Properties

Label 810.4.e.k.541.1
Level $810$
Weight $4$
Character 810.541
Analytic conductor $47.792$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [810,4,Mod(271,810)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(810, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("810.271");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 810.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.7915471046\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 270)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 541.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 810.541
Dual form 810.4.e.k.271.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.73205i) q^{2} +(-2.00000 - 3.46410i) q^{4} +(2.50000 + 4.33013i) q^{5} +(11.0000 - 19.0526i) q^{7} +8.00000 q^{8} -10.0000 q^{10} +(6.00000 - 10.3923i) q^{11} +(-19.0000 - 32.9090i) q^{13} +(22.0000 + 38.1051i) q^{14} +(-8.00000 + 13.8564i) q^{16} -105.000 q^{17} -157.000 q^{19} +(10.0000 - 17.3205i) q^{20} +(12.0000 + 20.7846i) q^{22} +(58.5000 + 101.325i) q^{23} +(-12.5000 + 21.6506i) q^{25} +76.0000 q^{26} -88.0000 q^{28} +(-33.0000 + 57.1577i) q^{29} +(12.5000 + 21.6506i) q^{31} +(-16.0000 - 27.7128i) q^{32} +(105.000 - 181.865i) q^{34} +110.000 q^{35} +314.000 q^{37} +(157.000 - 271.932i) q^{38} +(20.0000 + 34.6410i) q^{40} +(252.000 + 436.477i) q^{41} +(-190.000 + 329.090i) q^{43} -48.0000 q^{44} -234.000 q^{46} +(126.000 - 218.238i) q^{47} +(-70.5000 - 122.110i) q^{49} +(-25.0000 - 43.3013i) q^{50} +(-76.0000 + 131.636i) q^{52} +3.00000 q^{53} +60.0000 q^{55} +(88.0000 - 152.420i) q^{56} +(-66.0000 - 114.315i) q^{58} +(159.000 + 275.396i) q^{59} +(-146.500 + 253.745i) q^{61} -50.0000 q^{62} +64.0000 q^{64} +(95.0000 - 164.545i) q^{65} +(161.000 + 278.860i) q^{67} +(210.000 + 363.731i) q^{68} +(-110.000 + 190.526i) q^{70} -120.000 q^{71} +44.0000 q^{73} +(-314.000 + 543.864i) q^{74} +(314.000 + 543.864i) q^{76} +(-132.000 - 228.631i) q^{77} +(-458.500 + 794.145i) q^{79} -80.0000 q^{80} -1008.00 q^{82} +(-154.500 + 267.602i) q^{83} +(-262.500 - 454.663i) q^{85} +(-380.000 - 658.179i) q^{86} +(48.0000 - 83.1384i) q^{88} +1272.00 q^{89} -836.000 q^{91} +(234.000 - 405.300i) q^{92} +(252.000 + 436.477i) q^{94} +(-392.500 - 679.830i) q^{95} +(-664.000 + 1150.08i) q^{97} +282.000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 4 q^{4} + 5 q^{5} + 22 q^{7} + 16 q^{8} - 20 q^{10} + 12 q^{11} - 38 q^{13} + 44 q^{14} - 16 q^{16} - 210 q^{17} - 314 q^{19} + 20 q^{20} + 24 q^{22} + 117 q^{23} - 25 q^{25} + 152 q^{26}+ \cdots + 564 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/810\mathbb{Z}\right)^\times\).

\(n\) \(487\) \(731\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 + 1.73205i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −2.00000 3.46410i −0.250000 0.433013i
\(5\) 2.50000 + 4.33013i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) 11.0000 19.0526i 0.593944 1.02874i −0.399751 0.916624i \(-0.630903\pi\)
0.993695 0.112118i \(-0.0357633\pi\)
\(8\) 8.00000 0.353553
\(9\) 0 0
\(10\) −10.0000 −0.316228
\(11\) 6.00000 10.3923i 0.164461 0.284854i −0.772003 0.635619i \(-0.780745\pi\)
0.936464 + 0.350765i \(0.114078\pi\)
\(12\) 0 0
\(13\) −19.0000 32.9090i −0.405358 0.702100i 0.589005 0.808129i \(-0.299520\pi\)
−0.994363 + 0.106029i \(0.966186\pi\)
\(14\) 22.0000 + 38.1051i 0.419982 + 0.727430i
\(15\) 0 0
\(16\) −8.00000 + 13.8564i −0.125000 + 0.216506i
\(17\) −105.000 −1.49801 −0.749007 0.662562i \(-0.769469\pi\)
−0.749007 + 0.662562i \(0.769469\pi\)
\(18\) 0 0
\(19\) −157.000 −1.89570 −0.947849 0.318719i \(-0.896747\pi\)
−0.947849 + 0.318719i \(0.896747\pi\)
\(20\) 10.0000 17.3205i 0.111803 0.193649i
\(21\) 0 0
\(22\) 12.0000 + 20.7846i 0.116291 + 0.201422i
\(23\) 58.5000 + 101.325i 0.530352 + 0.918596i 0.999373 + 0.0354094i \(0.0112735\pi\)
−0.469021 + 0.883187i \(0.655393\pi\)
\(24\) 0 0
\(25\) −12.5000 + 21.6506i −0.100000 + 0.173205i
\(26\) 76.0000 0.573263
\(27\) 0 0
\(28\) −88.0000 −0.593944
\(29\) −33.0000 + 57.1577i −0.211308 + 0.365997i −0.952124 0.305711i \(-0.901106\pi\)
0.740816 + 0.671708i \(0.234439\pi\)
\(30\) 0 0
\(31\) 12.5000 + 21.6506i 0.0724215 + 0.125438i 0.899962 0.435968i \(-0.143594\pi\)
−0.827541 + 0.561406i \(0.810261\pi\)
\(32\) −16.0000 27.7128i −0.0883883 0.153093i
\(33\) 0 0
\(34\) 105.000 181.865i 0.529628 0.917343i
\(35\) 110.000 0.531240
\(36\) 0 0
\(37\) 314.000 1.39517 0.697585 0.716502i \(-0.254258\pi\)
0.697585 + 0.716502i \(0.254258\pi\)
\(38\) 157.000 271.932i 0.670231 1.16087i
\(39\) 0 0
\(40\) 20.0000 + 34.6410i 0.0790569 + 0.136931i
\(41\) 252.000 + 436.477i 0.959897 + 1.66259i 0.722741 + 0.691119i \(0.242882\pi\)
0.237157 + 0.971471i \(0.423785\pi\)
\(42\) 0 0
\(43\) −190.000 + 329.090i −0.673831 + 1.16711i 0.302978 + 0.952997i \(0.402019\pi\)
−0.976809 + 0.214112i \(0.931314\pi\)
\(44\) −48.0000 −0.164461
\(45\) 0 0
\(46\) −234.000 −0.750031
\(47\) 126.000 218.238i 0.391042 0.677305i −0.601545 0.798839i \(-0.705448\pi\)
0.992587 + 0.121534i \(0.0387813\pi\)
\(48\) 0 0
\(49\) −70.5000 122.110i −0.205539 0.356005i
\(50\) −25.0000 43.3013i −0.0707107 0.122474i
\(51\) 0 0
\(52\) −76.0000 + 131.636i −0.202679 + 0.351050i
\(53\) 3.00000 0.00777513 0.00388756 0.999992i \(-0.498763\pi\)
0.00388756 + 0.999992i \(0.498763\pi\)
\(54\) 0 0
\(55\) 60.0000 0.147098
\(56\) 88.0000 152.420i 0.209991 0.363715i
\(57\) 0 0
\(58\) −66.0000 114.315i −0.149418 0.258799i
\(59\) 159.000 + 275.396i 0.350848 + 0.607687i 0.986398 0.164373i \(-0.0525600\pi\)
−0.635550 + 0.772060i \(0.719227\pi\)
\(60\) 0 0
\(61\) −146.500 + 253.745i −0.307498 + 0.532603i −0.977814 0.209473i \(-0.932825\pi\)
0.670316 + 0.742076i \(0.266159\pi\)
\(62\) −50.0000 −0.102419
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 95.0000 164.545i 0.181282 0.313989i
\(66\) 0 0
\(67\) 161.000 + 278.860i 0.293571 + 0.508480i 0.974652 0.223728i \(-0.0718228\pi\)
