Properties

Label 8100.2.a.w.1.2
Level $8100$
Weight $2$
Character 8100.1
Self dual yes
Analytic conductor $64.679$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8100,2,Mod(1,8100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8100.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8100 = 2^{2} \cdot 3^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8100.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(64.6788256372\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.456850\) of defining polynomial
Character \(\chi\) \(=\) 8100.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.79129 q^{7} +3.10260 q^{11} -2.79129 q^{13} -4.83465 q^{17} +3.58258 q^{19} -4.83465 q^{23} +3.46410 q^{29} +6.58258 q^{31} +3.37386 q^{37} +6.56670 q^{41} -2.79129 q^{43} +8.66025 q^{47} +0.791288 q^{49} +4.83465 q^{53} -8.29875 q^{59} +10.3739 q^{61} -5.00000 q^{67} -7.93725 q^{71} -5.00000 q^{73} -8.66025 q^{77} -4.00000 q^{79} -1.00905 q^{83} -13.1334 q^{89} +7.79129 q^{91} +1.16515 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{7} - 2 q^{13} - 4 q^{19} + 8 q^{31} - 14 q^{37} - 2 q^{43} - 6 q^{49} + 14 q^{61} - 20 q^{67} - 20 q^{73} - 16 q^{79} + 22 q^{91} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −2.79129 −1.05501 −0.527504 0.849553i \(-0.676872\pi\)
−0.527504 + 0.849553i \(0.676872\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.10260 0.935470 0.467735 0.883869i \(-0.345070\pi\)
0.467735 + 0.883869i \(0.345070\pi\)
\(12\) 0 0
\(13\) −2.79129 −0.774164 −0.387082 0.922045i \(-0.626517\pi\)
−0.387082 + 0.922045i \(0.626517\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.83465 −1.17258 −0.586288 0.810103i \(-0.699411\pi\)
−0.586288 + 0.810103i \(0.699411\pi\)
\(18\) 0 0
\(19\) 3.58258 0.821899 0.410950 0.911658i \(-0.365197\pi\)
0.410950 + 0.911658i \(0.365197\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.83465 −1.00809 −0.504047 0.863676i \(-0.668156\pi\)
−0.504047 + 0.863676i \(0.668156\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.46410 0.643268 0.321634 0.946864i \(-0.395768\pi\)
0.321634 + 0.946864i \(0.395768\pi\)
\(30\) 0 0
\(31\) 6.58258 1.18227 0.591133 0.806574i \(-0.298681\pi\)
0.591133 + 0.806574i \(0.298681\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 3.37386 0.554660 0.277330 0.960775i \(-0.410551\pi\)
0.277330 + 0.960775i \(0.410551\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.56670 1.02555 0.512773 0.858524i \(-0.328618\pi\)
0.512773 + 0.858524i \(0.328618\pi\)
\(42\) 0 0
\(43\) −2.79129 −0.425667 −0.212834 0.977088i \(-0.568269\pi\)
−0.212834 + 0.977088i \(0.568269\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.66025 1.26323 0.631614 0.775283i \(-0.282393\pi\)
0.631614 + 0.775283i \(0.282393\pi\)
\(48\) 0 0
\(49\) 0.791288 0.113041
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.83465 0.664091 0.332045 0.943263i \(-0.392261\pi\)
0.332045 + 0.943263i \(0.392261\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −8.29875 −1.08041 −0.540203 0.841535i \(-0.681653\pi\)
−0.540203 + 0.841535i \(0.681653\pi\)
\(60\) 0 0
\(61\) 10.3739 1.32824 0.664119 0.747627i \(-0.268807\pi\)
0.664119 + 0.747627i \(0.268807\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −5.00000 −0.610847 −0.305424 0.952217i \(-0.598798\pi\)
−0.305424 + 0.952217i \(0.598798\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −7.93725 −0.941979 −0.470989 0.882139i \(-0.656103\pi\)
−0.470989 + 0.882139i \(0.656103\pi\)
\(72\) 0 0
\(73\) −5.00000 −0.585206 −0.292603 0.956234i \(-0.594521\pi\)
−0.292603 + 0.956234i \(0.594521\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −8.66025 −0.986928
