Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [8100,2,Mod(1,8100)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8100, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("8100.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 8100 = 2^{2} \cdot 3^{4} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 8100.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(64.6788256372\) |
Analytic rank: | \(1\) |
Dimension: | \(4\) |
Coefficient field: | \(\Q(\sqrt{3}, \sqrt{7})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{4} - 5x^{2} + 1 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{17}]\) |
Coefficient ring index: | \( 3 \) |
Twist minimal: | yes |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.2 | ||
Root | \(-0.456850\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 8100.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | −2.79129 | −1.05501 | −0.527504 | − | 0.849553i | \(-0.676872\pi\) | ||||
−0.527504 | + | 0.849553i | \(0.676872\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 3.10260 | 0.935470 | 0.467735 | − | 0.883869i | \(-0.345070\pi\) | ||||
0.467735 | + | 0.883869i | \(0.345070\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | −2.79129 | −0.774164 | −0.387082 | − | 0.922045i | \(-0.626517\pi\) | ||||
−0.387082 | + | 0.922045i | \(0.626517\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | −4.83465 | −1.17258 | −0.586288 | − | 0.810103i | \(-0.699411\pi\) | ||||
−0.586288 | + | 0.810103i | \(0.699411\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 3.58258 | 0.821899 | 0.410950 | − | 0.911658i | \(-0.365197\pi\) | ||||
0.410950 | + | 0.911658i | \(0.365197\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | −4.83465 | −1.00809 | −0.504047 | − | 0.863676i | \(-0.668156\pi\) | ||||
−0.504047 | + | 0.863676i | \(0.668156\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 3.46410 | 0.643268 | 0.321634 | − | 0.946864i | \(-0.395768\pi\) | ||||
0.321634 | + | 0.946864i | \(0.395768\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 6.58258 | 1.18227 | 0.591133 | − | 0.806574i | \(-0.298681\pi\) | ||||
0.591133 | + | 0.806574i | \(0.298681\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 3.37386 | 0.554660 | 0.277330 | − | 0.960775i | \(-0.410551\pi\) | ||||
0.277330 | + | 0.960775i | \(0.410551\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 6.56670 | 1.02555 | 0.512773 | − | 0.858524i | \(-0.328618\pi\) | ||||
0.512773 | + | 0.858524i | \(0.328618\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | −2.79129 | −0.425667 | −0.212834 | − | 0.977088i | \(-0.568269\pi\) | ||||
−0.212834 | + | 0.977088i | \(0.568269\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 8.66025 | 1.26323 | 0.631614 | − | 0.775283i | \(-0.282393\pi\) | ||||
0.631614 | + | 0.775283i | \(0.282393\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 0.791288 | 0.113041 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 4.83465 | 0.664091 | 0.332045 | − | 0.943263i | \(-0.392261\pi\) | ||||
0.332045 | + | 0.943263i | \(0.392261\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −8.29875 | −1.08041 | −0.540203 | − | 0.841535i | \(-0.681653\pi\) | ||||
−0.540203 | + | 0.841535i | \(0.681653\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 10.3739 | 1.32824 | 0.664119 | − | 0.747627i | \(-0.268807\pi\) | ||||
0.664119 | + | 0.747627i | \(0.268807\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | −5.00000 | −0.610847 | −0.305424 | − | 0.952217i | \(-0.598798\pi\) | ||||
−0.305424 | + | 0.952217i | \(0.598798\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | −7.93725 | −0.941979 | −0.470989 | − | 0.882139i | \(-0.656103\pi\) | ||||
−0.470989 | + | 0.882139i | \(0.656103\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | −5.00000 | −0.585206 | −0.292603 | − | 0.956234i | \(-0.594521\pi\) | ||||
−0.292603 | + | 0.956234i | \(0.594521\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | −8.66025 | −0.986928 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −4.00000 | −0.450035 | −0.225018 | − | 0.974355i | \(-0.572244\pi\) | ||||
−0.225018 | + | 0.974355i | \(0.572244\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | −1.00905 | −0.110758 | −0.0553789 | − | 0.998465i | \(-0.517637\pi\) | ||||
−0.0553789 | + | 0.998465i | \(0.517637\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −13.1334 | −1.39214 | −0.696069 | − | 0.717975i | \(-0.745069\pi\) | ||||
