} - 8\beta_{10} - 3\beta_{5} + 3\beta_{4} - 15\beta _1 + 12 6 β 1 1 − 8 β 1 0 − 3 β 5 + 3 β 4 − 1 5 β 1 + 1 2
6*b11 - 8*b10 - 3*b5 + 3*b4 - 15*b1 + 12
ν 4 \nu^{4} ν 4 = = =
− 5 β 11 + 29 β 10 − 29 β 9 − 4 β 7 − 4 β 6 + 4 β 5 − 29 β 4 + ⋯ − 278 - 5 \beta_{11} + 29 \beta_{10} - 29 \beta_{9} - 4 \beta_{7} - 4 \beta_{6} + 4 \beta_{5} - 29 \beta_{4} + \cdots - 278 − 5 β 1 1 + 2 9 β 1 0 − 2 9 β 9 − 4 β 7 − 4 β 6 + 4 β 5 − 2 9 β 4 + ⋯ − 2 7 8
-5*b11 + 29*b10 - 29*b9 - 4*b7 - 4*b6 + 4*b5 - 29*b4 + 5*b3 + 29*b2 + 4*b1 - 278
ν 5 \nu^{5} ν 5 = = =
126 β 9 + 9 β 8 + 126 β 7 + 9 β 6 + 9 β 5 + 9 β 4 − 128 β 3 + ⋯ + 495 126 \beta_{9} + 9 \beta_{8} + 126 \beta_{7} + 9 \beta_{6} + 9 \beta_{5} + 9 \beta_{4} - 128 \beta_{3} + \cdots + 495 1 2 6 β 9 + 9 β 8 + 1 2 6 β 7 + 9 β 6 + 9 β 5 + 9 β 4 − 1 2 8 β 3 + ⋯ + 4 9 5
126*b9 + 9*b8 + 126*b7 + 9*b6 + 9*b5 + 9*b4 - 128*b3 - 200*b2 + 504*b1 + 495
ν 6 \nu^{6} ν 6 = = =
207 β 11 − 789 β 10 − 261 β 9 − 180 β 8 − 834 β 7 − 834 β 5 + ⋯ − 7074 β 1 207 \beta_{11} - 789 \beta_{10} - 261 \beta_{9} - 180 \beta_{8} - 834 \beta_{7} - 834 \beta_{5} + \cdots - 7074 \beta_1 2 0 7 β 1 1 − 7 8 9 β 1 0 − 2 6 1 β 9 − 1 8 0 β 8 − 8 3 4 β 7 − 8 3 4 β 5 + ⋯ − 7 0 7 4 β 1
207*b11 - 789*b10 - 261*b9 - 180*b8 - 834*b7 - 834*b5 + 261*b4 + 207*b3 + 789*b2 - 7074*b1
ν 7 \nu^{7} ν 7 = = =
− 2988 β 11 + 5340 β 10 − 540 β 9 + 513 β 8 + 540 β 7 − 513 β 6 + ⋯ − 15597 - 2988 \beta_{11} + 5340 \beta_{10} - 540 \beta_{9} + 513 \beta_{8} + 540 \beta_{7} - 513 \beta_{6} + \cdots - 15597 − 2 9 8 8 β 1 1 + 5 3 4 0 β 1 0 − 5 4 0 β 9 + 5 1 3 β 8 + 5 4 0 β 7 − 5 1 3 β 6 + ⋯ − 1 5 5 9 7
-2988*b11 + 5340*b10 - 540*b9 + 513*b8 + 540*b7 - 513*b6 + 4365*b5 - 4365*b4 + 19962*b1 - 15597
ν 8 \nu^{8} ν 8 = = =