−0.681080 + 0.732209i \(0.738490\pi\)
\(68\) 210.000 + 363.731i 0.374504 + 0.648659i
\(69\) 0 0
\(70\) −110.000 + 190.526i −0.187822 + 0.325317i
\(71\) −120.000 −0.200583 −0.100291 0.994958i \(-0.531978\pi\)
−0.100291 + 0.994958i \(0.531978\pi\)
\(72\) 0 0
\(73\) 44.0000 0.0705453 0.0352727 0.999378i \(-0.488770\pi\)
0.0352727 + 0.999378i \(0.488770\pi\)
\(74\) −314.000 + 543.864i −0.493267 + 0.854364i
\(75\) 0 0
\(76\) 314.000 + 543.864i 0.473925 + 0.820862i
\(77\) −132.000 228.631i −0.195361 0.338375i
\(78\) 0 0
\(79\) −458.500 + 794.145i −0.652978 + 1.13099i 0.329418 + 0.944184i \(0.393147\pi\)
−0.982397 + 0.186807i \(0.940186\pi\)
\(80\) −80.0000 −0.111803
\(81\) 0 0
\(82\) −1008.00 −1.35750
\(83\) −154.500 + 267.602i −0.204320 + 0.353893i −0.949916 0.312506i \(-0.898832\pi\)
0.745596 + 0.666399i \(0.232165\pi\)
\(84\) 0 0
\(85\) −262.500 454.663i −0.334966 0.580178i
\(86\) −380.000 658.179i −0.476470 0.825271i
\(87\) 0 0
\(88\) 48.0000 83.1384i 0.0581456 0.100711i
\(89\) 1272.00 1.51496 0.757482 0.652856i \(-0.226430\pi\)
0.757482 + 0.652856i \(0.226430\pi\)
\(90\) 0 0
\(91\) −836.000 −0.963040
\(92\) 234.000 405.300i 0.265176 0.459298i
\(93\) 0 0
\(94\) 252.000 + 436.477i 0.276509 + 0.478927i
\(95\) −392.500 679.830i −0.423891 0.734201i
\(96\) 0 0
\(97\) −664.000 + 1150.08i −0.695041 + 1.20385i 0.275126 + 0.961408i \(0.411281\pi\)
−0.970167 + 0.242438i \(0.922053\pi\)
\(98\) 282.000 0.290677
\(99\) 0 0
\(100\) 100.000 0.100000
\(101\) 246.000 426.084i 0.242356 0.419772i −0.719029 0.694980i \(-0.755413\pi\)
0.961385 + 0.275208i \(0.0887466\pi\)
\(102\) 0 0
\(103\) −274.000 474.582i −0.262117 0.453999i 0.704687 0.709518i \(-0.251087\pi\)
−0.966804 + 0.255518i \(0.917754\pi\)
\(104\) −152.000 263.272i −0.143316 0.248230i
\(105\) 0 0
\(106\) −3.00000 + 5.19615i −0.00274892 + 0.00476127i
\(107\) 732.000 0.661356 0.330678 0.943744i \(-0.392723\pi\)
0.330678 + 0.943744i \(0.392723\pi\)
\(108\) 0 0
\(109\) −907.000 −0.797017 −0.398508 0.917165i \(-0.630472\pi\)
−0.398508 + 0.917165i \(0.630472\pi\)
\(110\) −60.0000 + 103.923i −0.0520071 + 0.0900789i
\(111\) 0 0
\(112\) 176.000 + 304.841i 0.148486 + 0.257185i
\(113\) 771.000 + 1335.41i 0.641855 + 1.11172i 0.985018 + 0.172449i \(0.0551681\pi\)
−0.343164 + 0.939276i \(0.611499\pi\)
\(114\) 0 0
\(115\) −292.500 + 506.625i −0.237181 + 0.410809i
\(116\) 264.000 0.211308
\(117\) 0 0
\(118\) −636.000 −0.496174
\(119\) −1155.00 + 2000.52i −0.889737 + 1.54107i
\(120\) 0 0
\(121\) 593.500 + 1027.97i 0.445905 + 0.772331i
\(122\) −293.000 507.491i −0.217434 0.376607i
\(123\) 0 0
\(124\) 50.0000 86.6025i 0.0362107 0.0627189i
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) −2554.00 −1.78449 −0.892247 0.451547i \(-0.850872\pi\)
−0.892247 + 0.451547i \(0.850872\pi\)
\(128\) −64.0000 + 110.851i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 190.000 + 329.090i 0.128185 + 0.222024i
\(131\) 75.0000 + 129.904i 0.0500212 + 0.0866393i 0.889952 0.456054i \(-0.150738\pi\)
−0.839931 + 0.542694i \(0.817404\pi\)
\(132\) 0 0
\(133\) −1727.00 + 2991.25i −1.12594 + 1.95018i
\(134\) −644.000 −0.415173
\(135\) 0 0
\(136\) −840.000 −0.529628
\(137\) −826.500 + 1431.54i −0.515421 + 0.892735i 0.484419 + 0.874836i \(0.339031\pi\)
−0.999840 + 0.0178990i \(0.994302\pi\)
\(138\) 0 0
\(139\) −562.000 973.413i −0.342937 0.593984i 0.642040 0.766671i \(-0.278088\pi\)
−0.984977 + 0.172687i \(0.944755\pi\)
\(140\) −220.000 381.051i −0.132810 0.230034i
\(141\) 0 0
\(142\) 120.000 207.846i 0.0709167 0.122831i
\(143\) −456.000 −0.266662
\(144\) 0 0
\(145\) −330.000 −0.189000
\(146\) −44.0000 + 76.2102i −0.0249415 + 0.0432000i
\(147\) 0 0
\(148\) −628.000 1087.73i −0.348792 0.604126i
\(149\) −804.000 1392.57i −0.442055 0.765662i 0.555787 0.831325i \(-0.312417\pi\)
−0.997842 + 0.0656627i \(0.979084\pi\)
\(150\) 0 0
\(151\) 1244.00 2154.67i 0.670432 1.16122i −0.307349 0.951597i \(-0.599442\pi\)
0.977782 0.209626i \(-0.0672247\pi\)
\(152\) −1256.00 −0.670231
\(153\) 0 0
\(154\) 528.000 0.276282
\(155\) −62.5000 + 108.253i −0.0323879 + 0.0560974i
\(156\) 0 0
\(157\) 1484.00 + 2570.36i 0.754370 + 1.30661i 0.945687 + 0.325079i \(0.105391\pi\)
−0.191317 + 0.981528i \(0.561276\pi\)
\(158\) −917.000 1588.29i −0.461725 0.799732i
\(159\) 0 0
\(160\) 80.0000 138.564i 0.0395285 0.0684653i
\(161\) 2574.00 1.26000
\(162\) 0 0
\(163\) 3170.00 1.52327 0.761637 0.648004i \(-0.224396\pi\)
0.761637 + 0.648004i \(0.224396\pi\)
\(164\) 1008.00 1745.91i 0.479949 0.831295i
\(165\) 0 0
\(166\) −309.000 535.204i −0.144476 0.250240i
\(167\) −163.500 283.190i −0.0757605 0.131221i 0.825656 0.564174i \(-0.190805\pi\)
−0.901417 + 0.432952i \(0.857472\pi\)
\(168\) 0 0
\(169\) 376.500 652.117i 0.171370 0.296822i
\(170\) 1050.00 0.473714
\(171\) 0 0
\(172\) 1520.00 0.673831
\(173\) −652.500 + 1130.16i −0.286755 + 0.496675i −0.973033 0.230665i \(-0.925910\pi\)
0.686278 + 0.727339i \(0.259243\pi\)
\(174\) 0 0
\(175\) 275.000 + 476.314i 0.118789 + 0.205748i
\(176\) 96.0000 + 166.277i 0.0411152 + 0.0712136i
\(177\) 0 0
\(178\) −1272.00 + 2203.17i −0.535620 + 0.927722i
\(179\) −4044.00 −1.68862 −0.844309 0.535856i \(-0.819989\pi\)
−0.844309 + 0.535856i \(0.819989\pi\)
\(180\) 0 0
\(181\) −1051.00 −0.431603 −0.215802 0.976437i \(-0.569236\pi\)
−0.215802 + 0.976437i \(0.569236\pi\)
\(182\) 836.000 1447.99i 0.340486 0.589739i
\(183\) 0 0
\(184\) 468.000 + 810.600i 0.187508 + 0.324773i
\(185\) 785.000 + 1359.66i 0.311969 + 0.540347i
\(186\) 0 0
\(187\) −630.000 + 1091.19i −0.246365 + 0.426716i
\(188\) −1008.00 −0.391042
\(189\) 0 0
\(190\) 1570.00 0.599472
\(191\) 1299.00 2249.93i 0.492106 0.852353i −0.507852 0.861444i \(-0.669560\pi\)
0.999959 + 0.00909077i \(0.00289372\pi\)
\(192\) 0 0
\(193\) −2185.00 3784.53i −0.814921 1.41148i −0.909385 0.415956i \(-0.863447\pi\)
0.0944637 0.995528i \(-0.469886\pi\)
\(194\) −1328.00 2300.16i −0.491468 0.851248i