−0.696069 | + | 0.717975i | \(0.745069\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 7.79129 | 0.816749 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 1.16515 | 0.118303 | 0.0591516 | − | 0.998249i | \(-0.481160\pi\) | ||||
0.0591516 | + | 0.998249i | \(0.481160\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −15.2270 | −1.51514 | −0.757569 | − | 0.652755i | \(-0.773613\pi\) | ||||
−0.757569 | + | 0.652755i | \(0.773613\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 3.37386 | 0.332437 | 0.166218 | − | 0.986089i | \(-0.446844\pi\) | ||||
0.166218 | + | 0.986089i | \(0.446844\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | −8.66025 | −0.837218 | −0.418609 | − | 0.908166i | \(-0.637482\pi\) | ||||
−0.418609 | + | 0.908166i | \(0.637482\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −16.9564 | −1.62413 | −0.812066 | − | 0.583565i | \(-0.801657\pi\) | ||||
−0.812066 | + | 0.583565i | \(0.801657\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 5.84370 | 0.549729 | 0.274865 | − | 0.961483i | \(-0.411367\pi\) | ||||
0.274865 | + | 0.961483i | \(0.411367\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 13.4949 | 1.23708 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −1.37386 | −0.124897 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | −21.7477 | −1.92980 | −0.964899 | − | 0.262620i | \(-0.915413\pi\) | ||||
−0.964899 | + | 0.262620i | \(0.915413\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 0.723000 | 0.0631688 | 0.0315844 | − | 0.999501i | \(-0.489945\pi\) | ||||
0.0315844 | + | 0.999501i | \(0.489945\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | −10.0000 | −0.867110 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 22.1552 | 1.89284 | 0.946422 | − | 0.322934i | \(-0.104669\pi\) | ||||
0.946422 | + | 0.322934i | \(0.104669\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −15.3739 | −1.30399 | −0.651997 | − | 0.758222i | \(-0.726069\pi\) | ||||
−0.651997 | + | 0.758222i | \(0.726069\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | −8.66025 | −0.724207 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 10.6784 | 0.874805 | 0.437402 | − | 0.899266i | \(-0.355899\pi\) | ||||
0.437402 | + | 0.899266i | \(0.355899\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 2.62614 | 0.213712 | 0.106856 | − | 0.994275i | \(-0.465922\pi\) | ||||
0.106856 | + | 0.994275i | \(0.465922\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | −9.41742 | −0.751592 | −0.375796 | − | 0.926702i | \(-0.622631\pi\) | ||||
−0.375796 | + | 0.926702i | \(0.622631\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 13.4949 | 1.06355 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | −0.582576 | −0.0456309 | −0.0228154 | − | 0.999740i | \(-0.507263\pi\) | ||||
−0.0228154 | + | 0.999740i | \(0.507263\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | −12.4859 | −0.966185 | −0.483092 | − | 0.875569i | \(-0.660486\pi\) | ||||
−0.483092 | + | 0.875569i | \(0.660486\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −5.20871 | −0.400670 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 19.3386 | 1.47029 | 0.735144 | − | 0.677911i | \(-0.237115\pi\) | ||||
0.735144 | + | 0.677911i | \(0.237115\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 14.1425 | 1.05706 | 0.528528 | − | 0.848916i | \(-0.322744\pi\) | ||||
0.528528 | + | 0.848916i | \(0.322744\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 6.58258 | 0.489279 | 0.244639 | − | 0.969614i | \(-0.421330\pi\) | ||||
0.244639 | + | 0.969614i | \(0.421330\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | −15.0000 | −1.09691 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −20.0616 | −1.45161 | −0.725804 | − | 0.687902i | \(-0.758532\pi\) | ||||
−0.725804 | + | 0.687902i | \(0.758532\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | −21.7477 | −1.56544 | −0.782718 | − | 0.622377i | \(-0.786167\pi\) | ||||
−0.782718 | + | 0.622377i | \(0.786167\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 15.5130 | 1.10526 | 0.552628 | − | 0.833428i | \(-0.313625\pi\) | ||||
0.552628 | + | 0.833428i | \(0.313625\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −6.20871 | −0.440124 | −0.220062 | − | 0.975486i | \(-0.570626\pi\) | ||||
−0.220062 | + | 0.975486i | \(0.570626\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | −9.66930 | −0.678652 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 11.1153 | 0.768862 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 3.41742 | 0.235265 | 0.117633 | − | 0.993057i | \(-0.462469\pi\) | ||||