6771 β 11 − 21387 β 10 + 24357 β 9 + 11076 β 7 + 6378 β 6 − 11076 β 5 + ⋯ + 152454 6771 \beta_{11} - 21387 \beta_{10} + 24357 \beta_{9} + 11076 \beta_{7} + 6378 \beta_{6} - 11076 \beta_{5} + \cdots + 152454 6 7 7 1 β 1 1 − 2 1 3 8 7 β 1 0 + 2 4 3 5 7 β 9 + 1 1 0 7 6 β 7 + 6 3 7 8 β 6 − 1 1 0 7 6 β 5 + ⋯ + 1 5 2 4 5 4
6771*b11 - 21387*b10 + 24357*b9 + 11076*b7 + 6378*b6 - 11076*b5 + 24357*b4 - 6771*b3 - 21387*b2 - 11076*b1 + 152454
ν 9 \nu^{9} ν 9 = = =
− 141048 β 9 − 20817 β 8 − 141048 β 7 − 20817 β 6 − 21303 β 5 + ⋯ − 456705 - 141048 \beta_{9} - 20817 \beta_{8} - 141048 \beta_{7} - 20817 \beta_{6} - 21303 \beta_{5} + \cdots - 456705 − 1 4 1 0 4 8 β 9 − 2 0 8 1 7 β 8 − 1 4 1 0 4 8 β 7 − 2 0 8 1 7 β 6 − 2 1 3 0 3 β 5 + ⋯ − 4 5 6 7 0 5
-141048*b9 - 20817*b8 - 141048*b7 - 20817*b6 - 21303*b5 - 21303*b4 + 74442*b3 + 147666*b2 - 478008*b1 - 456705
ν 10 \nu^{10} ν 1 0 = = =
− 206037 β 11 + 586557 β 10 + 397683 β 9 + 208872 β 8 + 718722 β 7 + ⋯ + 4667490 β 1 - 206037 \beta_{11} + 586557 \beta_{10} + 397683 \beta_{9} + 208872 \beta_{8} + 718722 \beta_{7} + \cdots + 4667490 \beta_1 − 2 0 6 0 3 7 β 1 1 + 5 8 6 5 5 7 β 1 0 + 3 9 7 6 8 3 β 9 + 2 0 8 8 7 2 β 8 + 7 1 8 7 2 2 β 7 + ⋯ + 4 6 6 7 4 9 0 β 1
-206037*b11 + 586557*b10 + 397683*b9 + 208872*b8 + 718722*b7 + 718722*b5 - 397683*b4 - 206037*b3 - 586557*b2 + 4667490*b1
ν 11 \nu^{11} ν 1 1 = = =
1946268 β 11 − 4162068 β 10 + 717012 β 9 − 735885 β 8 − 717012 β 7 + ⋯ + 13089789 1946268 \beta_{11} - 4162068 \beta_{10} + 717012 \beta_{9} - 735885 \beta_{8} - 717012 \beta_{7} + \cdots + 13089789 1 9 4 6 2 6 8 β 1 1 − 4 1 6 2 0 6 8 β 1 0 + 7 1 7 0 1 2 β 9 − 7 3 5 8 8 5 β 8 − 7 1 7 0 1 2 β 7 + ⋯ + 1 3 0 8 9 7 8 9
1946268*b11 - 4162068*b10 + 717012*b9 - 735885*b8 - 717012*b7 + 735885*b6 - 4405131*b5 + 4405131*b4 - 17494920*b1 + 13089789
Character values
We give the values of χ \chi χ on generators for ( Z / 810 Z ) × \left(\mathbb{Z}/810\mathbb{Z}\right)^\times ( Z / 8 1 0 Z ) × .