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1.00905 −0.110758 −0.0553789 0.998465i \(-0.517637\pi\)
−0.0553789 + 0.998465i \(0.517637\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −13.1334 −1.39214 −0.696069 0.717975i \(-0.745069\pi\)
−0.696069 + 0.717975i \(0.745069\pi\)
\(90\) 0 0
\(91\) 7.79129 0.816749
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1.16515 0.118303 0.0591516 0.998249i \(-0.481160\pi\)
0.0591516 + 0.998249i \(0.481160\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −15.2270 −1.51514 −0.757569 0.652755i \(-0.773613\pi\)
−0.757569 + 0.652755i \(0.773613\pi\)
\(102\) 0 0
\(103\) 3.37386 0.332437 0.166218 0.986089i \(-0.446844\pi\)
0.166218 + 0.986089i \(0.446844\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −8.66025 −0.837218 −0.418609 0.908166i \(-0.637482\pi\)
−0.418609 + 0.908166i \(0.637482\pi\)
\(108\) 0 0
\(109\) −16.9564 −1.62413 −0.812066 0.583565i \(-0.801657\pi\)
−0.812066 + 0.583565i \(0.801657\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 5.84370 0.549729 0.274865 0.961483i \(-0.411367\pi\)
0.274865 + 0.961483i \(0.411367\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 13.4949 1.23708
\(120\) 0 0
\(121\) −1.37386 −0.124897
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −21.7477 −1.92980 −0.964899 0.262620i \(-0.915413\pi\)
−0.964899 + 0.262620i \(0.915413\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0.723000 0.0631688 0.0315844 0.999501i \(-0.489945\pi\)
0.0315844 + 0.999501i \(0.489945\pi\)
\(132\) 0 0
\(133\) −10.0000 −0.867110
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 22.1552 1.89284 0.946422 0.322934i \(-0.104669\pi\)
0.946422 + 0.322934i \(0.104669\pi\)
\(138\) 0 0
\(139\) −15.3739 −1.30399 −0.651997 0.758222i \(-0.726069\pi\)
−0.651997 + 0.758222i \(0.726069\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −8.66025 −0.724207
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 10.6784 0.874805 0.437402 0.899266i \(-0.355899\pi\)
0.437402 + 0.899266i \(0.355899\pi\)
\(150\) 0 0
\(151\) 2.62614 0.213712 0.106856 0.994275i \(-0.465922\pi\)
0.106856 + 0.994275i \(0.465922\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −9.41742 −0.751592 −0.375796 0.926702i \(-0.622631\pi\)
−0.375796 + 0.926702i \(0.622631\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 13.4949 1.06355
\(162\) 0 0
\(163\) −0.582576 −0.0456309 −0.0228154 0.999740i \(-0.507263\pi\)
−0.0228154 + 0.999740i \(0.507263\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −12.4859 −0.966185 −0.483092 0.875569i \(-0.660486\pi\)
−0.483092 + 0.875569i \(0.660486\pi\)
\(168\) 0 0
\(169\) −5.20871 −0.400670
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 19.3386 1.47029 0.735144 0.677911i \(-0.237115\pi\)
0.735144 + 0.677911i \(0.237115\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 14.1425 1.05706 0.528528 0.848916i \(-0.322744\pi\)
0.528528 + 0.848916i \(0.322744\pi\)
\(180\) 0 0
\(181\) 6.58258 0.489279 0.244639 0.969614i \(-0.421330\pi\)
0.244639 + 0.969614i \(0.421330\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −15.0000 −1.09691
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −20.0616 −1.45161 −0.725804 0.687902i \(-0.758532\pi\)
−0.725804 + 0.687902i \(0.758532\pi\)
\(192\) 0 0
\(193\) −21.7477 −1.56544 −0.782718 0.622377i \(-0.786167\pi\)
−0.782718 + 0.622377i \(0.786167\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 15.5130 1.10526 0.552628 0.833428i \(-0.313625\pi\)
0.552628 + 0.833428i \(0.313625\pi\)
\(198\) 0 0
\(199\) −6.20871 −0.440124 −0.220062 0.975486i \(-0.570626\pi\)