0.117633 | + | 0.993057i | \(0.462469\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | −18.3739 | −1.24730 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 13.4949 | 0.907766 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 16.1652 | 1.08250 | 0.541249 | − | 0.840862i | \(-0.317952\pi\) | ||||
0.541249 | + | 0.840862i | \(0.317952\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 25.9808 | 1.72440 | 0.862202 | − | 0.506565i | \(-0.169085\pi\) | ||||
0.862202 | + | 0.506565i | \(0.169085\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −5.41742 | −0.357993 | −0.178997 | − | 0.983850i | \(-0.557285\pi\) | ||||
−0.178997 | + | 0.983850i | \(0.557285\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | −10.6784 | −0.699562 | −0.349781 | − | 0.936831i | \(-0.613744\pi\) | ||||
−0.349781 | + | 0.936831i | \(0.613744\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | −26.9898 | −1.74583 | −0.872913 | − | 0.487876i | \(-0.837772\pi\) | ||||
−0.872913 | + | 0.487876i | \(0.837772\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −23.9129 | −1.54036 | −0.770182 | − | 0.637824i | \(-0.779835\pi\) | ||||
−0.770182 | + | 0.637824i | \(0.779835\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | −10.0000 | −0.636285 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 24.1733 | 1.52580 | 0.762901 | − | 0.646515i | \(-0.223774\pi\) | ||||
0.762901 | + | 0.646515i | \(0.223774\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | −15.0000 | −0.943042 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | −26.9898 | −1.68358 | −0.841789 | − | 0.539806i | \(-0.818497\pi\) | ||||
−0.841789 | + | 0.539806i | \(0.818497\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | −9.41742 | −0.585170 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 26.9898 | 1.66426 | 0.832132 | − | 0.554578i | \(-0.187120\pi\) | ||||
0.832132 | + | 0.554578i | \(0.187120\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −7.28970 | −0.444461 | −0.222231 | − | 0.974994i | \(-0.571334\pi\) | ||||
−0.222231 | + | 0.974994i | \(0.571334\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 0.252273 | 0.0153245 | 0.00766224 | − | 0.999971i | \(-0.497561\pi\) | ||||
0.00766224 | + | 0.999971i | \(0.497561\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | −32.3303 | −1.94254 | −0.971270 | − | 0.237981i | \(-0.923514\pi\) | ||||
−0.971270 | + | 0.237981i | \(0.923514\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −16.3115 | −0.973060 | −0.486530 | − | 0.873664i | \(-0.661738\pi\) | ||||
−0.486530 | + | 0.873664i | \(0.661738\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 24.5390 | 1.45869 | 0.729347 | − | 0.684144i | \(-0.239824\pi\) | ||||
0.729347 | + | 0.684144i | \(0.239824\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | −18.3296 | −1.08196 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 6.37386 | 0.374933 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | −18.3296 | −1.07082 | −0.535412 | − | 0.844591i | \(-0.679844\pi\) | ||||
−0.535412 | + | 0.844591i | \(0.679844\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 13.4949 | 0.780431 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 7.79129 | 0.449082 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | −3.25227 | −0.185617 | −0.0928085 | − | 0.995684i | \(-0.529584\pi\) | ||||
−0.0928085 | + | 0.995684i | \(0.529584\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 5.91915 | 0.335644 | 0.167822 | − | 0.985817i | \(-0.446327\pi\) | ||||
0.167822 | + | 0.985817i | \(0.446327\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −7.20871 | −0.407461 | −0.203730 | − | 0.979027i | \(-0.565307\pi\) | ||||
−0.203730 | + | 0.979027i | \(0.565307\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 16.3115 | 0.916143 | 0.458071 | − | 0.888915i | \(-0.348540\pi\) | ||||
0.458071 | + | 0.888915i | \(0.348540\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 10.7477 | 0.601757 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | −17.3205 | −0.963739 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | −24.1733 | −1.33272 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 30.7477 | 1.69005 | 0.845024 | − | 0.534728i | \(-0.179586\pi\) | ||||
0.845024 | + | 0.534728i | \(0.179586\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | −32.3303 | −1.76114 | −0.880572 | − | 0.473913i | \(-0.842841\pi\) | ||||
