Properties

Label 810.4.e.be
Level $810$
Weight $4$
Character orbit 810.e
Analytic conductor $47.792$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [810,4,Mod(271,810)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(810, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("810.271");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 810.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.7915471046\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-1027})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 256x^{2} - 257x + 66049 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (2 \beta_1 + 2) q^{2} + 4 \beta_1 q^{4} - 5 \beta_1 q^{5} + (\beta_{3} + 3 \beta_1 + 3) q^{7} - 8 q^{8} + 10 q^{10} + (\beta_{3} + 26 \beta_1 + 26) q^{11} + ( - \beta_{3} + \beta_{2} + 9 \beta_1) q^{13}+ \cdots + ( - 10 \beta_{2} - 872) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 8 q^{4} + 10 q^{5} + 5 q^{7} - 32 q^{8} + 40 q^{10} + 51 q^{11} - 19 q^{13} - 10 q^{14} - 32 q^{16} - 132 q^{17} - 64 q^{19} + 40 q^{20} - 102 q^{22} - 9 q^{23} - 50 q^{25} - 76 q^{26} - 40 q^{28}+ \cdots - 3468 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 256x^{2} - 257x + 66049 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 256\nu^{2} - 256\nu - 66049 ) / 65792 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} + \nu^{2} + 513\nu ) / 257 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} + 256\nu - 513 ) / 256 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} - \beta _1 + 1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{3} + 2\beta_{2} + 769\beta _1 + 770 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 512\beta_{3} - 256\beta_{2} + 256\beta _1 + 1283 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/810\mathbb{Z}\right)^\times\).

\(n\) \(487\) \(731\)
\(\chi(n)\) \(1\) \(\beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
271.1
−13.6267 8.44472i
14.1267 + 7.57870i
−13.6267 + 8.44472i
14.1267 7.57870i
1.00000 + 1.73205i 0 −2.00000 + 3.46410i 2.50000 4.33013i 0 −12.6267 21.8701i −8.00000 0 10.0000
271.2 1.00000 + 1.73205i 0 −2.00000 + 3.46410i 2.50000 4.33013i 0 15.1267 + 26.2002i −8.00000 0 10.0000
541.1 1.00000 1.73205i 0 −2.00000 3.46410i 2.50000 + 4.33013i 0 −12.6267 + 21.8701i −8.00000 0 10.0000
541.2 1.00000 1.73205i 0 −2.00000 3.46410i 2.50000 + 4.33013i 0 15.1267 26.2002i −8.00000 0 10.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 810.4.e.be 4
3.b odd 2 1 810.4.e.ba 4
9.c even 3 1 810.4.a.h 2
9.c even 3 1 inner 810.4.e.be 4
9.d odd 6 1 810.4.a.n yes 2
9.d odd 6 1 810.4.e.ba 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
810.4.a.h 2 9.c even 3 1
810.4.a.n yes 2 9.d odd 6 1
810.4.e.ba 4 3.b odd 2 1
810.4.e.ba 4 9.d odd 6 1
810.4.e.be 4 1.a even 1 1 trivial
810.4.e.be 4 9.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(810, [\chi])\):

\( T_{7}^{4} - 5T_{7}^{3} + 789T_{7}^{2} + 3820T_{7} + 583696 \) Copy content Toggle raw display
\( T_{11}^{4} - 51T_{11}^{3} + 2721T_{11}^{2} + 6120T_{11} + 14400 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 2 T + 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} - 5 T + 25)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} - 5 T^{3} + \cdots + 583696 \) Copy content Toggle raw display
$11$ \( T^{4} - 51 T^{3} + \cdots + 14400 \) Copy content Toggle raw display
$13$ \( T^{4} + 19 T^{3} + \cdots + 462400 \) Copy content Toggle raw display
$17$ \( (T^{2} + 66 T - 1992)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 32 T - 2825)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 9 T^{3} + \cdots + 562500 \) Copy content Toggle raw display
$29$ \( T^{4} - 255 T^{3} + \cdots + 9000000 \) Copy content Toggle raw display
$31$ \( T^{4} + 121 T^{3} + \cdots + 243235216 \) Copy content Toggle raw display
$37$ \( (T^{2} - 160 T - 104516)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 180 T^{3} + \cdots + 385297641 \) Copy content Toggle raw display
$43$ \( T^{4} - 122 T^{3} + \cdots + 409600 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 8287917444 \) Copy content Toggle raw display
$53$ \( (T^{2} + 771 T + 110868)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 9798030225 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 7368505600 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 247900426816 \) Copy content Toggle raw display
$71$ \( (T^{2} + 1821 T + 822078)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 766 T - 102872)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 1774628951104 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 245369641104 \) Copy content Toggle raw display
$89$ \( (T^{2} + 1749 T + 757818)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 8765578691584 \) Copy content Toggle raw display
show more
show less