−0.220062 + 0.975486i \(0.570626\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −9.66930 −0.678652
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 11.1153 0.768862
\(210\) 0 0
\(211\) 3.41742 0.235265 0.117633 0.993057i \(-0.462469\pi\)
0.117633 + 0.993057i \(0.462469\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −18.3739 −1.24730
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 13.4949 0.907766
\(222\) 0 0
\(223\) 16.1652 1.08250 0.541249 0.840862i \(-0.317952\pi\)
0.541249 + 0.840862i \(0.317952\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 25.9808 1.72440 0.862202 0.506565i \(-0.169085\pi\)
0.862202 + 0.506565i \(0.169085\pi\)
\(228\) 0 0
\(229\) −5.41742 −0.357993 −0.178997 0.983850i \(-0.557285\pi\)
−0.178997 + 0.983850i \(0.557285\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −10.6784 −0.699562 −0.349781 0.936831i \(-0.613744\pi\)
−0.349781 + 0.936831i \(0.613744\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −26.9898 −1.74583 −0.872913 0.487876i \(-0.837772\pi\)
−0.872913 + 0.487876i \(0.837772\pi\)
\(240\) 0 0
\(241\) −23.9129 −1.54036 −0.770182 0.637824i \(-0.779835\pi\)
−0.770182 + 0.637824i \(0.779835\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −10.0000 −0.636285
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 24.1733 1.52580 0.762901 0.646515i \(-0.223774\pi\)
0.762901 + 0.646515i \(0.223774\pi\)
\(252\) 0 0
\(253\) −15.0000 −0.943042
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −26.9898 −1.68358 −0.841789 0.539806i \(-0.818497\pi\)
−0.841789 + 0.539806i \(0.818497\pi\)
\(258\) 0 0
\(259\) −9.41742 −0.585170
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 26.9898 1.66426 0.832132 0.554578i \(-0.187120\pi\)
0.832132 + 0.554578i \(0.187120\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −7.28970 −0.444461 −0.222231 0.974994i \(-0.571334\pi\)
−0.222231 + 0.974994i \(0.571334\pi\)
\(270\) 0 0
\(271\) 0.252273 0.0153245 0.00766224 0.999971i \(-0.497561\pi\)
0.00766224 + 0.999971i \(0.497561\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −32.3303 −1.94254 −0.971270 0.237981i \(-0.923514\pi\)
−0.971270 + 0.237981i \(0.923514\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −16.3115 −0.973060 −0.486530 0.873664i \(-0.661738\pi\)
−0.486530 + 0.873664i \(0.661738\pi\)
\(282\) 0 0
\(283\) 24.5390 1.45869 0.729347 0.684144i \(-0.239824\pi\)
0.729347 + 0.684144i \(0.239824\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −18.3296 −1.08196
\(288\) 0 0
\(289\) 6.37386 0.374933
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −18.3296 −1.07082 −0.535412 0.844591i \(-0.679844\pi\)
−0.535412 + 0.844591i \(0.679844\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 13.4949 0.780431
\(300\) 0 0
\(301\) 7.79129 0.449082
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −3.25227 −0.185617 −0.0928085 0.995684i \(-0.529584\pi\)
−0.0928085 + 0.995684i \(0.529584\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 5.91915 0.335644 0.167822 0.985817i \(-0.446327\pi\)
0.167822 + 0.985817i \(0.446327\pi\)
\(312\) 0 0
\(313\) −7.20871 −0.407461 −0.203730 0.979027i \(-0.565307\pi\)
−0.203730 + 0.979027i \(0.565307\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 16.3115 0.916143 0.458071 0.888915i \(-0.348540\pi\)
0.458071 + 0.888915i \(0.348540\pi\)
\(318\) 0 0
\(319\) 10.7477 0.601757
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −17.3205 −0.963739
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −24.1733 −1.33272
\(330\) 0 0
\(331\) 30.7477 1.69005 0.845024 0.534728i \(-0.179586\pi\)