−0.880572 | + | 0.473913i | \(0.842841\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 20.4231 | 1.10597 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 17.3303 | 0.935748 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | −3.82560 | −0.205369 | −0.102685 | − | 0.994714i | \(-0.532743\pi\) | ||||
−0.102685 | + | 0.994714i | \(0.532743\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −25.4955 | −1.36474 | −0.682370 | − | 0.731007i | \(-0.739051\pi\) | ||||
−0.682370 | + | 0.731007i | \(0.739051\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | −25.1823 | −1.34032 | −0.670160 | − | 0.742217i | \(-0.733774\pi\) | ||||
−0.670160 | + | 0.742217i | \(0.733774\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −2.37960 | −0.125591 | −0.0627953 | − | 0.998026i | \(-0.520002\pi\) | ||||
−0.0627953 | + | 0.998026i | \(0.520002\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −6.16515 | −0.324482 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −13.3739 | −0.698110 | −0.349055 | − | 0.937102i | \(-0.613497\pi\) | ||||
−0.349055 | + | 0.937102i | \(0.613497\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | −13.4949 | −0.700621 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −13.8348 | −0.716341 | −0.358171 | − | 0.933656i | \(-0.616599\pi\) | ||||
−0.358171 | + | 0.933656i | \(0.616599\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | −9.66930 | −0.497995 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | −28.7913 | −1.47891 | −0.739455 | − | 0.673206i | \(-0.764917\pi\) | ||||
−0.739455 | + | 0.673206i | \(0.764917\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 5.84370 | 0.298599 | 0.149300 | − | 0.988792i | \(-0.452298\pi\) | ||||
0.149300 | + | 0.988792i | \(0.452298\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 16.3115 | 0.827024 | 0.413512 | − | 0.910499i | \(-0.364302\pi\) | ||||
0.413512 | + | 0.910499i | \(0.364302\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 23.3739 | 1.18207 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | −13.8348 | −0.694351 | −0.347176 | − | 0.937800i | \(-0.612859\pi\) | ||||
−0.347176 | + | 0.937800i | \(0.612859\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | −18.3739 | −0.915267 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 10.4678 | 0.518867 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −32.2867 | −1.59648 | −0.798238 | − | 0.602342i | \(-0.794234\pi\) | ||||
−0.798238 | + | 0.602342i | \(0.794234\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 23.1642 | 1.13984 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | −13.4949 | −0.659269 | −0.329635 | − | 0.944109i | \(-0.606926\pi\) | ||||
−0.329635 | + | 0.944109i | \(0.606926\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 29.4955 | 1.43752 | 0.718760 | − | 0.695258i | \(-0.244710\pi\) | ||||
0.718760 | + | 0.695258i | \(0.244710\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | −28.9564 | −1.40130 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −15.5885 | −0.750870 | −0.375435 | − | 0.926849i | \(-0.622507\pi\) | ||||
−0.375435 | + | 0.926849i | \(0.622507\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 5.58258 | 0.268281 | 0.134141 | − | 0.990962i | \(-0.457173\pi\) | ||||
0.134141 | + | 0.990962i | \(0.457173\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | −17.3205 | −0.828552 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 12.1216 | 0.578532 | 0.289266 | − | 0.957249i | \(-0.406589\pi\) | ||||
0.289266 | + | 0.957249i | \(0.406589\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 31.8245 | 1.51203 | 0.756013 | − | 0.654557i | \(-0.227145\pi\) | ||||
0.756013 | + | 0.654557i | \(0.227145\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | −25.6193 | −1.20905 | −0.604524 | − | 0.796587i | \(-0.706637\pi\) | ||||
−0.604524 | + | 0.796587i | \(0.706637\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 20.3739 | 0.959368 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −3.25227 | −0.152135 | −0.0760675 | − | 0.997103i | \(-0.524236\pi\) | ||||
−0.0760675 | + | 0.997103i | \(0.524236\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | −30.0924 | −1.40154 | −0.700772 | − | 0.713386i | \(-0.747161\pi\) | ||||
−0.700772 | + | 0.713386i | \(0.747161\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | −15.1216 | −0.702760 | −0.351380 | − | 0.936233i | \(-0.614287\pi\) | ||||
−0.351380 | + | 0.936233i | \(0.614287\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | −36.6591 | −1.69638 | −0.848191 | − | 0.529691i | \(-0.822308\pi\) | ||||
