Defining parameters
Level: | \( N \) | \(=\) | \( 8112 = 2^{4} \cdot 3 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 8112.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 12 \) |
Character field: | \(\Q\) | ||
Sturm bound: | \(2912\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(8112, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1540 | 310 | 1230 |
Cusp forms | 1372 | 310 | 1062 |
Eisenstein series | 168 | 0 | 168 |
Decomposition of \(S_{2}^{\mathrm{new}}(8112, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(8112, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(8112, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(624, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2028, [\chi])\)\(^{\oplus 3}\)