0.845024 + 0.534728i \(0.179586\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −32.3303 −1.76114 −0.880572 0.473913i \(-0.842841\pi\)
−0.880572 + 0.473913i \(0.842841\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 20.4231 1.10597
\(342\) 0 0
\(343\) 17.3303 0.935748
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −3.82560 −0.205369 −0.102685 0.994714i \(-0.532743\pi\)
−0.102685 + 0.994714i \(0.532743\pi\)
\(348\) 0 0
\(349\) −25.4955 −1.36474 −0.682370 0.731007i \(-0.739051\pi\)
−0.682370 + 0.731007i \(0.739051\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −25.1823 −1.34032 −0.670160 0.742217i \(-0.733774\pi\)
−0.670160 + 0.742217i \(0.733774\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2.37960 −0.125591 −0.0627953 0.998026i \(-0.520002\pi\)
−0.0627953 + 0.998026i \(0.520002\pi\)
\(360\) 0 0
\(361\) −6.16515 −0.324482
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −13.3739 −0.698110 −0.349055 0.937102i \(-0.613497\pi\)
−0.349055 + 0.937102i \(0.613497\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −13.4949 −0.700621
\(372\) 0 0
\(373\) −13.8348 −0.716341 −0.358171 0.933656i \(-0.616599\pi\)
−0.358171 + 0.933656i \(0.616599\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −9.66930 −0.497995
\(378\) 0 0
\(379\) −28.7913 −1.47891 −0.739455 0.673206i \(-0.764917\pi\)
−0.739455 + 0.673206i \(0.764917\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 5.84370 0.298599 0.149300 0.988792i \(-0.452298\pi\)
0.149300 + 0.988792i \(0.452298\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 16.3115 0.827024 0.413512 0.910499i \(-0.364302\pi\)
0.413512 + 0.910499i \(0.364302\pi\)
\(390\) 0 0
\(391\) 23.3739 1.18207
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −13.8348 −0.694351 −0.347176 0.937800i \(-0.612859\pi\)
−0.347176 + 0.937800i \(0.612859\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) −18.3739 −0.915267
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 10.4678 0.518867
\(408\) 0 0
\(409\) −32.2867 −1.59648 −0.798238 0.602342i \(-0.794234\pi\)
−0.798238 + 0.602342i \(0.794234\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 23.1642 1.13984
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −13.4949 −0.659269 −0.329635 0.944109i \(-0.606926\pi\)
−0.329635 + 0.944109i \(0.606926\pi\)
\(420\) 0 0
\(421\) 29.4955 1.43752 0.718760 0.695258i \(-0.244710\pi\)
0.718760 + 0.695258i \(0.244710\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −28.9564 −1.40130
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −15.5885 −0.750870 −0.375435 0.926849i \(-0.622507\pi\)
−0.375435 + 0.926849i \(0.622507\pi\)
\(432\) 0 0
\(433\) 5.58258 0.268281 0.134141 0.990962i \(-0.457173\pi\)
0.134141 + 0.990962i \(0.457173\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −17.3205 −0.828552
\(438\) 0 0
\(439\) 12.1216 0.578532 0.289266 0.957249i \(-0.406589\pi\)
0.289266 + 0.957249i \(0.406589\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 31.8245 1.51203 0.756013 0.654557i \(-0.227145\pi\)
0.756013 + 0.654557i \(0.227145\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −25.6193 −1.20905 −0.604524 0.796587i \(-0.706637\pi\)
−0.604524 + 0.796587i \(0.706637\pi\)
\(450\) 0 0
\(451\) 20.3739 0.959368
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −3.25227 −0.152135 −0.0760675 0.997103i \(-0.524236\pi\)
−0.0760675 + 0.997103i \(0.524236\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −30.0924 −1.40154 −0.700772 0.713386i \(-0.747161\pi\)
−0.700772 + 0.713386i \(0.747161\pi\)
\(462\) 0 0
\(463\) −15.1216 −0.702760 −0.351380 0.936233i \(-0.614287\pi\)