\(195\) 0 0
\(196\) −282.000 + 488.438i −0.102770 + 0.178002i
\(197\) −2943.00 −1.06437 −0.532183 0.846629i \(-0.678628\pi\)
−0.532183 + 0.846629i \(0.678628\pi\)
\(198\) 0 0
\(199\) −4768.00 −1.69847 −0.849233 0.528019i \(-0.822935\pi\)
−0.849233 + 0.528019i \(0.822935\pi\)
\(200\) −100.000 + 173.205i −0.0353553 + 0.0612372i
\(201\) 0 0
\(202\) 492.000 + 852.169i 0.171371 + 0.296824i
\(203\) 726.000 + 1257.47i 0.251011 + 0.434764i
\(204\) 0 0
\(205\) −1260.00 + 2182.38i −0.429279 + 0.743533i
\(206\) 1096.00 0.370689
\(207\) 0 0
\(208\) 608.000 0.202679
\(209\) −942.000 + 1631.59i −0.311768 + 0.539998i
\(210\) 0 0
\(211\) 633.500 + 1097.25i 0.206692 + 0.358000i 0.950670 0.310203i \(-0.100397\pi\)
−0.743979 + 0.668203i \(0.767064\pi\)
\(212\) −6.00000 10.3923i −0.00194378 0.00336673i
\(213\) 0 0
\(214\) −732.000 + 1267.86i −0.233825 + 0.404996i
\(215\) −1900.00 −0.602693
\(216\) 0 0
\(217\) 550.000 0.172057
\(218\) 907.000 1570.97i 0.281788 0.488071i
\(219\) 0 0
\(220\) −120.000 207.846i −0.0367745 0.0636954i
\(221\) 1995.00 + 3455.44i 0.607232 + 1.05176i
\(222\) 0 0
\(223\) 1493.00 2585.95i 0.448335 0.776539i −0.549943 0.835202i \(-0.685351\pi\)
0.998278 + 0.0586635i \(0.0186839\pi\)
\(224\) −704.000 −0.209991
\(225\) 0 0
\(226\) −3084.00 −0.907720
\(227\) −2704.50 + 4684.33i −0.790766 + 1.36965i 0.134727 + 0.990883i \(0.456984\pi\)
−0.925493 + 0.378765i \(0.876349\pi\)
\(228\) 0 0
\(229\) −2165.50 3750.76i −0.624892 1.08234i −0.988562 0.150817i \(-0.951810\pi\)
0.363670 0.931528i \(-0.381524\pi\)
\(230\) −585.000 1013.25i −0.167712 0.290486i
\(231\) 0 0
\(232\) −264.000 + 457.261i −0.0747088 + 0.129399i
\(233\) 2586.00 0.727101 0.363550 0.931575i \(-0.381564\pi\)
0.363550 + 0.931575i \(0.381564\pi\)
\(234\) 0 0
\(235\) 1260.00 0.349759
\(236\) 636.000 1101.58i 0.175424 0.303843i
\(237\) 0 0
\(238\) −2310.00 4001.04i −0.629139 1.08970i
\(239\) −255.000 441.673i −0.0690150 0.119537i 0.829453 0.558577i \(-0.188652\pi\)
−0.898468 + 0.439039i \(0.855319\pi\)
\(240\) 0 0
\(241\) 102.500 177.535i 0.0273967 0.0474525i −0.852002 0.523539i \(-0.824612\pi\)
0.879399 + 0.476086i \(0.157945\pi\)
\(242\) −2374.00 −0.630605
\(243\) 0 0
\(244\) 1172.00 0.307498
\(245\) 352.500 610.548i 0.0919200 0.159210i
\(246\) 0 0
\(247\) 2983.00 + 5166.71i 0.768436 + 1.33097i
\(248\) 100.000 + 173.205i 0.0256049 + 0.0443489i
\(249\) 0 0
\(250\) 125.000 216.506i 0.0316228 0.0547723i
\(251\) −4680.00 −1.17689 −0.588444 0.808538i \(-0.700259\pi\)
−0.588444 + 0.808538i \(0.700259\pi\)
\(252\) 0 0
\(253\) 1404.00 0.348888
\(254\) 2554.00 4423.66i 0.630914 1.09278i
\(255\) 0 0
\(256\) −128.000 221.703i −0.0312500 0.0541266i
\(257\) 3079.50 + 5333.85i 0.747447 + 1.29462i 0.949043 + 0.315148i \(0.102054\pi\)
−0.201595 + 0.979469i \(0.564613\pi\)
\(258\) 0 0
\(259\) 3454.00 5982.50i 0.828653 1.43527i
\(260\) −760.000 −0.181282
\(261\) 0 0
\(262\) −300.000 −0.0707407
\(263\) 3120.00 5404.00i 0.731511 1.26701i −0.224726 0.974422i \(-0.572149\pi\)
0.956237 0.292593i \(-0.0945180\pi\)
\(264\) 0 0
\(265\) 7.50000 + 12.9904i 0.00173857 + 0.00301129i
\(266\) −3454.00 5982.50i −0.796159 1.37899i
\(267\) 0 0
\(268\) 644.000 1115.44i 0.146786 0.254240i
\(269\) −7758.00 −1.75841 −0.879207 0.476439i \(-0.841927\pi\)
−0.879207 + 0.476439i \(0.841927\pi\)
\(270\) 0 0
\(271\) −7345.00 −1.64641 −0.823205 0.567745i \(-0.807816\pi\)
−0.823205 + 0.567745i \(0.807816\pi\)
\(272\) 840.000 1454.92i 0.187252 0.324330i
\(273\) 0 0
\(274\) −1653.00 2863.08i −0.364458 0.631259i
\(275\) 150.000 + 259.808i 0.0328921 + 0.0569709i
\(276\) 0 0
\(277\) 1502.00 2601.54i 0.325799 0.564301i −0.655874 0.754870i \(-0.727700\pi\)
0.981674 + 0.190569i \(0.0610333\pi\)
\(278\) 2248.00 0.484986
\(279\) 0 0
\(280\) 880.000 0.187822
\(281\) −1023.00 + 1771.89i −0.217178 + 0.376164i −0.953944 0.299984i \(-0.903019\pi\)
0.736766 + 0.676148i \(0.236352\pi\)
\(282\) 0 0
\(283\) 2744.00 + 4752.75i 0.576374 + 0.998309i 0.995891 + 0.0905616i \(0.0288662\pi\)
−0.419517 + 0.907748i \(0.637800\pi\)
\(284\) 240.000 + 415.692i 0.0501457 + 0.0868549i
\(285\) 0 0
\(286\) 456.000 789.815i 0.0942792 0.163296i
\(287\) 11088.0 2.28050
\(288\) 0 0
\(289\) 6112.00 1.24405
\(290\) 330.000 571.577i 0.0668216 0.115738i
\(291\) 0 0
\(292\) −88.0000 152.420i −0.0176363 0.0305470i
\(293\) −166.500 288.386i −0.0331981 0.0575007i 0.848949 0.528475i \(-0.177236\pi\)
−0.882147 + 0.470974i \(0.843903\pi\)
\(294\) 0 0
\(295\) −795.000 + 1376.98i −0.156904 + 0.271766i
\(296\) 2512.00 0.493267
\(297\) 0 0
\(298\) 3216.00 0.625161
\(299\) 2223.00 3850.35i 0.429965 0.744720i
\(300\) 0 0
\(301\) 4180.00 + 7239.97i 0.800436 + 1.38640i
\(302\) 2488.00 + 4309.34i 0.474067 + 0.821109i
\(303\) 0 0
\(304\) 1256.00 2175.46i 0.236962 0.410431i
\(305\) −1465.00 −0.275035
\(306\) 0 0
\(307\) 2918.00 0.542472 0.271236 0.962513i \(-0.412568\pi\)
0.271236 + 0.962513i \(0.412568\pi\)
\(308\) −528.000 + 914.523i −0.0976805 + 0.169188i
\(309\) 0 0
\(310\) −125.000 216.506i −0.0229017 0.0396669i
\(311\) 2877.00 + 4983.11i 0.524565 + 0.908573i 0.999591 + 0.0286014i \(0.00910534\pi\)
−0.475026 + 0.879972i \(0.657561\pi\)
\(312\) 0 0
\(313\) −1684.00 + 2916.77i −0.304106 + 0.526728i −0.977062 0.212955i \(-0.931691\pi\)
0.672956 + 0.739683i \(0.265025\pi\)
\(314\) −5936.00 −1.06684
\(315\) 0 0
\(316\) 3668.00 0.652978
\(317\) −1435.50 + 2486.36i −0.254340 + 0.440529i −0.964716 0.263293i \(-0.915191\pi\)
0.710376 + 0.703822i \(0.248525\pi\)
\(318\) 0 0
\(319\) 396.000 + 685.892i 0.0695039 + 0.120384i
\(320\) 160.000 + 277.128i 0.0279508 + 0.0484123i
\(321\) 0 0
\(322\) −2574.00 + 4458.30i −0.445476 + 0.771588i
\(323\) 16485.0 2.83978
\(324\) 0 0
\(325\) 950.000 0.162143
\(326\) −3170.00 + 5490.60i −0.538558 + 0.932811i
\(327\) 0 0
\(328\) 2016.00 + 3491.81i 0.339375 + 0.587815i
\(329\) −2772.00 4801.24i −0.464515 0.804563i
\(330\) 0 0