n n n
487 487 4 8 7
731 731 7 3 1
χ ( n ) \chi(n) χ ( n )
β 1 \beta_{1} β 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 3 n e w ( 810 , [ χ ] ) S_{3}^{\mathrm{new}}(810, [\chi]) S 3 n e w ( 8 1 0 , [ χ ] ) :
T 7 12 − 6 T 7 11 + 18 T 7 10 + 544 T 7 9 + 7479 T 7 8 − 12756 T 7 7 + ⋯ + 338449609 T_{7}^{12} - 6 T_{7}^{11} + 18 T_{7}^{10} + 544 T_{7}^{9} + 7479 T_{7}^{8} - 12756 T_{7}^{7} + \cdots + 338449609 T 7 1 2 − 6 T 7 1 1 + 1 8 T 7 1 0 + 5 4 4 T 7 9 + 7 4 7 9 T 7 8 − 1 2 7 5 6 T 7 7 + ⋯ + 3 3 8 4 4 9 6 0 9
T7^12 - 6*T7^11 + 18*T7^10 + 544*T7^9 + 7479*T7^8 - 12756*T7^7 + 89882*T7^6 + 2545176*T7^5 + 23901939*T7^4 + 53701934*T7^3 + 41259528*T7^2 - 167118348*T7 + 338449609
T 11 6 − 6 T 11 5 − 621 T 11 4 + 5228 T 11 3 + 87432 T 11 2 − 913818 T 11 + 1018990 T_{11}^{6} - 6T_{11}^{5} - 621T_{11}^{4} + 5228T_{11}^{3} + 87432T_{11}^{2} - 913818T_{11} + 1018990 T 1 1 6 − 6 T 1 1 5 − 6 2 1 T 1 1 4 + 5 2 2 8 T 1 1 3 + 8 7 4 3 2 T 1 1 2 − 9 1 3 8 1 8 T 1 1 + 1 0 1 8 9 9 0
T11^6 - 6*T11^5 - 621*T11^4 + 5228*T11^3 + 87432*T11^2 - 913818*T11 + 1018990
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 2 − 2 T + 2 ) 6 (T^{2} - 2 T + 2)^{6} ( T 2 − 2 T + 2 ) 6
(T^2 - 2*T + 2)^6
3 3 3
T 12 T^{12} T 1 2
T^12
5 5 5
T 12 + ⋯ + 244140625 T^{12} + \cdots + 244140625 T 1 2 + ⋯ + 2 4 4 1 4 0 6 2 5
T^12 + 27*T^10 + 114*T^9 + 327*T^8 - 2034*T^7 + 22850*T^6 - 50850*T^5 + 204375*T^4 + 1781250*T^3 + 10546875*T^2 + 244140625
7 7 7
T 12 + ⋯ + 338449609 T^{12} + \cdots + 338449609 T 1 2 + ⋯ + 3 3 8 4 4 9 6 0 9
T^12 - 6*T^11 + 18*T^10 + 544*T^9 + 7479*T^8 - 12756*T^7 + 89882*T^6 + 2545176*T^5 + 23901939*T^4 + 53701934*T^3 + 41259528*T^2 - 167118348*T + 338449609
11 11 1 1
( T 6 − 6 T 5 + ⋯ + 1018990 ) 2 (T^{6} - 6 T^{5} + \cdots + 1018990)^{2} ( T 6 − 6 T 5 + ⋯ + 1 0 1 8 9 9 0 ) 2
(T^6 - 6*T^5 - 621*T^4 + 5228*T^3 + 87432*T^2 - 913818*T + 1018990)^2
13 13 1 3
T 12 + ⋯ + 3000191076 T^{12} + \cdots + 3000191076 T 1 2 + ⋯ + 3 0 0 0 1 9 1 0 7 6
T^12 + 1338*T^9 + 160905*T^8 + 478890*T^7 + 895122*T^6 + 27993096*T^5 + 540336348*T^4 + 2891553660*T^3 + 8092973088*T^2 + 6968567376*T + 3000191076
17 17 1 7
T 12 + ⋯ + 9106503184 T^{12} + \cdots + 9106503184 T 1 2 + ⋯ + 9 1 0 6 5 0 3 1 8 4
T^12 + 18*T^11 + 162*T^10 - 8240*T^9 + 731928*T^8 + 10094172*T^7 + 97071560*T^6 - 4818641088*T^5 + 76520325492*T^4 - 355012584880*T^3 + 815844722688*T^2 + 121897436928*T + 9106503184