−0.351380 + 0.936233i \(0.614287\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −36.6591 −1.69638 −0.848191 0.529691i \(-0.822308\pi\)
−0.848191 + 0.529691i \(0.822308\pi\)
\(468\) 0 0
\(469\) 13.9564 0.644448
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −8.66025 −0.398199
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 10.0308 0.458319 0.229160 0.973389i \(-0.426402\pi\)
0.229160 + 0.973389i \(0.426402\pi\)
\(480\) 0 0
\(481\) −9.41742 −0.429398
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 22.3303 1.01188 0.505941 0.862568i \(-0.331145\pi\)
0.505941 + 0.862568i \(0.331145\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 30.7400 1.38728 0.693638 0.720324i \(-0.256007\pi\)
0.693638 + 0.720324i \(0.256007\pi\)
\(492\) 0 0
\(493\) −16.7477 −0.754280
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 22.1552 0.993795
\(498\) 0 0
\(499\) −19.6261 −0.878587 −0.439293 0.898344i \(-0.644771\pi\)
−0.439293 + 0.898344i \(0.644771\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −12.4859 −0.556717 −0.278358 0.960477i \(-0.589790\pi\)
−0.278358 + 0.960477i \(0.589790\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 10.6784 0.473310 0.236655 0.971594i \(-0.423949\pi\)
0.236655 + 0.971594i \(0.423949\pi\)
\(510\) 0 0
\(511\) 13.9564 0.617397
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 26.8693 1.18171
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −21.3567 −0.935654 −0.467827 0.883820i \(-0.654963\pi\)
−0.467827 + 0.883820i \(0.654963\pi\)
\(522\) 0 0
\(523\) −21.7477 −0.950962 −0.475481 0.879726i \(-0.657726\pi\)
−0.475481 + 0.879726i \(0.657726\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −31.8245 −1.38630
\(528\) 0 0
\(529\) 0.373864 0.0162549
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −18.3296 −0.793941
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.45505 0.105747
\(540\) 0 0
\(541\) 11.7913 0.506947 0.253474 0.967342i \(-0.418427\pi\)
0.253474 + 0.967342i \(0.418427\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 11.7477 0.502297 0.251148 0.967949i \(-0.419192\pi\)
0.251148 + 0.967949i \(0.419192\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 12.4104 0.528701
\(552\) 0 0
\(553\) 11.1652 0.474791
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 7.79129 0.329536
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 8.66025 0.364986 0.182493 0.983207i \(-0.441583\pi\)
0.182493 + 0.983207i \(0.441583\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 33.1950 1.39161 0.695804 0.718232i \(-0.255048\pi\)
0.695804 + 0.718232i \(0.255048\pi\)
\(570\) 0 0
\(571\) 1.66970 0.0698747 0.0349373 0.999390i \(-0.488877\pi\)
0.0349373 + 0.999390i \(0.488877\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −38.4955 −1.60259 −0.801293 0.598272i \(-0.795854\pi\)
−0.801293 + 0.598272i \(0.795854\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 2.81655 0.116850
\(582\) 0 0
\(583\) 15.0000 0.621237
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 47.3375 1.95383 0.976913 0.213636i \(-0.0685307\pi\)
0.976913 + 0.213636i \(0.0685307\pi\)
\(588\) 0 0
\(589\) 23.5826 0.971703
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 30.8154 1.26544 0.632719 0.774382i \(-0.281939\pi\)
0.632719 + 0.774382i \(0.281939\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 19.9862 0.816612 0.408306 0.912845i \(-0.366120\pi\)
0.408306 + 0.912845i \(0.366120\pi\)
\(600\) 0 0
\(601\) −9.70417 −0.395841 −0.197921 0.980218i \(-0.563419\pi\)
−0.197921 + 0.980218i \(0.563419\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 26.7477 1.08566 0.542828 0.839844i \(-0.317353\pi\)