\(331\) 5270.00 9127.91i 0.875122 1.51576i 0.0184894 0.999829i \(-0.494114\pi\)
0.856633 0.515927i \(-0.172552\pi\)
\(332\) 1236.00 0.204320
\(333\) 0 0
\(334\) 654.000 0.107142
\(335\) −805.000 + 1394.30i −0.131289 + 0.227399i
\(336\) 0 0
\(337\) −2503.00 4335.32i −0.404591 0.700772i 0.589683 0.807635i \(-0.299253\pi\)
−0.994274 + 0.106863i \(0.965919\pi\)
\(338\) 753.000 + 1304.23i 0.121177 + 0.209885i
\(339\) 0 0
\(340\) −1050.00 + 1818.65i −0.167483 + 0.290089i
\(341\) 300.000 0.0476420
\(342\) 0 0
\(343\) 4444.00 0.699573
\(344\) −1520.00 + 2632.72i −0.238235 + 0.412635i
\(345\) 0 0
\(346\) −1305.00 2260.33i −0.202767 0.351202i
\(347\) 18.0000 + 31.1769i 0.00278470 + 0.00482324i 0.867414 0.497586i \(-0.165780\pi\)
−0.864630 + 0.502410i \(0.832447\pi\)
\(348\) 0 0
\(349\) 3357.50 5815.36i 0.514965 0.891946i −0.484884 0.874578i \(-0.661138\pi\)
0.999849 0.0173674i \(-0.00552849\pi\)
\(350\) −1100.00 −0.167993
\(351\) 0 0
\(352\) −384.000 −0.0581456
\(353\) −6411.00 + 11104.2i −0.966638 + 1.67427i −0.261488 + 0.965207i \(0.584213\pi\)
−0.705149 + 0.709059i \(0.749120\pi\)
\(354\) 0 0
\(355\) −300.000 519.615i −0.0448517 0.0776854i
\(356\) −2544.00 4406.34i −0.378741 0.655998i
\(357\) 0 0
\(358\) 4044.00 7004.41i 0.597017 1.03406i
\(359\) 5478.00 0.805342 0.402671 0.915345i \(-0.368082\pi\)
0.402671 + 0.915345i \(0.368082\pi\)
\(360\) 0 0
\(361\) 17790.0 2.59367
\(362\) 1051.00 1820.39i 0.152595 0.264302i
\(363\) 0 0
\(364\) 1672.00 + 2895.99i 0.240760 + 0.417008i
\(365\) 110.000 + 190.526i 0.0157744 + 0.0273221i
\(366\) 0 0
\(367\) 1223.00 2118.30i 0.173951 0.301292i −0.765847 0.643023i \(-0.777680\pi\)
0.939798 + 0.341731i \(0.111013\pi\)
\(368\) −1872.00 −0.265176
\(369\) 0 0
\(370\) −3140.00 −0.441191
\(371\) 33.0000 57.1577i 0.00461799 0.00799859i
\(372\) 0 0
\(373\) −5848.00 10129.0i −0.811791 1.40606i −0.911610 0.411057i \(-0.865160\pi\)
0.0998188 0.995006i \(-0.468174\pi\)
\(374\) −1260.00 2182.38i −0.174206 0.301734i
\(375\) 0 0
\(376\) 1008.00 1745.91i 0.138254 0.239464i
\(377\) 2508.00 0.342622
\(378\) 0 0
\(379\) −2095.00 −0.283939 −0.141970 0.989871i \(-0.545344\pi\)
−0.141970 + 0.989871i \(0.545344\pi\)
\(380\) −1570.00 + 2719.32i −0.211946 + 0.367100i
\(381\) 0 0
\(382\) 2598.00 + 4499.87i 0.347972 + 0.602705i
\(383\) 5656.50 + 9797.35i 0.754657 + 1.30710i 0.945545 + 0.325492i \(0.105530\pi\)
−0.190888 + 0.981612i \(0.561137\pi\)
\(384\) 0 0
\(385\) 660.000 1143.15i 0.0873681 0.151326i
\(386\) 8740.00 1.15247
\(387\) 0 0
\(388\) 5312.00 0.695041
\(389\) −1062.00 + 1839.44i −0.138420 + 0.239751i −0.926899 0.375311i \(-0.877536\pi\)
0.788478 + 0.615062i \(0.210869\pi\)
\(390\) 0 0
\(391\) −6142.50 10639.1i −0.794475 1.37607i
\(392\) −564.000 976.877i −0.0726691 0.125867i
\(393\) 0 0
\(394\) 2943.00 5097.43i 0.376310 0.651788i
\(395\) −4585.00 −0.584041
\(396\) 0 0
\(397\) 6410.00 0.810349 0.405175 0.914239i \(-0.367211\pi\)
0.405175 + 0.914239i \(0.367211\pi\)
\(398\) 4768.00 8258.42i 0.600498 1.04009i
\(399\) 0 0
\(400\) −200.000 346.410i −0.0250000 0.0433013i
\(401\) 4941.00 + 8558.06i 0.615316 + 1.06576i 0.990329 + 0.138739i \(0.0443050\pi\)
−0.375013 + 0.927020i \(0.622362\pi\)
\(402\) 0 0
\(403\) 475.000 822.724i 0.0587132 0.101694i
\(404\) −1968.00 −0.242356
\(405\) 0 0
\(406\) −2904.00 −0.354983
\(407\) 1884.00 3263.18i 0.229451 0.397420i
\(408\) 0 0
\(409\) −2948.50 5106.95i −0.356464 0.617414i 0.630903 0.775862i \(-0.282685\pi\)
−0.987367 + 0.158447i \(0.949351\pi\)
\(410\) −2520.00 4364.77i −0.303546 0.525757i
\(411\) 0 0
\(412\) −1096.00 + 1898.33i −0.131058 + 0.227000i
\(413\) 6996.00 0.833537
\(414\) 0 0
\(415\) −1545.00 −0.182750
\(416\) −608.000 + 1053.09i −0.0716578 + 0.124115i
\(417\) 0 0
\(418\) −1884.00 3263.18i −0.220453 0.381836i
\(419\) −3426.00 5934.01i −0.399454 0.691874i 0.594205 0.804314i \(-0.297467\pi\)
−0.993659 + 0.112440i \(0.964133\pi\)
\(420\) 0 0
\(421\) −161.500 + 279.726i −0.0186960 + 0.0323825i −0.875222 0.483721i \(-0.839285\pi\)
0.856526 + 0.516104i \(0.172618\pi\)
\(422\) −2534.00 −0.292306
\(423\) 0 0
\(424\) 24.0000 0.00274892
\(425\) 1312.50 2273.32i 0.149801 0.259464i
\(426\) 0 0
\(427\) 3223.00 + 5582.40i 0.365274 + 0.632673i
\(428\) −1464.00 2535.72i −0.165339 0.286376i
\(429\) 0 0
\(430\) 1900.00 3290.90i 0.213084 0.369072i
\(431\) 10242.0 1.14464 0.572320 0.820030i \(-0.306044\pi\)
0.572320 + 0.820030i \(0.306044\pi\)
\(432\) 0 0
\(433\) −14398.0 −1.59798 −0.798988 0.601347i \(-0.794631\pi\)
−0.798988 + 0.601347i \(0.794631\pi\)
\(434\) −550.000 + 952.628i −0.0608314 + 0.105363i
\(435\) 0 0
\(436\) 1814.00 + 3141.94i 0.199254 + 0.345118i
\(437\) −9184.50 15908.0i −1.00539 1.74138i
\(438\) 0 0
\(439\) −2039.50 + 3532.52i −0.221731 + 0.384050i −0.955334 0.295529i \(-0.904504\pi\)
0.733603 + 0.679579i \(0.237837\pi\)
\(440\) 480.000 0.0520071
\(441\) 0 0
\(442\) −7980.00 −0.858755
\(443\) −2890.50 + 5006.49i −0.310004 + 0.536943i −0.978363 0.206896i \(-0.933664\pi\)
0.668359 + 0.743839i \(0.266997\pi\)
\(444\) 0 0
\(445\) 3180.00 + 5507.92i 0.338756 + 0.586743i
\(446\) 2986.00 + 5171.90i 0.317021 + 0.549096i
\(447\) 0 0
\(448\) 704.000 1219.36i 0.0742430 0.128593i
\(449\) −15078.0 −1.58480 −0.792400 0.610002i \(-0.791168\pi\)
−0.792400 + 0.610002i \(0.791168\pi\)
\(450\) 0 0
\(451\) 6048.00 0.631462
\(452\) 3084.00 5341.64i 0.320927 0.555862i
\(453\) 0 0
\(454\) −5409.00 9368.66i −0.559156 0.968487i
\(455\) −2090.00 3619.99i −0.215342 0.372984i
\(456\) 0 0
\(457\) −2134.00 + 3696.20i −0.218434 + 0.378339i −0.954329 0.298757i \(-0.903428\pi\)
0.735895 + 0.677095i \(0.236761\pi\)
\(458\) 8662.00 0.883731
\(459\) 0 0
\(460\) 2340.00 0.237181
\(461\) 2817.00 4879.19i 0.284600 0.492942i −0.687912 0.725794i \(-0.741472\pi\)
0.972512 + 0.232852i \(0.0748058\pi\)
\(462\) 0 0
\(463\) −2263.00 3919.63i −0.227150 0.393436i 0.729812 0.683648i \(-0.239607\pi\)