19 19 1 9
T 12 + ⋯ + 87379360000 T^{12} + \cdots + 87379360000 T 1 2 + ⋯ + 8 7 3 7 9 3 6 0 0 0 0
T^12 + 1632*T^10 + 783600*T^8 + 142221884*T^6 + 8347121124*T^4 + 76425792384*T^2 + 87379360000
23 23 2 3
T 12 + ⋯ + 34464707542225 T^{12} + \cdots + 34464707542225 T 1 2 + ⋯ + 3 4 4 6 4 7 0 7 5 4 2 2 2 5
T^12 - 54*T^11 + 1458*T^10 - 2312*T^9 + 130275*T^8 - 11094768*T^7 + 411849194*T^6 + 1700766072*T^5 + 14992518159*T^4 - 621416734318*T^3 + 15658525757448*T^2 + 32853204129060*T + 34464707542225
29 29 2 9
T 12 + ⋯ + 22 ⋯ 61 T^{12} + \cdots + 22\!\cdots\!61 T 1 2 + ⋯ + 2 2 ⋯ 6 1
T^12 + 7770*T^10 + 22113471*T^8 + 28455692156*T^6 + 16656579297951*T^4 + 3600640152298890*T^2 + 22777957486589761
31 31 3 1
( T 6 − 36 T 5 + ⋯ − 18709310 ) 2 (T^{6} - 36 T^{5} + \cdots - 18709310)^{2} ( T 6 − 3 6 T 5 + ⋯ − 1 8 7 0 9 3 1 0 ) 2
(T^6 - 36*T^5 - 597*T^4 + 23530*T^3 + 138432*T^2 - 3677034*T - 18709310)^2
37 37 3 7
T 12 + ⋯ + 88 ⋯ 16 T^{12} + \cdots + 88\!\cdots\!16 T 1 2 + ⋯ + 8 8 ⋯ 1 6
T^12 - 66*T^11 + 2178*T^10 + 36432*T^9 + 2307708*T^8 - 152340804*T^7 + 5691950352*T^6 + 128608059096*T^5 + 1509932591748*T^4 - 2735594004528*T^3 + 45865747227168*T^2 + 901533304403424*T + 8860231742470416
41 41 4 1
( T 6 + 12 T 5 + ⋯ + 2668453777 ) 2 (T^{6} + 12 T^{5} + \cdots + 2668453777)^{2} ( T 6 + 1 2 T 5 + ⋯ + 2 6 6 8 4 5 3 7 7 7 ) 2
(T^6 + 12*T^5 - 5673*T^4 - 141274*T^3 + 6707571*T^2 + 279113538*T + 2668453777)^2
43 43 4 3
T 12 + ⋯ + 38 ⋯ 84 T^{12} + \cdots + 38\!\cdots\!84 T 1 2 + ⋯ + 3 8 ⋯ 8 4
T^12 + 108*T^11 + 5832*T^10 - 33954*T^9 + 5178117*T^8 + 507211794*T^7 + 25156532466*T^6 - 16768659672*T^5 - 270512548632*T^4 + 100058277081348*T^3 + 11321719742013192*T^2 - 93100368414639384*T + 382789840962814884
47 47 4 7
T 12 + ⋯ + 26 ⋯ 25 T^{12} + \cdots + 26\!\cdots\!25 T 1 2 + ⋯ + 2 6 ⋯ 2 5
T^12 + 48*T^11 + 1152*T^10 - 9018*T^9 + 44347167*T^8 + 2386826352*T^7 + 63520390674*T^6 - 2454135217488*T^5 + 60777310787091*T^4 + 483716039216004*T^3 + 6854943422639538*T^2 - 190879795866238650*T + 2657578204774400625
53 53 5 3
T 12 + ⋯ + 23 ⋯ 00 T^{12} + \cdots + 23\!\cdots\!00 T 1 2 + ⋯ + 2 3 ⋯ 0 0
T^12 - 192*T^11 + 18432*T^10 - 647392*T^9 + 8825892*T^8 - 171893472*T^7 + 79882906112*T^6 - 1951103452992*T^5 + 17363153836416*T^4 + 1120728970616320*T^3 + 37646933635699200*T^2 - 13243202996966400*T + 2329305585894400
59 59 5 9