0.542828 + 0.839844i \(0.317353\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −24.1733 −0.977945
\(612\) 0 0
\(613\) −36.7477 −1.48423 −0.742113 0.670274i \(-0.766176\pi\)
−0.742113 + 0.670274i \(0.766176\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −18.3296 −0.737920 −0.368960 0.929445i \(-0.620286\pi\)
−0.368960 + 0.929445i \(0.620286\pi\)
\(618\) 0 0
\(619\) −20.7477 −0.833922 −0.416961 0.908924i \(-0.636905\pi\)
−0.416961 + 0.908924i \(0.636905\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 36.6591 1.46872
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −16.3115 −0.650380
\(630\) 0 0
\(631\) 19.7042 0.784410 0.392205 0.919878i \(-0.371712\pi\)
0.392205 + 0.919878i \(0.371712\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −2.20871 −0.0875124
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 27.9234 1.10291 0.551454 0.834205i \(-0.314073\pi\)
0.551454 + 0.834205i \(0.314073\pi\)
\(642\) 0 0
\(643\) −46.8693 −1.84835 −0.924173 0.381975i \(-0.875244\pi\)
−0.924173 + 0.381975i \(0.875244\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 20.3477 0.799949 0.399975 0.916526i \(-0.369019\pi\)
0.399975 + 0.916526i \(0.369019\pi\)
\(648\) 0 0
\(649\) −25.7477 −1.01069
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −23.1642 −0.906486 −0.453243 0.891387i \(-0.649733\pi\)
−0.453243 + 0.891387i \(0.649733\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −24.1733 −0.941657 −0.470828 0.882225i \(-0.656045\pi\)
−0.470828 + 0.882225i \(0.656045\pi\)
\(660\) 0 0
\(661\) 27.7477 1.07926 0.539631 0.841902i \(-0.318564\pi\)
0.539631 + 0.841902i \(0.318564\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −16.7477 −0.648475
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 32.1860 1.24253
\(672\) 0 0
\(673\) −35.0000 −1.34915 −0.674575 0.738206i \(-0.735673\pi\)
−0.674575 + 0.738206i \(0.735673\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 20.3477 0.782024 0.391012 0.920386i \(-0.372125\pi\)
0.391012 + 0.920386i \(0.372125\pi\)
\(678\) 0 0
\(679\) −3.25227 −0.124811
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −20.1371 −0.770523 −0.385262 0.922807i \(-0.625889\pi\)
−0.385262 + 0.922807i \(0.625889\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −13.4949 −0.514115
\(690\) 0 0
\(691\) −10.4955 −0.399266 −0.199633 0.979871i \(-0.563975\pi\)
−0.199633 + 0.979871i \(0.563975\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −31.7477 −1.20253
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 14.5794 0.550657 0.275328 0.961350i \(-0.411213\pi\)
0.275328 + 0.961350i \(0.411213\pi\)
\(702\) 0 0
\(703\) 12.0871 0.455874
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 42.5028 1.59848
\(708\) 0 0
\(709\) 28.0780 1.05449 0.527246 0.849713i \(-0.323225\pi\)
0.527246 + 0.849713i \(0.323225\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −31.8245 −1.19184
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 9.02175 0.336455 0.168227 0.985748i \(-0.446196\pi\)
0.168227 + 0.985748i \(0.446196\pi\)
\(720\) 0 0
\(721\) −9.41742 −0.350723
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 3.37386 0.125130 0.0625648 0.998041i \(-0.480072\pi\)
0.0625648 + 0.998041i \(0.480072\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 13.4949 0.499127
\(732\) 0 0
\(733\) 5.12159 0.189170 0.0945851 0.995517i \(-0.469848\pi\)
0.0945851 + 0.995517i \(0.469848\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −15.5130 −0.571429
\(738\) 0 0
\(739\) −33.8693 −1.24590 −0.622951 0.782260i \(-0.714067\pi\)
