Defining parameters
Level: | \( N \) | \(=\) | \( 8112 = 2^{4} \cdot 3 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 8112.dg (of order \(26\) and degree \(12\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 1352 \) |
Character field: | \(\Q(\zeta_{26})\) | ||
Newform subspaces: | \( 0 \) | ||
Sturm bound: | \(2912\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(8112, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 17568 | 0 | 17568 |
Cusp forms | 17376 | 0 | 17376 |
Eisenstein series | 192 | 0 | 192 |
Decomposition of \(S_{2}^{\mathrm{old}}(8112, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(8112, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(1352, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(4056, [\chi])\)\(^{\oplus 2}\)