−0.956962 + 0.290212i \(0.906274\pi\)
\(464\) −528.000 914.523i −0.0528271 0.0914993i
\(465\) 0 0
\(466\) −2586.00 + 4479.08i −0.257069 + 0.445257i
\(467\) 969.000 0.0960171 0.0480085 0.998847i \(-0.484713\pi\)
0.0480085 + 0.998847i \(0.484713\pi\)
\(468\) 0 0
\(469\) 7084.00 0.697460
\(470\) −1260.00 + 2182.38i −0.123658 + 0.214183i
\(471\) 0 0
\(472\) 1272.00 + 2203.17i 0.124044 + 0.214850i
\(473\) 2280.00 + 3949.08i 0.221637 + 0.383887i
\(474\) 0 0
\(475\) 1962.50 3399.15i 0.189570 0.328345i
\(476\) 9240.00 0.889737
\(477\) 0 0
\(478\) 1020.00 0.0976019
\(479\) −4878.00 + 8448.94i −0.465306 + 0.805933i −0.999215 0.0396083i \(-0.987389\pi\)
0.533909 + 0.845542i \(0.320722\pi\)
\(480\) 0 0
\(481\) −5966.00 10333.4i −0.565543 0.979549i
\(482\) 205.000 + 355.070i 0.0193724 + 0.0335540i
\(483\) 0 0
\(484\) 2374.00 4111.89i 0.222953 0.386165i
\(485\) −6640.00 −0.621664
\(486\) 0 0
\(487\) 8768.00 0.815844 0.407922 0.913017i \(-0.366254\pi\)
0.407922 + 0.913017i \(0.366254\pi\)
\(488\) −1172.00 + 2029.96i −0.108717 + 0.188304i
\(489\) 0 0
\(490\) 705.000 + 1221.10i 0.0649973 + 0.112579i
\(491\) 1137.00 + 1969.34i 0.104505 + 0.181008i 0.913536 0.406758i \(-0.133341\pi\)
−0.809031 + 0.587766i \(0.800007\pi\)
\(492\) 0 0
\(493\) 3465.00 6001.56i 0.316543 0.548269i
\(494\) −11932.0 −1.08673
\(495\) 0 0
\(496\) −400.000 −0.0362107
\(497\) −1320.00 + 2286.31i −0.119135 + 0.206348i
\(498\) 0 0
\(499\) 984.500 + 1705.20i 0.0883212 + 0.152977i 0.906802 0.421558i \(-0.138516\pi\)
−0.818480 + 0.574534i \(0.805183\pi\)
\(500\) 250.000 + 433.013i 0.0223607 + 0.0387298i
\(501\) 0 0
\(502\) 4680.00 8106.00i 0.416093 0.720694i
\(503\) −10701.0 −0.948577 −0.474288 0.880370i \(-0.657295\pi\)
−0.474288 + 0.880370i \(0.657295\pi\)
\(504\) 0 0
\(505\) 2460.00 0.216769
\(506\) −1404.00 + 2431.80i −0.123351 + 0.213650i
\(507\) 0 0
\(508\) 5108.00 + 8847.32i 0.446124 + 0.772709i
\(509\) −6210.00 10756.0i −0.540773 0.936646i −0.998860 0.0477388i \(-0.984799\pi\)
0.458087 0.888907i \(-0.348535\pi\)
\(510\) 0 0
\(511\) 484.000 838.313i 0.0419000 0.0725729i
\(512\) 512.000 0.0441942
\(513\) 0 0
\(514\) −12318.0 −1.05705
\(515\) 1370.00 2372.91i 0.117222 0.203035i
\(516\) 0 0
\(517\) −1512.00 2618.86i −0.128622 0.222780i
\(518\) 6908.00 + 11965.0i 0.585946 + 1.01489i
\(519\) 0 0
\(520\) 760.000 1316.36i 0.0640927 0.111012i
\(521\) −18816.0 −1.58223 −0.791117 0.611665i \(-0.790500\pi\)
−0.791117 + 0.611665i \(0.790500\pi\)
\(522\) 0 0
\(523\) −16798.0 −1.40445 −0.702223 0.711957i \(-0.747809\pi\)
−0.702223 + 0.711957i \(0.747809\pi\)
\(524\) 300.000 519.615i 0.0250106 0.0433197i
\(525\) 0 0
\(526\) 6240.00 + 10808.0i 0.517257 + 0.895915i
\(527\) −1312.50 2273.32i −0.108488 0.187907i
\(528\) 0 0
\(529\) −761.000 + 1318.09i −0.0625462 + 0.108333i
\(530\) −30.0000 −0.00245871
\(531\) 0 0
\(532\) 13816.0 1.12594
\(533\) 9576.00 16586.1i 0.778204 1.34789i
\(534\) 0 0
\(535\) 1830.00 + 3169.65i 0.147884 + 0.256142i
\(536\) 1288.00 + 2230.88i 0.103793 + 0.179775i
\(537\) 0 0
\(538\) 7758.00 13437.3i 0.621694 1.07680i
\(539\) −1692.00 −0.135213
\(540\) 0 0
\(541\) −5890.00 −0.468079 −0.234040 0.972227i \(-0.575195\pi\)
−0.234040 + 0.972227i \(0.575195\pi\)
\(542\) 7345.00 12721.9i 0.582094 1.00822i
\(543\) 0 0
\(544\) 1680.00 + 2909.85i 0.132407 + 0.229336i
\(545\) −2267.50 3927.43i −0.178218 0.308683i
\(546\) 0 0
\(547\) −2758.00 + 4777.00i −0.215582 + 0.373400i −0.953453 0.301543i \(-0.902498\pi\)
0.737870 + 0.674943i \(0.235832\pi\)
\(548\) 6612.00 0.515421
\(549\) 0 0
\(550\) −600.000 −0.0465165
\(551\) 5181.00 8973.76i 0.400577 0.693820i
\(552\) 0 0
\(553\) 10087.0 + 17471.2i 0.775665 + 1.34349i
\(554\) 3004.00 + 5203.08i 0.230375 + 0.399021i
\(555\) 0 0
\(556\) −2248.00 + 3893.65i −0.171468 + 0.296992i
\(557\) 4146.00 0.315389 0.157694 0.987488i \(-0.449594\pi\)
0.157694 + 0.987488i \(0.449594\pi\)
\(558\) 0 0
\(559\) 14440.0 1.09257
\(560\) −880.000 + 1524.20i −0.0664050 + 0.115017i
\(561\) 0 0
\(562\) −2046.00 3543.78i −0.153568 0.265988i
\(563\) 10722.0 + 18571.0i 0.802626 + 1.39019i 0.917882 + 0.396853i \(0.129898\pi\)
−0.115256 + 0.993336i \(0.536769\pi\)
\(564\) 0 0
\(565\) −3855.00 + 6677.06i −0.287046 + 0.497178i
\(566\) −10976.0 −0.815116
\(567\) 0 0
\(568\) −960.000 −0.0709167
\(569\) −7389.00 + 12798.1i −0.544399 + 0.942927i 0.454246 + 0.890877i \(0.349909\pi\)
−0.998644 + 0.0520501i \(0.983424\pi\)
\(570\) 0 0
\(571\) −4565.50 7907.68i −0.334606 0.579555i 0.648803 0.760957i \(-0.275270\pi\)
−0.983409 + 0.181401i \(0.941937\pi\)
\(572\) 912.000 + 1579.63i 0.0666654 + 0.115468i
\(573\) 0 0
\(574\) −11088.0 + 19205.0i −0.806279 + 1.39652i
\(575\) −2925.00 −0.212141
\(576\) 0 0
\(577\) −2344.00 −0.169120 −0.0845598 0.996418i \(-0.526948\pi\)
−0.0845598 + 0.996418i \(0.526948\pi\)
\(578\) −6112.00 + 10586.3i −0.439837 + 0.761820i
\(579\) 0 0
\(580\) 660.000 + 1143.15i 0.0472500 + 0.0818394i
\(581\) 3399.00 + 5887.24i 0.242710 + 0.420385i
\(582\) 0 0
\(583\) 18.0000 31.1769i 0.00127870 0.00221478i
\(584\) 352.000 0.0249415
\(585\) 0 0
\(586\) 666.000 0.0469492
\(587\) 13414.5 23234.6i 0.943229 1.63372i 0.183971 0.982932i \(-0.441105\pi\)
0.759258 0.650790i \(-0.225562\pi\)
\(588\) 0 0
\(589\) −1962.50 3399.15i −0.137289 0.237792i
\(590\) −1590.00 2753.96i −0.110948 0.192167i
\(591\) 0 0
\(592\) −2512.00 + 4350.91i −0.174396 + 0.302063i
\(593\) 8181.00 0.566532 0.283266 0.959041i \(-0.408582\pi\)
0.283266 + 0.959041i \(0.408582\pi\)
\(594\) 0 0
\(595\) −11550.0 −0.795805
\(596\) −3216.00 + 5570.28i −0.221028 + 0.382831i
\(597\) 0 0
\(598\) 4446.00 + 7700.70i 0.304031 + 0.526597i
\(599\) −12039.0 20852.2i −0.821202 1.42236i −0.904787 0.425864i \(-0.859970\pi\)
0.0835851 0.996501i \(-0.473363\pi\)
\(600\) 0 0
\(601\) −11282.5 + 19541.9i −0.765762 + 1.32634i 0.174081 + 0.984731i \(0.444304\pi\)
−0.939843 + 0.341607i \(0.889029\pi\)
\(602\) −16720.0 −1.13199