−0.622951 + 0.782260i \(0.714067\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 24.1733 0.883272
\(750\) 0 0
\(751\) 18.1216 0.661266 0.330633 0.943759i \(-0.392738\pi\)
0.330633 + 0.943759i \(0.392738\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 18.3739 0.667809 0.333905 0.942607i \(-0.391634\pi\)
0.333905 + 0.942607i \(0.391634\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −34.5656 −1.25300 −0.626500 0.779421i \(-0.715513\pi\)
−0.626500 + 0.779421i \(0.715513\pi\)
\(762\) 0 0
\(763\) 47.3303 1.71347
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 23.1642 0.836411
\(768\) 0 0
\(769\) 16.5390 0.596412 0.298206 0.954502i \(-0.403612\pi\)
0.298206 + 0.954502i \(0.403612\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 6.64215 0.238902 0.119451 0.992840i \(-0.461887\pi\)
0.119451 + 0.992840i \(0.461887\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 23.5257 0.842896
\(780\) 0 0
\(781\) −24.6261 −0.881192
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 3.37386 0.120265 0.0601326 0.998190i \(-0.480848\pi\)
0.0601326 + 0.998190i \(0.480848\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −16.3115 −0.579969
\(792\) 0 0
\(793\) −28.9564 −1.02827
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 44.5209 1.57701 0.788506 0.615027i \(-0.210855\pi\)
0.788506 + 0.615027i \(0.210855\pi\)
\(798\) 0 0
\(799\) −41.8693 −1.48123
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −15.5130 −0.547442
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −5.19615 −0.182687 −0.0913435 0.995819i \(-0.529116\pi\)
−0.0913435 + 0.995819i \(0.529116\pi\)
\(810\) 0 0
\(811\) 44.9564 1.57863 0.789317 0.613986i \(-0.210435\pi\)
0.789317 + 0.613986i \(0.210435\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −10.0000 −0.349856
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −56.2838 −1.96432 −0.982159 0.188054i \(-0.939782\pi\)
−0.982159 + 0.188054i \(0.939782\pi\)
\(822\) 0 0
\(823\) 33.8348 1.17941 0.589704 0.807619i \(-0.299244\pi\)
0.589704 + 0.807619i \(0.299244\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 7.86180 0.273382 0.136691 0.990614i \(-0.456353\pi\)
0.136691 + 0.990614i \(0.456353\pi\)
\(828\) 0 0
\(829\) 41.4955 1.44120 0.720598 0.693353i \(-0.243867\pi\)
0.720598 + 0.693353i \(0.243867\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −3.82560 −0.132549
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −13.1334 −0.453416 −0.226708 0.973963i \(-0.572796\pi\)
−0.226708 + 0.973963i \(0.572796\pi\)
\(840\) 0 0
\(841\) −17.0000 −0.586207
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 3.83485 0.131767
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −16.3115 −0.559150
\(852\) 0 0
\(853\) −5.00000 −0.171197 −0.0855984 0.996330i \(-0.527280\pi\)
−0.0855984 + 0.996330i \(0.527280\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −42.5028 −1.45187 −0.725934 0.687764i \(-0.758592\pi\)
−0.725934 + 0.687764i \(0.758592\pi\)
\(858\) 0 0
\(859\) 0.252273 0.00860744 0.00430372 0.999991i \(-0.498630\pi\)
0.00430372 + 0.999991i \(0.498630\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −30.8154 −1.04897 −0.524484 0.851420i \(-0.675742\pi\)
−0.524484 + 0.851420i \(0.675742\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −12.4104 −0.420994
\(870\) 0 0
\(871\) 13.9564 0.472896
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −2.79129 −0.0942551 −0.0471275 0.998889i \(-0.515007\pi\)
−0.0471275 + 0.998889i \(0.515007\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 36.9452 1.24471 0.622357 0.782733i \(-0.286175\pi\)
0.622357 + 0.782733i \(0.286175\pi\)