−0.848191 | + | 0.529691i | \(0.822308\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 13.9564 | 0.644448 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | −8.66025 | −0.398199 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 10.0308 | 0.458319 | 0.229160 | − | 0.973389i | \(-0.426402\pi\) | ||||
0.229160 | + | 0.973389i | \(0.426402\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −9.41742 | −0.429398 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 22.3303 | 1.01188 | 0.505941 | − | 0.862568i | \(-0.331145\pi\) | ||||
0.505941 | + | 0.862568i | \(0.331145\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 30.7400 | 1.38728 | 0.693638 | − | 0.720324i | \(-0.256007\pi\) | ||||
0.693638 | + | 0.720324i | \(0.256007\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | −16.7477 | −0.754280 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 22.1552 | 0.993795 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −19.6261 | −0.878587 | −0.439293 | − | 0.898344i | \(-0.644771\pi\) | ||||
−0.439293 | + | 0.898344i | \(0.644771\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | −12.4859 | −0.556717 | −0.278358 | − | 0.960477i | \(-0.589790\pi\) | ||||
−0.278358 | + | 0.960477i | \(0.589790\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 10.6784 | 0.473310 | 0.236655 | − | 0.971594i | \(-0.423949\pi\) | ||||
0.236655 | + | 0.971594i | \(0.423949\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 13.9564 | 0.617397 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 26.8693 | 1.18171 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −21.3567 | −0.935654 | −0.467827 | − | 0.883820i | \(-0.654963\pi\) | ||||
−0.467827 | + | 0.883820i | \(0.654963\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | −21.7477 | −0.950962 | −0.475481 | − | 0.879726i | \(-0.657726\pi\) | ||||
−0.475481 | + | 0.879726i | \(0.657726\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | −31.8245 | −1.38630 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 0.373864 | 0.0162549 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | −18.3296 | −0.793941 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 2.45505 | 0.105747 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 11.7913 | 0.506947 | 0.253474 | − | 0.967342i | \(-0.418427\pi\) | ||||
0.253474 | + | 0.967342i | \(0.418427\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 11.7477 | 0.502297 | 0.251148 | − | 0.967949i | \(-0.419192\pi\) | ||||
0.251148 | + | 0.967949i | \(0.419192\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 12.4104 | 0.528701 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 11.1652 | 0.474791 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 7.79129 | 0.329536 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 8.66025 | 0.364986 | 0.182493 | − | 0.983207i | \(-0.441583\pi\) | ||||
0.182493 | + | 0.983207i | \(0.441583\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 33.1950 | 1.39161 | 0.695804 | − | 0.718232i | \(-0.255048\pi\) | ||||
0.695804 | + | 0.718232i | \(0.255048\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 1.66970 | 0.0698747 | 0.0349373 | − | 0.999390i | \(-0.488877\pi\) | ||||
0.0349373 | + | 0.999390i | \(0.488877\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −38.4955 | −1.60259 | −0.801293 | − | 0.598272i | \(-0.795854\pi\) | ||||
−0.801293 | + | 0.598272i | \(0.795854\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 2.81655 | 0.116850 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 15.0000 | 0.621237 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 47.3375 | 1.95383 | 0.976913 | − | 0.213636i | \(-0.0685307\pi\) | ||||
0.976913 | + | 0.213636i | \(0.0685307\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 23.5826 | 0.971703 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 30.8154 | 1.26544 | 0.632719 | − | 0.774382i | \(-0.281939\pi\) | ||||
0.632719 | + | 0.774382i | \(0.281939\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 19.9862 | 0.816612 | 0.408306 | − | 0.912845i | \(-0.366120\pi\) | ||||
0.408306 | + | 0.912845i | \(0.366120\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −9.70417 | −0.395841 | −0.197921 | − | 0.980218i | \(-0.563419\pi\) | ||||
−0.197921 | + | 0.980218i | \(0.563419\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 26.7477 | 1.08566 | 0.542828 | − | 0.839844i | \(-0.317353\pi\) | ||||
0.542828 | + | 0.839844i | \(0.317353\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −24.1733 | −0.977945 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | −36.7477 | −1.48423 | −0.742113 | − | 0.670274i | \(-0.766176\pi\) | ||||