T 12 + ⋯ + 27 ⋯ 44 T^{12} + \cdots + 27\!\cdots\!44 T 1 2 + ⋯ + 2 7 ⋯ 4 4
T^12 + 18222*T^10 + 100471713*T^8 + 215326823420*T^6 + 166126216380792*T^4 + 39408471950759808*T^2 + 27979925998528144
61 61 6 1
( T 6 − 228 T 5 + ⋯ + 1299208905 ) 2 (T^{6} - 228 T^{5} + \cdots + 1299208905)^{2} ( T 6 − 2 2 8 T 5 + ⋯ + 1 2 9 9 2 0 8 9 0 5 ) 2
(T^6 - 228*T^5 + 20583*T^4 - 938946*T^3 + 22738899*T^2 - 275714334*T + 1299208905)^2
67 67 6 7
T 12 + ⋯ + 37 ⋯ 25 T^{12} + \cdots + 37\!\cdots\!25 T 1 2 + ⋯ + 3 7 ⋯ 2 5
T^12 + 12*T^11 + 72*T^10 - 524246*T^9 + 141647631*T^8 - 4951301304*T^7 + 67802689178*T^6 + 4884857775888*T^5 + 419019460525731*T^4 - 3807402078093616*T^3 + 16876628329856418*T^2 - 35614482413892990*T + 37578340081282225
71 71 7 1
( T 6 + 42 T 5 + ⋯ + 910683616 ) 2 (T^{6} + 42 T^{5} + \cdots + 910683616)^{2} ( T 6 + 4 2 T 5 + ⋯ + 9 1 0 6 8 3 6 1 6 ) 2
(T^6 + 42*T^5 - 21156*T^4 - 439454*T^3 + 101355414*T^2 - 709031088*T + 910683616)^2
73 73 7 3
T 12 + ⋯ + 87 ⋯ 56 T^{12} + \cdots + 87\!\cdots\!56 T 1 2 + ⋯ + 8 7 ⋯ 5 6
T^12 + 216*T^11 + 23328*T^10 + 2180648*T^9 + 479677332*T^8 + 89256135456*T^7 + 10467025307552*T^6 + 771097340824032*T^5 + 36512298115178496*T^4 + 1029400713360790528*T^3 + 14617622495177884800*T^2 + 5056729792660181760*T + 874646892968141056
79 79 7 9
T 12 + ⋯ + 14 ⋯ 04 T^{12} + \cdots + 14\!\cdots\!04 T 1 2 + ⋯ + 1 4 ⋯ 0 4
T^12 + 19494*T^10 + 128591025*T^8 + 366202975500*T^6 + 444194211002400*T^4 + 180292551752151936*T^2 + 14764327877994813504
83 83 8 3
T 12 + ⋯ + 56 ⋯ 29 T^{12} + \cdots + 56\!\cdots\!29 T 1 2 + ⋯ + 5 6 ⋯ 2 9
T^12 - 246*T^11 + 30258*T^10 - 1404732*T^9 + 57516735*T^8 - 8342302284*T^7 + 1298500990146*T^6 - 49631039459568*T^5 + 1039236329382291*T^4 - 55389762841188546*T^3 + 12010444477951612032*T^2 - 368416532005587322416*T + 5650529474749834615329
89 89 8 9
T 12 + ⋯ + 10 ⋯ 00 T^{12} + \cdots + 10\!\cdots\!00 T 1 2 + ⋯ + 1 0 ⋯ 0 0
T^12 + 25716*T^10 + 244274910*T^8 + 1101989485004*T^6 + 2489043328047993*T^4 + 2678684879715686376*T^2 + 1069896782237162890000
97 97 9 7
T 12 + ⋯ + 52 ⋯ 84 T^{12} + \cdots + 52\!\cdots\!84 T 1 2 + ⋯ + 5 2 ⋯ 8 4
T^12 - 102*T^11 + 5202*T^10 + 653346*T^9 + 697866681*T^8 - 64391234436*T^7 + 3151033935768*T^6 + 328467304327896*T^5 + 15580579114678176*T^4 + 72117760467168576*T^3 + 310556914381246752*T^2 + 57006572477475992256*T + 5232131624092994616384
show more
show less