\(882\) 0 0
\(883\) 34.6606 1.16642 0.583211 0.812321i \(-0.301796\pi\)
0.583211 + 0.812321i \(0.301796\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −23.1642 −0.777778 −0.388889 0.921285i \(-0.627141\pi\)
−0.388889 + 0.921285i \(0.627141\pi\)
\(888\) 0 0
\(889\) 60.7042 2.03595
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 31.0260 1.03825
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 22.8027 0.760513
\(900\) 0 0
\(901\) −23.3739 −0.778696
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1.62614 0.0539950 0.0269975 0.999636i \(-0.491405\pi\)
0.0269975 + 0.999636i \(0.491405\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −0.286051 −0.00947728 −0.00473864 0.999989i \(-0.501508\pi\)
−0.00473864 + 0.999989i \(0.501508\pi\)
\(912\) 0 0
\(913\) −3.13068 −0.103610
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −2.01810 −0.0666436
\(918\) 0 0
\(919\) −13.6261 −0.449485 −0.224742 0.974418i \(-0.572154\pi\)
−0.224742 + 0.974418i \(0.572154\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 22.1552 0.729246
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 14.1425 0.463999 0.231999 0.972716i \(-0.425473\pi\)
0.231999 + 0.972716i \(0.425473\pi\)
\(930\) 0 0
\(931\) 2.83485 0.0929084
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −9.41742 −0.307654 −0.153827 0.988098i \(-0.549160\pi\)
−0.153827 + 0.988098i \(0.549160\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −2.81655 −0.0918169 −0.0459085 0.998946i \(-0.514618\pi\)
−0.0459085 + 0.998946i \(0.514618\pi\)
\(942\) 0 0
\(943\) −31.7477 −1.03385
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −57.0068 −1.85247 −0.926236 0.376945i \(-0.876975\pi\)
−0.926236 + 0.376945i \(0.876975\pi\)
\(948\) 0 0
\(949\) 13.9564 0.453045
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 53.9796 1.74857 0.874286 0.485412i \(-0.161330\pi\)
0.874286 + 0.485412i \(0.161330\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −61.8414 −1.99696
\(960\) 0 0
\(961\) 12.3303 0.397752
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 8.25227 0.265375 0.132688 0.991158i \(-0.457639\pi\)
0.132688 + 0.991158i \(0.457639\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −5.55765 −0.178354 −0.0891768 0.996016i \(-0.528424\pi\)
−0.0891768 + 0.996016i \(0.528424\pi\)
\(972\) 0 0
\(973\) 42.9129 1.37572
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −35.8607 −1.14728 −0.573642 0.819106i \(-0.694470\pi\)
−0.573642 + 0.819106i \(0.694470\pi\)
\(978\) 0 0
\(979\) −40.7477 −1.30230
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −22.3658 −0.713357 −0.356679 0.934227i \(-0.616091\pi\)
−0.356679 + 0.934227i \(0.616091\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 13.4949 0.429113
\(990\) 0 0
\(991\) −41.1216 −1.30627 −0.653135 0.757241i \(-0.726547\pi\)
−0.653135 + 0.757241i \(0.726547\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −6.74773 −0.213703 −0.106851 0.994275i \(-0.534077\pi\)
−0.106851 + 0.994275i \(0.534077\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8100.2.a.w.1.2 yes 4
3.2 odd 2 inner 8100.2.a.w.1.1 4
5.2 odd 4 8100.2.d.r.649.2 8
5.3 odd 4 8100.2.d.r.649.8 8
5.4 even 2 8100.2.a.bb.1.4 yes 4
15.2 even 4 8100.2.d.r.649.1 8
15.8 even 4 8100.2.d.r.649.7 8
15.14 odd 2 8100.2.a.bb.1.3 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8100.2.a.w.1.1 4 3.2 odd 2 inner
8100.2.a.w.1.2 yes 4 1.1 even 1 trivial
8100.2.a.bb.1.3 yes 4 15.14 odd 2
8100.2.a.bb.1.4 yes 4 5.4 even 2
8100.2.d.r.649.1 8 15.2 even 4
8100.2.d.r.649.2 8 5.2 odd 4
8100.2.d.r.649.7 8 15.8 even 4
8100.2.d.r.649.8 8 5.3 odd 4