−0.742113 | + | 0.670274i | \(0.766176\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −18.3296 | −0.737920 | −0.368960 | − | 0.929445i | \(-0.620286\pi\) | ||||
−0.368960 | + | 0.929445i | \(0.620286\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −20.7477 | −0.833922 | −0.416961 | − | 0.908924i | \(-0.636905\pi\) | ||||
−0.416961 | + | 0.908924i | \(0.636905\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 36.6591 | 1.46872 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | −16.3115 | −0.650380 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 19.7042 | 0.784410 | 0.392205 | − | 0.919878i | \(-0.371712\pi\) | ||||
0.392205 | + | 0.919878i | \(0.371712\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | −2.20871 | −0.0875124 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 27.9234 | 1.10291 | 0.551454 | − | 0.834205i | \(-0.314073\pi\) | ||||
0.551454 | + | 0.834205i | \(0.314073\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | −46.8693 | −1.84835 | −0.924173 | − | 0.381975i | \(-0.875244\pi\) | ||||
−0.924173 | + | 0.381975i | \(0.875244\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 20.3477 | 0.799949 | 0.399975 | − | 0.916526i | \(-0.369019\pi\) | ||||
0.399975 | + | 0.916526i | \(0.369019\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −25.7477 | −1.01069 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | −23.1642 | −0.906486 | −0.453243 | − | 0.891387i | \(-0.649733\pi\) | ||||
−0.453243 | + | 0.891387i | \(0.649733\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −24.1733 | −0.941657 | −0.470828 | − | 0.882225i | \(-0.656045\pi\) | ||||
−0.470828 | + | 0.882225i | \(0.656045\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 27.7477 | 1.07926 | 0.539631 | − | 0.841902i | \(-0.318564\pi\) | ||||
0.539631 | + | 0.841902i | \(0.318564\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | −16.7477 | −0.648475 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 32.1860 | 1.24253 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −35.0000 | −1.34915 | −0.674575 | − | 0.738206i | \(-0.735673\pi\) | ||||
−0.674575 | + | 0.738206i | \(0.735673\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 20.3477 | 0.782024 | 0.391012 | − | 0.920386i | \(-0.372125\pi\) | ||||
0.391012 | + | 0.920386i | \(0.372125\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −3.25227 | −0.124811 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | −20.1371 | −0.770523 | −0.385262 | − | 0.922807i | \(-0.625889\pi\) | ||||
−0.385262 | + | 0.922807i | \(0.625889\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | −13.4949 | −0.514115 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −10.4955 | −0.399266 | −0.199633 | − | 0.979871i | \(-0.563975\pi\) | ||||
−0.199633 | + | 0.979871i | \(0.563975\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | −31.7477 | −1.20253 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 14.5794 | 0.550657 | 0.275328 | − | 0.961350i | \(-0.411213\pi\) | ||||
0.275328 | + | 0.961350i | \(0.411213\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 12.0871 | 0.455874 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 42.5028 | 1.59848 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 28.0780 | 1.05449 | 0.527246 | − | 0.849713i | \(-0.323225\pi\) | ||||
0.527246 | + | 0.849713i | \(0.323225\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | −31.8245 | −1.19184 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 9.02175 | 0.336455 | 0.168227 | − | 0.985748i | \(-0.446196\pi\) | ||||
0.168227 | + | 0.985748i | \(0.446196\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −9.41742 | −0.350723 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 3.37386 | 0.125130 | 0.0625648 | − | 0.998041i | \(-0.480072\pi\) | ||||
0.0625648 | + | 0.998041i | \(0.480072\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 13.4949 | 0.499127 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 5.12159 | 0.189170 | 0.0945851 | − | 0.995517i | \(-0.469848\pi\) | ||||
0.0945851 | + | 0.995517i | \(0.469848\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | −15.5130 | −0.571429 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −33.8693 | −1.24590 | −0.622951 | − | 0.782260i | \(-0.714067\pi\) | ||||
−0.622951 | + | 0.782260i | \(0.714067\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 24.1733 | 0.883272 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 18.1216 | 0.661266 | 0.330633 | − | 0.943759i | \(-0.392738\pi\) | ||||