\(603\) 0 0
\(604\) −9952.00 −0.670432
\(605\) −2967.50 + 5139.86i −0.199415 + 0.345397i
\(606\) 0 0
\(607\) 7358.00 + 12744.4i 0.492013 + 0.852192i 0.999958 0.00919795i \(-0.00292784\pi\)
−0.507945 + 0.861390i \(0.669595\pi\)
\(608\) 2512.00 + 4350.91i 0.167558 + 0.290218i
\(609\) 0 0
\(610\) 1465.00 2537.45i 0.0972395 0.168424i
\(611\) −9576.00 −0.634048
\(612\) 0 0
\(613\) −7552.00 −0.497590 −0.248795 0.968556i \(-0.580034\pi\)
−0.248795 + 0.968556i \(0.580034\pi\)
\(614\) −2918.00 + 5054.12i −0.191793 + 0.332195i
\(615\) 0 0
\(616\) −1056.00 1829.05i −0.0690705 0.119634i
\(617\) 1990.50 + 3447.65i 0.129878 + 0.224955i 0.923629 0.383288i \(-0.125208\pi\)
−0.793751 + 0.608242i \(0.791875\pi\)
\(618\) 0 0
\(619\) −6964.00 + 12062.0i −0.452192 + 0.783219i −0.998522 0.0543507i \(-0.982691\pi\)
0.546330 + 0.837570i \(0.316024\pi\)
\(620\) 500.000 0.0323879
\(621\) 0 0
\(622\) −11508.0 −0.741847
\(623\) 13992.0 24234.9i 0.899804 1.55851i
\(624\) 0 0
\(625\) −312.500 541.266i −0.0200000 0.0346410i
\(626\) −3368.00 5833.55i −0.215036 0.372453i
\(627\) 0 0
\(628\) 5936.00 10281.5i 0.377185 0.653304i
\(629\) −32970.0 −2.08998
\(630\) 0 0
\(631\) 18605.0 1.17378 0.586889 0.809668i \(-0.300353\pi\)
0.586889 + 0.809668i \(0.300353\pi\)
\(632\) −3668.00 + 6353.16i −0.230863 + 0.399866i
\(633\) 0 0
\(634\) −2871.00 4972.72i −0.179845 0.311501i
\(635\) −6385.00 11059.1i −0.399025 0.691132i
\(636\) 0 0
\(637\) −2679.00 + 4640.16i −0.166634 + 0.288619i
\(638\) −1584.00 −0.0982934
\(639\) 0 0
\(640\) −640.000 −0.0395285
\(641\) −7464.00 + 12928.0i −0.459922 + 0.796609i −0.998956 0.0456750i \(-0.985456\pi\)
0.539034 + 0.842284i \(0.318789\pi\)
\(642\) 0 0
\(643\) 3041.00 + 5267.17i 0.186509 + 0.323043i 0.944084 0.329705i \(-0.106949\pi\)
−0.757575 + 0.652748i \(0.773616\pi\)
\(644\) −5148.00 8916.60i −0.314999 0.545595i
\(645\) 0 0
\(646\) −16485.0 + 28552.9i −1.00401 + 1.73900i
\(647\) 4875.00 0.296223 0.148111 0.988971i \(-0.452681\pi\)
0.148111 + 0.988971i \(0.452681\pi\)
\(648\) 0 0
\(649\) 3816.00 0.230803
\(650\) −950.000 + 1645.45i −0.0573263 + 0.0992920i
\(651\) 0 0
\(652\) −6340.00 10981.2i −0.380818 0.659597i
\(653\) 2578.50 + 4466.09i 0.154525 + 0.267644i 0.932886 0.360172i \(-0.117282\pi\)
−0.778361 + 0.627817i \(0.783949\pi\)
\(654\) 0 0
\(655\) −375.000 + 649.519i −0.0223702 + 0.0387463i
\(656\) −8064.00 −0.479949
\(657\) 0 0
\(658\) 11088.0 0.656923
\(659\) 753.000 1304.23i 0.0445109 0.0770952i −0.842912 0.538052i \(-0.819160\pi\)
0.887423 + 0.460957i \(0.152494\pi\)
\(660\) 0 0
\(661\) 1193.00 + 2066.34i 0.0702002 + 0.121590i 0.898989 0.437971i \(-0.144303\pi\)
−0.828789 + 0.559562i \(0.810970\pi\)
\(662\) 10540.0 + 18255.8i 0.618805 + 1.07180i
\(663\) 0 0
\(664\) −1236.00 + 2140.81i −0.0722381 + 0.125120i
\(665\) −17270.0 −1.00707
\(666\) 0 0
\(667\) −7722.00 −0.448271
\(668\) −654.000 + 1132.76i −0.0378803 + 0.0656106i
\(669\) 0 0
\(670\) −1610.00 2788.60i −0.0928354 0.160796i
\(671\) 1758.00 + 3044.95i 0.101143 + 0.175185i
\(672\) 0 0
\(673\) −10579.0 + 18323.4i −0.605929 + 1.04950i 0.385974 + 0.922509i \(0.373865\pi\)
−0.991904 + 0.126991i \(0.959468\pi\)
\(674\) 10012.0 0.572178
\(675\) 0 0
\(676\) −3012.00 −0.171370
\(677\) −13413.0 + 23232.0i −0.761453 + 1.31887i 0.180649 + 0.983548i \(0.442180\pi\)
−0.942102 + 0.335327i \(0.891153\pi\)
\(678\) 0 0
\(679\) 14608.0 + 25301.8i 0.825631 + 1.43004i
\(680\) −2100.00 3637.31i −0.118428 0.205124i
\(681\) 0 0
\(682\) −300.000 + 519.615i −0.0168440 + 0.0291746i
\(683\) 32493.0 1.82037 0.910183 0.414206i \(-0.135941\pi\)
0.910183 + 0.414206i \(0.135941\pi\)
\(684\) 0 0
\(685\) −8265.00 −0.461006
\(686\) −4444.00 + 7697.23i −0.247336 + 0.428399i
\(687\) 0 0
\(688\) −3040.00 5265.43i −0.168458 0.291777i
\(689\) −57.0000 98.7269i −0.00315171 0.00545892i
\(690\) 0 0
\(691\) 3765.50 6522.04i 0.207303 0.359059i −0.743561 0.668668i \(-0.766865\pi\)
0.950864 + 0.309609i \(0.100198\pi\)
\(692\) 5220.00 0.286755
\(693\) 0 0
\(694\) −72.0000 −0.00393816
\(695\) 2810.00 4867.06i 0.153366 0.265638i
\(696\) 0 0
\(697\) −26460.0 45830.1i −1.43794 2.49058i
\(698\) 6715.00 + 11630.7i 0.364135 + 0.630701i
\(699\) 0 0
\(700\) 1100.00 1905.26i 0.0593944 0.102874i
\(701\) 24306.0 1.30959 0.654797 0.755805i \(-0.272754\pi\)
0.654797 + 0.755805i \(0.272754\pi\)
\(702\) 0 0
\(703\) −49298.0 −2.64482
\(704\) 384.000 665.108i 0.0205576 0.0356068i
\(705\) 0 0
\(706\) −12822.0 22208.4i −0.683516 1.18388i
\(707\) −5412.00 9373.86i −0.287891 0.498643i
\(708\) 0 0
\(709\) 13727.0 23775.9i 0.727120 1.25941i −0.230975 0.972960i \(-0.574192\pi\)
0.958095 0.286450i \(-0.0924751\pi\)
\(710\) 1200.00 0.0634299
\(711\) 0 0
\(712\) 10176.0 0.535620
\(713\) −1462.50 + 2533.12i −0.0768177 + 0.133052i
\(714\) 0 0
\(715\) −1140.00 1974.54i −0.0596274 0.103278i
\(716\) 8088.00 + 14008.8i 0.422155 + 0.731193i
\(717\) 0 0
\(718\) −5478.00 + 9488.17i −0.284731 + 0.493169i
\(719\) −5334.00 −0.276668 −0.138334 0.990386i \(-0.544175\pi\)
−0.138334 + 0.990386i \(0.544175\pi\)
\(720\) 0 0
\(721\) −12056.0 −0.622731
\(722\) −17790.0 + 30813.2i −0.917002 + 1.58829i
\(723\) 0 0
\(724\) 2102.00 + 3640.77i 0.107901 + 0.186890i
\(725\) −825.000 1428.94i −0.0422617 0.0731994i
\(726\) 0 0
\(727\) −13024.0 + 22558.2i −0.664420 + 1.15081i 0.315022 + 0.949084i \(0.397988\pi\)
−0.979442 + 0.201725i \(0.935345\pi\)
\(728\) −6688.00 −0.340486
\(729\) 0 0
\(730\) −440.000 −0.0223084
\(731\) 19950.0 34554.4i 1.00941 1.74835i
\(732\) 0 0
\(733\) 16568.0 + 28696.6i 0.834861 + 1.44602i 0.894144 + 0.447780i \(0.147785\pi\)
−0.0592827 + 0.998241i \(0.518881\pi\)
\(734\) 2446.00 + 4236.60i 0.123002 + 0.213046i
\(735\) 0 0
\(736\) 1872.00 3242.40i 0.0937539 0.162386i
\(737\) 3864.00 0.193124
\(738\) 0 0
\(739\) −11599.0 −0.577370 −0.288685 0.957424i \(-0.593218\pi\)
−0.288685 + 0.957424i \(0.593218\pi\)
\(740\) 3140.00 5438.64i 0.155985 0.270173i