0.330633 | + | 0.943759i | \(0.392738\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 18.3739 | 0.667809 | 0.333905 | − | 0.942607i | \(-0.391634\pi\) | ||||
0.333905 | + | 0.942607i | \(0.391634\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −34.5656 | −1.25300 | −0.626500 | − | 0.779421i | \(-0.715513\pi\) | ||||
−0.626500 | + | 0.779421i | \(0.715513\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 47.3303 | 1.71347 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 23.1642 | 0.836411 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 16.5390 | 0.596412 | 0.298206 | − | 0.954502i | \(-0.403612\pi\) | ||||
0.298206 | + | 0.954502i | \(0.403612\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 6.64215 | 0.238902 | 0.119451 | − | 0.992840i | \(-0.461887\pi\) | ||||
0.119451 | + | 0.992840i | \(0.461887\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 23.5257 | 0.842896 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | −24.6261 | −0.881192 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 3.37386 | 0.120265 | 0.0601326 | − | 0.998190i | \(-0.480848\pi\) | ||||
0.0601326 | + | 0.998190i | \(0.480848\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | −16.3115 | −0.579969 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | −28.9564 | −1.02827 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 44.5209 | 1.57701 | 0.788506 | − | 0.615027i | \(-0.210855\pi\) | ||||
0.788506 | + | 0.615027i | \(0.210855\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −41.8693 | −1.48123 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | −15.5130 | −0.547442 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −5.19615 | −0.182687 | −0.0913435 | − | 0.995819i | \(-0.529116\pi\) | ||||
−0.0913435 | + | 0.995819i | \(0.529116\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 44.9564 | 1.57863 | 0.789317 | − | 0.613986i | \(-0.210435\pi\) | ||||
0.789317 | + | 0.613986i | \(0.210435\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | −10.0000 | −0.349856 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −56.2838 | −1.96432 | −0.982159 | − | 0.188054i | \(-0.939782\pi\) | ||||
−0.982159 | + | 0.188054i | \(0.939782\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 33.8348 | 1.17941 | 0.589704 | − | 0.807619i | \(-0.299244\pi\) | ||||
0.589704 | + | 0.807619i | \(0.299244\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 7.86180 | 0.273382 | 0.136691 | − | 0.990614i | \(-0.456353\pi\) | ||||
0.136691 | + | 0.990614i | \(0.456353\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 41.4955 | 1.44120 | 0.720598 | − | 0.693353i | \(-0.243867\pi\) | ||||
0.720598 | + | 0.693353i | \(0.243867\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | −3.82560 | −0.132549 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −13.1334 | −0.453416 | −0.226708 | − | 0.973963i | \(-0.572796\pi\) | ||||
−0.226708 | + | 0.973963i | \(0.572796\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −17.0000 | −0.586207 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 3.83485 | 0.131767 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | −16.3115 | −0.559150 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | −5.00000 | −0.171197 | −0.0855984 | − | 0.996330i | \(-0.527280\pi\) | ||||
−0.0855984 | + | 0.996330i | \(0.527280\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | −42.5028 | −1.45187 | −0.725934 | − | 0.687764i | \(-0.758592\pi\) | ||||
−0.725934 | + | 0.687764i | \(0.758592\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 0.252273 | 0.00860744 | 0.00430372 | − | 0.999991i | \(-0.498630\pi\) | ||||
0.00430372 | + | 0.999991i | \(0.498630\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | −30.8154 | −1.04897 | −0.524484 | − | 0.851420i | \(-0.675742\pi\) | ||||
−0.524484 | + | 0.851420i | \(0.675742\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | −12.4104 | −0.420994 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 13.9564 | 0.472896 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | −2.79129 | −0.0942551 | −0.0471275 | − | 0.998889i | \(-0.515007\pi\) | ||||
−0.0471275 | + | 0.998889i | \(0.515007\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 36.9452 | 1.24471 | 0.622357 | − | 0.782733i | \(-0.286175\pi\) | ||||
0.622357 | + | 0.782733i | \(0.286175\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 34.6606 | 1.16642 | 0.583211 | − | 0.812321i | \(-0.301796\pi\) | ||||