\(741\) 0 0
\(742\) 66.0000 + 114.315i 0.00326541 + 0.00565586i
\(743\) −13212.0 22883.9i −0.652357 1.12992i −0.982549 0.186002i \(-0.940447\pi\)
0.330192 0.943914i \(-0.392886\pi\)
\(744\) 0 0
\(745\) 4020.00 6962.84i 0.197693 0.342415i
\(746\) 23392.0 1.14805
\(747\) 0 0
\(748\) 5040.00 0.246365
\(749\) 8052.00 13946.5i 0.392809 0.680365i
\(750\) 0 0
\(751\) −6830.50 11830.8i −0.331889 0.574848i 0.650993 0.759083i \(-0.274353\pi\)
−0.982882 + 0.184235i \(0.941019\pi\)
\(752\) 2016.00 + 3491.81i 0.0977606 + 0.169326i
\(753\) 0 0
\(754\) −2508.00 + 4343.98i −0.121135 + 0.209812i
\(755\) 12440.0 0.599653
\(756\) 0 0
\(757\) −22846.0 −1.09690 −0.548449 0.836184i \(-0.684782\pi\)
−0.548449 + 0.836184i \(0.684782\pi\)
\(758\) 2095.00 3628.65i 0.100388 0.173876i
\(759\) 0 0
\(760\) −3140.00 5438.64i −0.149868 0.259579i
\(761\) −10431.0 18067.0i −0.496877 0.860616i 0.503116 0.864219i \(-0.332187\pi\)
−0.999994 + 0.00360230i \(0.998853\pi\)
\(762\) 0 0
\(763\) −9977.00 + 17280.7i −0.473384 + 0.819924i
\(764\) −10392.0 −0.492106
\(765\) 0 0
\(766\) −22626.0 −1.06725
\(767\) 6042.00 10465.1i 0.284438 0.492661i
\(768\) 0 0
\(769\) 11109.5 + 19242.2i 0.520961 + 0.902330i 0.999703 + 0.0243749i \(0.00775955\pi\)
−0.478742 + 0.877956i \(0.658907\pi\)
\(770\) 1320.00 + 2286.31i 0.0617786 + 0.107004i
\(771\) 0 0
\(772\) −8740.00 + 15138.1i −0.407460 + 0.705742i
\(773\) 17619.0 0.819808 0.409904 0.912129i \(-0.365562\pi\)
0.409904 + 0.912129i \(0.365562\pi\)
\(774\) 0 0
\(775\) −625.000 −0.0289686
\(776\) −5312.00 + 9200.65i −0.245734 + 0.425624i
\(777\) 0 0
\(778\) −2124.00 3678.88i −0.0978780 0.169530i
\(779\) −39564.0 68526.9i −1.81968 3.15177i
\(780\) 0 0
\(781\) −720.000 + 1247.08i −0.0329880 + 0.0571369i
\(782\) 24570.0 1.12356
\(783\) 0 0
\(784\) 2256.00 0.102770
\(785\) −7420.00 + 12851.8i −0.337365 + 0.584333i
\(786\) 0 0
\(787\) −7792.00 13496.1i −0.352929 0.611290i 0.633833 0.773470i \(-0.281481\pi\)
−0.986761 + 0.162180i \(0.948147\pi\)
\(788\) 5886.00 + 10194.9i 0.266091 + 0.460884i
\(789\) 0 0
\(790\) 4585.00 7941.45i 0.206490 0.357651i
\(791\) 33924.0 1.52490
\(792\) 0 0
\(793\) 11134.0 0.498588
\(794\) −6410.00 + 11102.4i −0.286502 + 0.496236i
\(795\) 0 0
\(796\) 9536.00 + 16516.8i 0.424616 + 0.735457i
\(797\) 6511.50 + 11278.2i 0.289397 + 0.501250i 0.973666 0.227980i \(-0.0732120\pi\)
−0.684269 + 0.729230i \(0.739879\pi\)
\(798\) 0 0
\(799\) −13230.0 + 22915.0i −0.585787 + 1.01461i
\(800\) 800.000 0.0353553
\(801\) 0 0
\(802\) −19764.0 −0.870188
\(803\) 264.000 457.261i 0.0116019 0.0200951i
\(804\) 0 0
\(805\) 6435.00 + 11145.7i 0.281744 + 0.487995i
\(806\) 950.000 + 1645.45i 0.0415165 + 0.0719087i
\(807\) 0 0
\(808\) 1968.00 3408.68i 0.0856856 0.148412i
\(809\) −25872.0 −1.12436 −0.562182 0.827013i \(-0.690038\pi\)
−0.562182 + 0.827013i \(0.690038\pi\)
\(810\) 0 0
\(811\) 22052.0 0.954809 0.477405 0.878684i \(-0.341578\pi\)
0.477405 + 0.878684i \(0.341578\pi\)
\(812\) 2904.00 5029.88i 0.125505 0.217382i
\(813\) 0 0
\(814\) 3768.00 + 6526.37i 0.162246 + 0.281019i
\(815\) 7925.00 + 13726.5i 0.340614 + 0.589961i
\(816\) 0 0
\(817\) 29830.0 51667.1i 1.27738 2.21249i
\(818\) 11794.0 0.504117
\(819\) 0 0
\(820\) 10080.0 0.429279
\(821\) −957.000 + 1657.57i −0.0406815 + 0.0704625i −0.885649 0.464355i \(-0.846286\pi\)
0.844968 + 0.534817i \(0.179620\pi\)
\(822\) 0 0
\(823\) 5534.00 + 9585.17i 0.234390 + 0.405976i 0.959095 0.283083i \(-0.0913573\pi\)
−0.724705 + 0.689059i \(0.758024\pi\)
\(824\) −2192.00 3796.66i −0.0926723 0.160513i
\(825\) 0 0
\(826\) −6996.00 + 12117.4i −0.294700 + 0.510435i
\(827\) −21405.0 −0.900030 −0.450015 0.893021i \(-0.648581\pi\)
−0.450015 + 0.893021i \(0.648581\pi\)
\(828\) 0 0
\(829\) −40042.0 −1.67758 −0.838791 0.544453i \(-0.816737\pi\)
−0.838791 + 0.544453i \(0.816737\pi\)
\(830\) 1545.00 2676.02i 0.0646117 0.111911i
\(831\) 0 0
\(832\) −1216.00 2106.17i −0.0506697 0.0877625i
\(833\) 7402.50 + 12821.5i 0.307901 + 0.533300i
\(834\) 0 0
\(835\) 817.500 1415.95i 0.0338811 0.0586839i
\(836\) 7536.00 0.311768
\(837\) 0 0
\(838\) 13704.0 0.564913
\(839\) −8952.00 + 15505.3i −0.368364 + 0.638025i −0.989310 0.145828i \(-0.953415\pi\)
0.620946 + 0.783853i \(0.286749\pi\)
\(840\) 0 0
\(841\) 10016.5 + 17349.1i 0.410697 + 0.711349i
\(842\) −323.000 559.452i −0.0132201 0.0228979i
\(843\) 0 0
\(844\) 2534.00 4389.02i 0.103346 0.179000i
\(845\) 3765.00 0.153278
\(846\) 0 0
\(847\) 26114.0 1.05937
\(848\) −24.0000 + 41.5692i −0.000971891 + 0.00168336i
\(849\) 0 0
\(850\) 2625.00 + 4546.63i 0.105926 + 0.183469i
\(851\) 18369.0 + 31816.0i 0.739931 + 1.28160i
\(852\) 0 0
\(853\) 10790.0 18688.8i 0.433110 0.750168i −0.564030 0.825755i \(-0.690750\pi\)
0.997139 + 0.0755866i \(0.0240829\pi\)
\(854\) −12892.0 −0.516575
\(855\) 0 0
\(856\) 5856.00 0.233825
\(857\) −8575.50 + 14853.2i −0.341813 + 0.592037i −0.984769 0.173866i \(-0.944374\pi\)
0.642957 + 0.765903i \(0.277708\pi\)
\(858\) 0 0
\(859\) −16712.5 28946.9i −0.663822 1.14977i −0.979603 0.200941i \(-0.935600\pi\)
0.315781 0.948832i \(-0.397733\pi\)
\(860\) 3800.00 + 6581.79i 0.150673 + 0.260974i
\(861\) 0 0
\(862\) −10242.0 + 17739.7i −0.404691 + 0.700946i
\(863\) 6603.00 0.260450 0.130225 0.991484i \(-0.458430\pi\)
0.130225 + 0.991484i \(0.458430\pi\)
\(864\) 0 0
\(865\) −6525.00 −0.256482
\(866\) 14398.0 24938.1i 0.564970 0.978557i
\(867\) 0 0
\(868\) −1100.00 1905.26i −0.0430143 0.0745030i
\(869\) 5502.00 + 9529.74i 0.214779 + 0.372007i
\(870\) 0 0
\(871\) 6118.00 10596.7i 0.238003 0.412233i
\(872\) −7256.00 −0.281788
\(873\) 0 0
\(874\) 36738.0 1.42183
\(875\) −1375.00 + 2381.57i −0.0531240 + 0.0920134i
\(876\) 0 0
\(877\) 21692.0 + 37571.6i 0.835219 + 1.44664i 0.893852 + 0.448362i \(0.147992\pi\)
−0.0586336 + 0.998280i \(0.518674\pi\)
\(878\) −4079.00 7065.04i −0.156788 0.271564i
\(879\) 0 0
\(880\) −480.000 + 831.384i −0.0183873 + 0.0318477i
\(881\) 12726.0 0.486663 0.243331 0.969943i \(-0.421760\pi\)
0.243331 + 0.969943i \(0.421760\pi\)
\(882\) 0 0
\(883\) 2786.00 0.106179 0.0530897 0.998590i \(-0.483093\pi\)
0.0530897 + 0.998590i \(0.483093\pi\)
\(884\) 7980.00 13821.8i 0.303616 0.525878i
\(885\) 0 0
\(886\) −5781.00 10013.0i −0.219206 0.379676i
\(887\) 2194.50 + 3800.99i 0.0830711 + 0.143883i 0.904568 0.426330i \(-0.140194\pi\)
−0.821497 + 0.570214i \(0.806860\pi\)
\(888\) 0 0
\(889\) −28094.0 + 48660.2i −1.05989 + 1.83578i
\(890\) −12720.0 −0.479073
\(891\) 0 0
\(892\) −11944.0 −0.448335
\(893\) −19782.0 + 34263.4i −0.741298 + 1.28397i
\(894\) 0 0
\(895\) −10110.0 17511.0i −0.377587 0.653999i
\(896\) 1408.00 + 2438.73i 0.0524977 + 0.0909288i
\(897\) 0 0
\(898\) 15078.0 26115.9i 0.560311 0.970487i
\(899\) −1650.00 −0.0612131
\(900\) 0 0
\(901\) −315.000 −0.0116472
\(902\) −6048.00 + 10475.4i −0.223255 + 0.386690i
\(903\) 0 0
\(904\) 6168.00 + 10683.3i 0.226930 + 0.393054i
\(905\) −2627.50 4550.96i −0.0965095 0.167159i
\(906\) 0 0
\(907\) 12434.0 21536.3i 0.455198 0.788425i −0.543502 0.839408i \(-0.682902\pi\)
0.998700 + 0.0509826i \(0.0162353\pi\)
\(908\) 21636.0 0.790766
\(909\) 0 0
\(910\) 8360.00 0.304540
\(911\) 63.0000 109.119i 0.00229120 0.00396847i −0.864878 0.501983i \(-0.832604\pi\)
0.867169 + 0.498014i \(0.165937\pi\)
\(912\) 0 0
\(913\) 1854.00 + 3211.22i 0.0672053 + 0.116403i
\(914\) −4268.00 7392.39i −0.154456 0.267526i
\(915\) 0 0
\(916\) −8662.00 + 15003.0i −0.312446 + 0.541172i
\(917\) 3300.00 0.118839
\(918\) 0 0
\(919\) −16144.0 −0.579479 −0.289740 0.957106i \(-0.593569\pi\)
−0.289740 + 0.957106i \(0.593569\pi\)
\(920\) −2340.00 + 4053.00i −0.0838560 + 0.145243i
\(921\) 0 0
\(922\) 5634.00 + 9758.37i 0.201243 + 0.348563i
\(923\) 2280.00 + 3949.08i 0.0813078 + 0.140829i
\(924\) 0 0
\(925\) −3925.00 + 6798.30i −0.139517 + 0.241650i
\(926\) 9052.00 0.321239
\(927\) 0 0
\(928\) 2112.00 0.0747088
\(929\) 21096.0 36539.3i 0.745035 1.29044i −0.205144 0.978732i \(-0.565766\pi\)
0.950179 0.311706i \(-0.100900\pi\)
\(930\) 0 0
\(931\) 11068.5 + 19171.2i 0.389641 + 0.674877i
\(932\) −5172.00 8958.17i −0.181775 0.314844i
\(933\) 0 0
\(934\) −969.000 + 1678.36i −0.0339472 + 0.0587982i
\(935\) −6300.00 −0.220355
\(936\) 0 0
\(937\) 3272.00 0.114079 0.0570393 0.998372i \(-0.481834\pi\)
0.0570393 + 0.998372i \(0.481834\pi\)
\(938\) −7084.00 + 12269.8i −0.246589 + 0.427105i
\(939\) 0 0
\(940\) −2520.00 4364.77i −0.0874397 0.151450i
\(941\) −10419.0 18046.2i −0.360945 0.625176i 0.627171 0.778881i \(-0.284213\pi\)
−0.988117 + 0.153706i \(0.950879\pi\)
\(942\) 0 0
\(943\) −29484.0 + 51067.8i −1.01817 + 1.76352i
\(944\) −5088.00 −0.175424
\(945\) 0 0
\(946\) −9120.00 −0.313443
\(947\) −6676.50 + 11564.0i −0.229099 + 0.396812i −0.957541 0.288296i \(-0.906911\pi\)
0.728442 + 0.685107i \(0.240245\pi\)
\(948\) 0 0
\(949\) −836.000 1447.99i −0.0285961 0.0495299i
\(950\) 3925.00 + 6798.30i 0.134046 + 0.232175i
\(951\) 0 0
\(952\) −9240.00 + 16004.1i −0.314569 + 0.544850i
\(953\) 13098.0 0.445211 0.222605 0.974909i \(-0.428544\pi\)
0.222605 + 0.974909i \(0.428544\pi\)
\(954\) 0 0
\(955\) 12990.0 0.440153
\(956\) −1020.00 + 1766.69i −0.0345075 + 0.0597687i
\(957\) 0 0
\(958\) −9756.00 16897.9i −0.329021 0.569881i
\(959\) 18183.0 + 31493.9i 0.612262 + 1.06047i
\(960\) 0 0
\(961\) 14583.0 25258.5i 0.489510 0.847857i
\(962\) 23864.0 0.799799
\(963\) 0 0
\(964\) −820.000 −0.0273967
\(965\) 10925.0 18922.7i 0.364444 0.631235i
\(966\) 0 0
\(967\) −9913.00 17169.8i −0.329659 0.570987i 0.652785 0.757543i \(-0.273601\pi\)
−0.982444 + 0.186557i \(0.940267\pi\)
\(968\) 4748.00 + 8223.78i 0.157651 + 0.273060i
\(969\) 0 0
\(970\) 6640.00 11500.8i 0.219791 0.380690i
\(971\) 23322.0 0.770792 0.385396 0.922751i \(-0.374065\pi\)
0.385396 + 0.922751i \(0.374065\pi\)
\(972\) 0 0
\(973\) −24728.0 −0.814741
\(974\) −8768.00 + 15186.6i −0.288444 + 0.499600i
\(975\) 0 0
\(976\) −2344.00 4059.93i −0.0768746 0.133151i
\(977\) 23673.0 + 41002.8i 0.775196 + 1.34268i 0.934684 + 0.355479i \(0.115682\pi\)
−0.159488 + 0.987200i \(0.550984\pi\)
\(978\) 0 0
\(979\) 7632.00 13219.0i 0.249152 0.431544i
\(980\) −2820.00 −0.0919200
\(981\) 0 0
\(982\) −4548.00 −0.147793
\(983\) 16516.5 28607.4i 0.535905 0.928215i −0.463214 0.886246i \(-0.653304\pi\)
0.999119 0.0419681i \(-0.0133628\pi\)
\(984\) 0 0
\(985\) −7357.50 12743.6i −0.237999 0.412227i
\(986\) 6930.00 + 12003.1i 0.223830 + 0.387685i
\(987\) 0 0
\(988\) 11932.0 20666.8i 0.384218 0.665485i
\(989\) −44460.0 −1.42947
\(990\) 0 0
\(991\) 6017.00 0.192872 0.0964361 0.995339i \(-0.469256\pi\)
0.0964361 + 0.995339i \(0.469256\pi\)
\(992\) 400.000 692.820i 0.0128024 0.0221745i
\(993\) 0 0
\(994\) −2640.00 4572.61i −0.0842412 0.145910i
\(995\) −11920.0 20646.0i −0.379788 0.657813i
\(996\) 0 0
\(997\) 17108.0 29631.9i 0.543446 0.941276i −0.455257 0.890360i \(-0.650453\pi\)
0.998703 0.0509161i \(-0.0162141\pi\)
\(998\) −3938.00 −0.124905
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 810.4.e.k.541.1 2
3.2 odd 2 810.4.e.s.541.1 2
9.2 odd 6 270.4.a.c.1.1 1
9.4 even 3 inner 810.4.e.k.271.1 2
9.5 odd 6 810.4.e.s.271.1 2
9.7 even 3 270.4.a.g.1.1 yes 1
36.7 odd 6 2160.4.a.i.1.1 1
36.11 even 6 2160.4.a.r.1.1 1
45.2 even 12 1350.4.c.l.649.1 2
45.7 odd 12 1350.4.c.i.649.2 2
45.29 odd 6 1350.4.a.z.1.1 1
45.34 even 6 1350.4.a.l.1.1 1
45.38 even 12 1350.4.c.l.649.2 2
45.43 odd 12 1350.4.c.i.649.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
270.4.a.c.1.1 1 9.2 odd 6
270.4.a.g.1.1 yes 1 9.7 even 3
810.4.e.k.271.1 2 9.4 even 3 inner
810.4.e.k.541.1 2 1.1 even 1 trivial
810.4.e.s.271.1 2 9.5 odd 6
810.4.e.s.541.1 2 3.2 odd 2
1350.4.a.l.1.1 1 45.34 even 6
1350.4.a.z.1.1 1 45.29 odd 6
1350.4.c.i.649.1 2 45.43 odd 12
1350.4.c.i.649.2 2 45.7 odd 12
1350.4.c.l.649.1 2 45.2 even 12
1350.4.c.l.649.2 2 45.38 even 12
2160.4.a.i.1.1 1 36.7 odd 6
2160.4.a.r.1.1 1 36.11 even 6