0.583211 | + | 0.812321i | \(0.301796\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | −23.1642 | −0.777778 | −0.388889 | − | 0.921285i | \(-0.627141\pi\) | ||||
−0.388889 | + | 0.921285i | \(0.627141\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 60.7042 | 2.03595 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 31.0260 | 1.03825 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 22.8027 | 0.760513 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −23.3739 | −0.778696 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 1.62614 | 0.0539950 | 0.0269975 | − | 0.999636i | \(-0.491405\pi\) | ||||
0.0269975 | + | 0.999636i | \(0.491405\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −0.286051 | −0.00947728 | −0.00473864 | − | 0.999989i | \(-0.501508\pi\) | ||||
−0.00473864 | + | 0.999989i | \(0.501508\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | −3.13068 | −0.103610 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | −2.01810 | −0.0666436 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −13.6261 | −0.449485 | −0.224742 | − | 0.974418i | \(-0.572154\pi\) | ||||
−0.224742 | + | 0.974418i | \(0.572154\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 22.1552 | 0.729246 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 14.1425 | 0.463999 | 0.231999 | − | 0.972716i | \(-0.425473\pi\) | ||||
0.231999 | + | 0.972716i | \(0.425473\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 2.83485 | 0.0929084 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | −9.41742 | −0.307654 | −0.153827 | − | 0.988098i | \(-0.549160\pi\) | ||||
−0.153827 | + | 0.988098i | \(0.549160\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | −2.81655 | −0.0918169 | −0.0459085 | − | 0.998946i | \(-0.514618\pi\) | ||||
−0.0459085 | + | 0.998946i | \(0.514618\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | −31.7477 | −1.03385 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | −57.0068 | −1.85247 | −0.926236 | − | 0.376945i | \(-0.876975\pi\) | ||||
−0.926236 | + | 0.376945i | \(0.876975\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 13.9564 | 0.453045 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 53.9796 | 1.74857 | 0.874286 | − | 0.485412i | \(-0.161330\pi\) | ||||
0.874286 | + | 0.485412i | \(0.161330\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | −61.8414 | −1.99696 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | 12.3303 | 0.397752 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 8.25227 | 0.265375 | 0.132688 | − | 0.991158i | \(-0.457639\pi\) | ||||
0.132688 | + | 0.991158i | \(0.457639\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −5.55765 | −0.178354 | −0.0891768 | − | 0.996016i | \(-0.528424\pi\) | ||||
−0.0891768 | + | 0.996016i | \(0.528424\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 42.9129 | 1.37572 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | −35.8607 | −1.14728 | −0.573642 | − | 0.819106i | \(-0.694470\pi\) | ||||
−0.573642 | + | 0.819106i | \(0.694470\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | −40.7477 | −1.30230 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | −22.3658 | −0.713357 | −0.356679 | − | 0.934227i | \(-0.616091\pi\) | ||||
−0.356679 | + | 0.934227i | \(0.616091\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 13.4949 | 0.429113 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −41.1216 | −1.30627 | −0.653135 | − | 0.757241i | \(-0.726547\pi\) | ||||
−0.653135 | + | 0.757241i | \(0.726547\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | −6.74773 | −0.213703 | −0.106851 | − | 0.994275i | \(-0.534077\pi\) | ||||
−0.106851 | + | 0.994275i | \(0.534077\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 8100.2.a.w.1.2 | yes | 4 | |
3.2 | odd | 2 | inner | 8100.2.a.w.1.1 | ✓ | 4 | |
5.2 | odd | 4 | 8100.2.d.r.649.2 | 8 | |||
5.3 | odd | 4 | 8100.2.d.r.649.8 | 8 | |||
5.4 | even | 2 | 8100.2.a.bb.1.4 | yes | 4 | ||
15.2 | even | 4 | 8100.2.d.r.649.1 | 8 | |||
15.8 | even | 4 | 8100.2.d.r.649.7 | 8 | |||
15.14 | odd | 2 | 8100.2.a.bb.1.3 | yes | 4 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
8100.2.a.w.1.1 | ✓ | 4 | 3.2 | odd | 2 | inner | |
8100.2.a.w.1.2 | yes | 4 | 1.1 | even | 1 | trivial | |
8100.2.a.bb.1.3 | yes | 4 | 15.14 | odd | 2 | ||
8100.2.a.bb.1.4 | yes | 4 | 5.4 | even | 2 | ||
8100.2.d.r.649.1 | 8 | 15.2 | even | 4 | |||
8100.2.d.r.649.2 | 8 | 5.2 | odd | 4 | |||
8100.2.d.r.649.7 | 8 | 15.8 | even | 4 | |||
8100.2.d.r.649.8 | 8 | 5.3 | odd | 4 |